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Supplement 1 
Includes (1) a description of Categorical Classification models, (2) their Python codes and (3) Utilities for pre and post 
processing. 

1. Categorical Classification models for the quantification of glycogen granules.  
As stated in the main article, we assembled two categorical classifiers, “Locations” and “Granules”, respectively for the 
region identification and granule-counting tasks.  A key component of the categorical approach, which allowed the 
practical separation of the tasks, was the division of the original EM images into sub-images.  The process is illustrated 
with Supplement 1 Fig. 1. Every EM image (of 4096 x 4096 pixels, at 0.4 nm per pixel, or recast to that pixel distance) 
was divided into sub-images of 256 x 256 pixels.  As an example, the sub-images derived from the portion of original 
image within the white frame are expanded in the inset.   

The subdivision proved advantageous for both tasks: sub-images are squares of 102.4 nm sides, of area smaller than 
those of the regions of interest; hence, most of them could be assigned entirely to a region.  Also, their volume 
(~0.0006 µ3) is such that the number of granules within is generally below 10, which in principle reduces the counting 
task to a classification in 10 classes (0 to 9 granules).  As an example, the sub-image in the red frame is assigned to the 

 

Supplement 1 figure 1.  Basis of the categorical classification approach.  EM images are split into sub-images. Regardless of 
original magnification, images are first recast to 0.4 nm/pixel. The images are then split into sub-images of 256 x 256 pixels and 
102.4 nm sides. The set at bottom right results from splitting the area within the white frame.  Sub-images are submitted to the two 
AI models for classification according to location and number of granules.  As illustrated, sub-images provide reasonable resolution 
for location within the myofiber, and seldom contain more than 9 granules, thus simplifying the task of the granule counting module.  
The figure also illustrates that the intermyofibrillar regions can be identified by their content of SR and T tubular membranes, and the 
absence of filamentous elements.  
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“3-grain” class by the Granules classifier and to the “near-SR” class (i.e., the inter-myofibrillar cytosol) recognizable for 
absence of filaments. 

1.1 The ”Locations” categorical model.  A first model was built to determine the location of every sub-image.  7 
location classes of interest were defined: A-band, I-band, Z disk, A-I border, intra-SR, near-SR, mitochondria, illustrated 
with Supplement 1 Fig. 2. Each of these locations was identified by a digit, as listed in the figure.   

The set of 92 EM images obtained with a single microscope at VCU consisted of 62 obtained at 0.77 nm per pixel from 5 
human subjects, and 30 at 0.4 nm/pixel. The locations model was applied first to the 15360 sub-images of 256 x 256 
pixels derived from 60 of the images in the set at 0.77 nm/pixel (4 human subjects); 512 sub-images, from a 5th patient, 
became available later. Adding to this group the sub-images derived from the 30 EM images obtained at 0.4 nm/pixel 
degraded, instead of improving, the overall performance; for this reason, their application was limited to the set 
acquired at the lower magnification.  The segmentation models described in the main article did not have this notable 

 

Supplement 1 figure 2.  Sub-images are assigned to locations within the myofiber. The “Locations” model is trained to 
classify sub-images in the 7 classes shown.  Each class is represented by a number, from 0 to 6, as listed. Four other 
classes, numbered 7 to 10 and necessary for technical reasons, are illustrated with figure 4.  
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limitation.  

Both the “Locations” and “Granules” categorical 
models were built based on “ResNet50” (He et 
al., 2015), the model that introduced the 
Residual Networks structure. Code of both 
models are shared at the end of this 
Supplement.  Our Locations model has 175 layers 
of units (“neurons”). All layers but the last 3, 
which carry out the classification task specific to 
our model, are common to ResNet50, our “base” 
model.  

The 15872 available sub-images (62 x 256) were 
processed in 4 groups: a training group of 4032 
sub-images, a validation group of 1344 sub-
images, a test group of 1152, used to quantify 
performance of the trained model, and the 
remaining 9344, the “production” set.  A single 
annotator assigned one of the location labels to 
each sub-image of the training, validation and 
test sets. The location labels were a total of 11 (0 
to 10), as 4 classes had to be added for technical 
reasons.  Sub-images belonging to the 11 
location classes are shown in Supplement 1 Fig. 
3.  

The Locations model has a total of 23,610,000 
adjustable parameters, of which 22,539 belong 
to the layers specific to our problem and the rest 
are shared with the base model, which is 
available pre-trained, with parameters optimized 
to perform image classification on the 
“Imagenet” database (https://www.image-
net.org/).  Following transfer-learning practice 
(Weiss et al., 2016), the optimization or fitting 
process started from the parameter values 
(weights) of the base model, and proceeded to 
gradually increase in successive iterations the 
numbers of parameters allowed to vary. The 
maximum accuracy on the validation set (0.819) 
was obtained by freeing all 7,906,000 
parameters between layers # 159 and the final 
layer, # 275. The Locations model optimized in 
this way was then tested on 1152 sub-images; 

899 of those were labeled correctly, for an accuracy of 0.78.  Much of the inaccuracy was due to mis-identifying 
“technical” regions (borders after rotation, unidentifiable, etc.) which were not included in the final counts, thus not 
contributing to the overall error. 

