1 SUPPLEMENTARY INFORMATION

- 2 Title:
- 3 Targeting the transmembrane cytokine co-receptor neuropilin-1 in distal tubules improves
- 4 renal injury and fibrosis

5 Author list:

- 6 Yinzheng Li¹, Zheng Wang¹, Huzi Xu¹, Yu Hong¹, Mengxia Shi¹, Bin Hu¹, Xiuru Wang¹,
- 7 Shulin Ma¹, Meng Wang¹, Chujin Cao¹, Han Zhu¹, Danni Hu¹, Chang xu¹, Yanping Lin¹,
- 8 Gang Xu^{1,*}, Ying Yao^{1,2,*}, Rui Zeng^{1,3,*}

9 Affiliations:

- ¹ Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of
- 11 Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
- ² Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of
- 13 Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China
- ¹⁴ ³ Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of
- 15 Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of
- 16 Medical Sciences, Wuhan 430030, China.
- 17 *Correspondence: zengrui@tjh.tjmu.edu.cn (R.Z.), yaoyingkk@126.com (Y.Y.),
- 18 xugang@tjh.tjmu.edu.cn (G.X.)

20 Inventory of Supporting Information:

- 21 Supplementary Figures 1 to 10
- 22 Supplementary Tables 1 to 3
- 23 References 1 to 3
- 24

34	intercalated cell of collecting duct; EC, endothelial cell; Peri, Pericytes; Fib, fibroblast; Myo,
35	myofibroblast; Prolife cell, proliferating cell; Macro, macrophage; T lymph, T lymphocyte; B
36	lymph, B lymphocyte; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell;
37	Neutrophil, Neutrophil. (C) Dotplot showing gene expression levels and proportions of
38	cluster-specific marker genes in each cluster. (D) Expression levels of Tgfbr2 and Tgfbr3
39	in kidney after IR surgery.

42 **Supplementary Figure 2. Nrp1 is expressed in distal TECs.** (A) Expression levels of 43 *Nrp1* in mice with nephrotic syndrome. Figure created with 44 https://singlecell.broadinstitute.org/. The data is pubic in Single Cell Portal whitepaper

45	(https://www.bi	orxiv.org/con	tent/10.1101/2023	.07.13.548886	v1). (B) Expressio	on of <i>Nrp1</i> in
46	COVID-19 aut	opsy donors	Image from http	s://singlecell.br	oadinstitute.org/.	The data is
47	pubic	in	Single	Cell	Portal	whitepaper
48	(https://www.bi	orxiv.org/con	tent/10.1101/2023	.07.13.548886	v1). (C) The expre	ession levels
49	of <i>Nrp1</i> in the	mice kidneys	after UUO, sodiu	ım oxalate (SO), IR, cisplatin (C	P), and folic
50	acid (FA). The	data comes f	rom GSE197266.	(D) Expression	of Nrp1 and Cdh	16 in mouse
51	renal space tra	nscriptomics	Image from https	://www.spatialo	mics.org/SpatialE	0B/. (E) Nrp1
52	immunofluores	cence staini	ng with antibody t	from Santa cru	z, R&D and Abc	am. (F) Co-
53	expression of I	Nrp1 with Kin	1 with immunoflu	orescence stai	ning. (G) Express	ion levels of
54	<i>Nrp2</i> in kidne	y after IR su	urgery in our stud	dy. (H) Co-exp	ression of Nrp1	and TGF-β
55	receptors in D	T cells.				

58 **Supplementary Figure 3. Knockout or overexpression of** *Nrp1* **in distal TECs.** (A) A 59 schematic diagram illustrating tubular *Nrp1* deletion. (B) Mouse tail DNA analysis to 60 validate gene knockouts. (C) Nrp1 immunofluorescence staining after IR in mice. (D)

61	Histological analyses of tissues from the heart, liver, spleen, lungs, and kidneys of the gene
62	knockout mice by H&E and PAS staining. Scale bar, 50 $\mu\text{m}.$ (E) Validation of Nrp1
63	expression in gene knockout by Western Blotting ($n = 6$ per group). (F) A schematic
64	diagram illustrating the subcapsular injection of lentivirus for Nrp1 overexpression. (G)
65	Fluorescence images of Nrp1 lentivirus with GFP. Scale bar, 20 μ m. (H) Fluorescence
66	images of Nrp1 on day 5 after I-R in mice. Scale bar, 20 μ m. (I) Ratio of kidney weight
67	versus body weight of mice (For Vehi, n=5; Nrp1, n=4; Vehi+IR, n=6; Nrp1+IR, n=5).
68	Plasma BUN concentrations and creatinine (CR) concentrations in groups (For Vehi, <i>n</i> =5;
69	Nrp1, <i>n</i> =4; Vehi+IR, <i>n</i> =6; Nrp1+IR, <i>n</i> =5). (J) Levels of mRNA encoding <i>Nrp1</i> by RT-qPCR
70	(For Vehi, <i>n</i> =5; Nrp1, <i>n</i> =4; Vehi+IR, <i>n</i> =6; Nrp1+IR, <i>n</i> =5). (K) Representative micrographs
71	and corresponding statistical scores of periodic acid-Schiff (PAS) staining and Kim1
72	immunofluorescence staining on day 5 after IR in mice (For Vehi, <i>n</i> =5; Nrp1, <i>n</i> =4; Vehi+IR,
73	n=6; Nrp1+IR, $n=5$). (L) Representative micrographs and corresponding statistical scores
74	of periodic acid-Schiff (PAS) staining on day 1 after IR in mice ($n = 4$ per group). (M) Plasma
75	BUN concentrations and creatinine (CR) concentrations in groups on day 1 after IR in mice
76	(<i>n</i> = 4 per group). Scale bar, 20 μ m. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001 as determined by
77	one-way ANOVA. Data represent mean ± SEM. Source data are provided as a Source
78	Data file.

Supplementary Figure 4. Knockout of *Nrp1* in distal TECs alleviates renal fibrosis caused by UUO and 5/6 nephrectomy. (A) Whole-slide image of mouse kidney paraffin sections stained with PAS after UUO surgery and statistical analysis of renal tubular injury scores (n = 5 per group). (B) Representative micrographs and corresponding statistical scores of Sirius red and Masson on day 7 after UUO in mice (n = 5 per group). (C)

86	Expression levels of kidney damage related indicators (Havcr1 and Lcn2) and fibrosis
87	related indicators (Acta2, Pdgfrb, Col1a1 and Fn1) at day 7 after UUO determined using
88	RT-qPCR ($n = 5$ per group). (D) Representative micrographs and corresponding statistical
89	scores of PAS, Sirius red and Masson on day 14 after 5/6 nephrectomy in mice ($n = 5$ per
90	group). (E) Expression levels of kidney damage related indicators (<i>Havcr1</i> and <i>Lcn2</i>) and
91	fibrosis related indicators (Acta2, Pdgfrb, Col1a1 and Fn1) at day 14 after 5/6 nephrectomy
92	determined using RT-qPCR (For Sham, <i>n</i> =5; Vehi+5/6NxD14, <i>n</i> =4; Tmx+5/6NxD14, <i>n</i> =5).
93	* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ as determined by one-way ANOVA. Scale bar, 20 µm.
94	Data represent mean ± SEM. Source data are provided as a Source Data file.

Supplementary Figure 6. Nrp1 inhibits OXPHOS levels in distal TECs. (A) Regulated KEGG pathways in I-R groups compared to sham groups in scRNA-seq data. The horizontal axis represents the number of genes with significant differences enriched in different pathways, positive values represent the number of genes upregulated by I-R compared to the sham group, and negative values represent the number of genes downregulated by I-R compared to the sham group. (B) Gene Set Enrichment Analysis

111	(GSEA) plot depicting the enrichment of gene sets related to OXPHOS, TCA, and
112	glycolysis/gluconeogenesis pathways in Nrp1+ DT cells compared to Nrp1- DT cells. (C)
113	The OXPHOS-related heatmap in IRD5 kidney bulk RNA-seq and pTECs proteomics ($n =$
114	4 per group). (D) After IRD5, Nrp1+DT compared with Nrp1-DT, the pathway map of gene
115	transcription level changes in OXPHOS, TCA and glycolysis pathway in scRNA-seq data.
116	Scale: Blue corresponds to gene downregulation in <i>Nrp1</i> +DT compared to <i>Nrp1</i> -DT, while
117	gray indicates no statistically significant change in gene expression. Source data are
118	provided as a Source Data file.

121Supplementary Figure 7. Nrp1 inhibited OXPHOS levels. Renal tissue expression of122OXPHOS and TCA at day 5 after IR determined using RT-qPCR (For Sham, n=9; Vehi+IR,123n=7; Tmx+IR, n=7). *P < 0.05, **P < 0.01, ***P < 0.001 as determined by one-way ANOVA.124Data represent mean ± SEM. Source data are provided as a Source Data file.

Supplementary Figure 9. Construction of distal tubular-specific *Nrp1* and *Tgfbr1* double-gene knockout mice, as well as myofibroblast-specific *Nrp1* knockout mice and pericyte-specific *Nrp1* knockout mice. (A) A schematic diagram illustrating the tubular-specific *Tgfbr1* knockout. (B) A schematic diagram illustrating the tubular-specific *Nrp1* and *Tgfbr1* double-gene knockout. (C) A schematic diagram illustrating the myofibroblast-specific *Nrp1* knockout. (D) A schematic diagram illustrating the pericyte-

144	specific <i>Nrp1</i> knockout. (E) RT-qPCR experiments were conducted using mice from A to
145	determine the expression levels of <i>Nrp1</i> and/or <i>Tgfbr1</i> (For Sham, <i>n</i> =6; Vehi+IRD14, <i>n</i> =5;
146	Tmx+IRD14, $n=7$). (F) RT-qPCR experiments were conducted using mice from B to
147	determine the expression levels of Nrp1 and/or Tgfbr1 ($n = 6$ per group). (G) RT-qPCR
148	experiments were conducted using mice from C to determine the expression levels of Nrp1
149	and/or <i>Tgfbr1</i> (For Sham, <i>n</i> =7; Vehi+IRD14, <i>n</i> =7; Tmx+IRD14, <i>n</i> =6). (H) RT-qPCR
150	experiments were conducted using mice from D to determine the expression levels of Nrp1
151	and/or Tgfbr1 ($n = 5$ per group). (I) Histological analyses of section from the heart, liver,
152	spleen, lungs, and kidneys of the gene knockdown mice by H&E and PAS staining. * P <
153	0.05, ** P < 0.01, *** P < 0.001 as determined by one-way ANOVA. Scale bar, 50 µm. Data
154	represent mean ± SEM. Source data are provided as a Source Data file.
155	

157 Supplementary Figure 10. Injection of *Nrp1* and *Tgfr1* siRNA under the renal capsule,

158 or deletion of *Nrp1* in myofibroblasts or pericytes attenuates I-R-induced renal injury.

159 (A) Representative micrographs and corresponding statistical scores of PAS and Kim1

160	immunofluorescence staining on day 5 after renal capsule injection of Nrp1 and Tgfr1
161	siRNA in C57 mice with I-R injury. Ratio of kidney weight versus body weight of mice.
162	Plasma BUN concentrations and CR concentrations in sham, Vehi + IR, Nrp1 siRNA + IR,
163	or Nrp1 siRNA + Tgfr1 siRNA + IR groups at 5 days. For Sham <i>, n</i> =7; Vehi+IRD5, <i>n</i> =6; Nrp1
164	siRNA+IRD5, <i>n</i> =5; Nrp1 siRNA+Tgfbr1 siRNA+IRD5, <i>n</i> =5. (B) Expression levels of <i>Nrp1</i>
165	and <i>Tgfbr1</i> in kidneys of C57 mice with IR injury, after renal capsule injection of Nrp1 and
166	Tgfr1 siRNA, were detected by RT-qPCR (For Sham, <i>n</i> =7; Vehi+IRD5, <i>n</i> =6; Nrp1
167	siRNA+IRD5, <i>n</i> =5; Nrp1 siRNA+Tgfbr1 siRNA+IRD5, <i>n</i> =5). (C) Representative
168	micrographs and corresponding statistical scores of PAS, Masson, and Sirius red staining
169	on day 14 after I-R in mice with myofibroblast-specific $Nrp1$ knockout ($n = 7$ per group).
170	Ratio of kidney weight versus body weight of mice ($n = 7$ per group). Plasma BUN
171	concentrations and CR concentrations in sham, Vehi + IR, or Tmx + IR groups at 14 days
172	(<i>n</i> = 7 per group). (D) Co-expression of Nrp1 with α -SMA with immunofluorescence staining.
173	(E) Representative micrographs and corresponding statistical scores of PAS, Masson, and
174	Sirius red staining on day 14 after I-R in mice with pericyte-specific $Nrp1$ knockout ($n = 5$
175	per group). Ratio of kidney weight versus body weight of mice ($n = 5$ per group). Plasma
176	BUN concentrations and CR concentrations in sham, Vehi + IR, or Tmx + IR groups at 14
177	days ($n = 5$ per group). * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ as determined by one-way
178	ANOVA. Scale bar, 20 μ m. Data represent mean ± SEM. Source data are provided as a
179	Source Data file.
180	

Variable	$eGFR < 30 ml/min/1.73 m^{2}$	eGFR \ge 30 ml/min/1.73 m ²	P
	(n = 115)	(n = 102)	,
Gender male	86/115(74.8%)	74/102(72.5%)	0.709 ^c
Age (years)	41.72±1.039	40.11±1.14	0.296 ^a
Hypertension positive	100/115(87.0%)	82/102(80.4%)	0.189 ^c
Diabetes positive	11/115(9.6%)	11/102(10.8%)	0.767 ^c
White blood cell,10^9/L	6.5±0.27	7.0±0.24	0.139 ^a
Neutrophil,10^9/L	4.66±0.25	4.56±0.22	0.765 ^a
Lymphocyte,10^9/L	1.37±0.16	1.78±0.07	0.031 ^a
Monocyte,10^9/L	0.55±0.04	0.57±0.22	0.561 ^a
Platelet,10^9/L	191.08±6.00	202.67±6.01	0.176 ^a
Na [⁺] ,mmol/L	139.78±0.29	140.38±0.19	0.099 ^a
K [⁺] ,mmol/L	7.27±2.76	4.32±0.06	0.321 ^a
Cl ⁻ ,mmol/L	105.2(101.5-109.1)	105.6(103.5-107.3)	0.453 ^b
Ca ²⁺ ,mmol/L	2.19±0.02	2.33±0.03	0.000 ^a
ALT,U/L	10(7-16)	11(7-16)	0.412 ^b
AST,U/L	14(11-18)	15(12-18)	0.134 ^b
Total protein,g/L	61.80±0.89	65.80±0.66	0.000 ^a
Albumin,g/L	36.04±0.65	39.08±0.53	0.000 ^a
Globulin,g/L	25.97±0.48	26.30±0.47	0.632 ^a
Cholesterol,mmol/L	4.57±0.14	4.69±0.14	0.539 ^a
Uric acid,µmol/L	390.19±11.37	381.81±10.13	0.583 ^a
Urinary red cell,/µL	10.4(4.3-29.4)	8.1(3.9-31.1)	0.616 ^b
Urinary white cell,/µL	6.6(2.7-11.5)	3.9(2.2-9.9)	0.146 ^b
Urinary cast,/,µL	0.1(0-0.4)	0.1(0-0.4)	0.811 ^b
NRP1 high,n%	73/115(63.5%)	46/102(45.1%)	0.007 ^c

181 Table S1. General characteristics of study participants (Related to Figure 1)

182 The bold values indicate P < 0.05.

183 Data are presented as mean ± SEM or median (25–75th percentiles) or a percentage.

184 Tubular NRP1 high cell was defined as the number of NRP1 positive cells \geq 50th

185 percentiles.

^at-test, ^bMann–Whitney U test, ^cPearson's chi-squared test.

187 All statistical analyses were two-sided.

189 Table S2. Sequence for Nrp1 Used for Fluorescence in

Situ Hybridization (Related to methods section)			
Gene	Sequence(5'to3')		
	GTAACCGGGAGATGTGAGGTACCC		
	AGGATTCGAGTCTTGCTCCAGGTC		
Nrp1	TGGATAGAACGCCTGAAGAGGAGC		
	TGTGGCTCTCTCAGGGTAGATCCT		
	CCAGAAGGTCATACAGTGGGCAGA		

194	section)					
	Gene	Forward(5'to3')	Reverse(5'to3')			
	Gapdh	TGACCTCAACTACATGGTCTACA	CTTCCCATTCTCGGCCTTG			
	Nrp1	CAAGGAGTGGCACAGCATCT	GGAGCACCACATCCACAGAA			
	Tgfbr1	TCTGCATTGCACTTATGCTGA	AAAGGGCGATCTAGTGATGGA			
	Havcr1	ACATATCGTGGAATCACAACGAC	ACTGCTCTTCTGATAGGTGACA			
	Lcn2	GCAGGTGGTACGTTGTGGG	CTCTTGTAGCTCATAGATGGTGC			
	Acta2	CCCAGACATCAGGGAGTAATGG	TCTATCGGATACTTCAGCGTCA			
	Pdgfrb	AGGAGTGATACCAGCTTTAGTCC	CCGAGCAGGTCAGAACAAAGG			
	Col1a1	GCTCCTCTTAGGGGCCACT	CCACGTCTCACCATTGGGG			
	Col1a2	TCGTGCCTAGCAACATGCC	TTTGTCAGAATACTGAGCAGCAA			
	Fn1	GCTCAGCAAATCGTGCAGC	CTAGGTAGGTCCGTTCCCACT			
	Nfkb1	ATGGCAGACGATGATCCCTAC	CGGAATCGAAATCCCCTCTGTT			
	Smad3	CATTCCATTCCCGAGAACACTAA	GCTGTGGTTCATCTGGTGGT			
	Ndufa4	TCCCAGCTTGATTCCTCTCTT	GGGTTGTTCTTTCTGTCCCAG			
	Sdhd	TGGTCAGACCCGCTTATGTG	GGTCCAGTGGAGAGATGCAG			
	Uqcrb	GGCCGATCTGCTGTTTCAG	CATCTCGCATTAACCCCAGTT			
	Cox7b	TTGCCCTTAGCCAAAAACGC	TCATGGAAACTAGGTGCCCTC			
	Atp5o	TCTCGACAGGTTCGGAGCTT	TTGACGGTGCGCTTGATGTAG			
	Pdhb	AAGAGGCGTTTTCACCGCTC	GTCACCGTATTTCTTCCACAGG			
	Acly	ACCCTTTCACTGGGGATCACA	GACAGGGATCAGGATTTCCTTG			
	Oghd	GTTTCTTCAAACGTGGGGTTCT	GCATGATTCCAGGGGTCTCAAA			
	ldh3a	TGGGTGTCCAAGGTCTCTC	CTCCCACTGAATAGGTGCTTTG			

193 Table S3. List and sequence for primers used for RT-qPCR(Related to methods

197 **References**

- 198 1. https://singlecell.broadinstitute.org/.
- 199 2. https://www.spatialomics.org/SpatialDB
- 200 3. https://www.biorender.com