1.2 The “Granules” categorical model.  It was built using the same procedure described for the Locations model.  
As explained before, the small sub-images contained a maximum of 9 or 10 granules.  Therefore, initially we built an 
actual “granule counter”, namely a classifier model with 11 possible classes or labels (granule counts of 0, 1, …9 or 
greater; 10 for unclassifiable).  This 11-classes ResNet50, was nearly identical to the Locations model.  The sole 
processing difference was the addition of “data augmentation” to the training set, by mirror imaging and rotation of 
the originals through multiple angles. This operation could not be used for the Locations model, as it would change the 

 

Supplement 1 figure 3.  Sub-images in different to locations and granule 
counts classes.  The integers below each sub-image are labels, respectively 
of location and granules count, assigned by the trainer.  Location labels are 
as listed in Fig. 3, with the addition of ‘7’ and ‘10’ for edge regions of rotated 
images, ‘8’ for completion edge regions in expanded images, and ‘9’ for 
sub-images deemed unclassifiable by the trainer. Labels for granule counts 
are ‘0’ for zero granules, ‘1’ for 1 or 2, ‘2’ for 3 to 5 and ‘3’ for 6 or more 
granules. ‘4’ was assigned when the number of granules was not clear to 
the trainer. 
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direction angles of the characteristic striations essential for identifying A and I bands.  Data augmentation allowed a 
reduction of the training set to 2560 labeled sub-images.  

The initial trials with Granules, however, failed to achieve accuracies better than 0.7.  Interpreting this failure as due to 
lack of accuracy in the training materials (i.e., inability of the trainer to assign numbers of granules correctly and 
consistently), we simplified the task by “binning” counts into 5 classes: class ‘0’ for images with no granules, ‘1’ for 1 or 
2 granules, ‘2’ for a 3-5 count, ‘3’ for 6 or more and ‘4’ for the unclassifiable.  Thus, the model ceased to be a “counter”, 
becoming a quantifier of lower precision. The Python code and block diagram of the Granules model, which only differs 
from the Locations model in its last layers, are presented at the end of this Supplement.  The validation accuracy of this 
simplified task reached 0.81 or 81% for a fit that adjusted 5,517,000 parameters, starting at layer 165. On a 1024-image 
test set, the accuracy reached 0.77. Because the inaccuracies were both in excess and deficit of the “ground truth”, the 
net error in computed totals is likely to be substantially less than the accuracy figure. 

The two categorical classifiers were applied to images from 5 subjects, only one of which was MHN (negative in the 
MHS diagnostic test). Hence, the results are not suitable for a comparison between MHS and MHN muscles. They do 
provide information on the distribution per region and are used in the main text for a comparison with the output of 
the semantic segmenters.   

The main quantitative outputs are as follows: the study comprised 8.95 cubic microns of cell space, with an overall 
concentration of ~767 granules per cubic micron.  The near-SR space (or inter-myofibrillar cytosol) contained the 
highest density of granules, at 1896 per cubic micron. The I band had a ~4 times greater concentration of granules than 
the A band.  There were few granules near mitochondria and the few “intra-SR” ones were likely the result of 
superposition of intra- and near-SR regions in the 60 nm-thick sections. As described in the main text, the total content 
of granules evaluated by the semantic segmenters on the same subjects was roughly similar. The regional distribution 
of granules was also similar.   The calculations listed in Table 1 were repeated separately for the images of samples 
from the 5 individual patients, and are reported in Supplement 1 Table 2.  There were differences between subjects, 
the significance of which cannot be evaluated -- on account of the limited number of patients in this sample.  One 
difference stands out, however; patient #143, the one with the highest Clinical Index (summarizing fairly severe signs 
and symptoms) had just 233 granules per cubic micron, on account of intra-myofibrillar regions almost devoid of 
granules as well as a reduced inter-myofibrillar content. A more robust comparison of glycogen content is done in the 
main text, using the semantic segmentation approach. 

1.3 Other Categorical Classifier models.  We built alternative models for the two classification tasks using other 
available structures. These included VGG-16 (Simonyan and Zisserman, 2015), a Very Deep Convolutional Network 
model with approximately 138 million parameters that is a current favorite for image identification tasks with large 
numbers of classes, the Inception model (Szegedy et al., 2015), which with 7 million parameters reached accuracies 
comparable to VGG-16, and MobileNetV2 (Sandler et al., 2019),  which at 3.4 million parameters is designed to be used 
in small computer systems, including cell phones.  The procedures were the same as described for ResNet50, namely, a 
substitution of the last (or “top”) layers for our particular purposes, and use of transfer learning to start from the 
parameters reached by training the models on the large Imagenet dataset. None of these reached substantially better 
accuracy in either the locations or granule counting tasks.  The only difference noticed was a somewhat lower accuracy 
of MobileNetV2, but the full exploration of transfer learning that would be needed to affirm that this model is inferior 

 0 1 2 3 4 5 6 7 8 9 
 A band I band Z disk A-I border near SR intra-SR mitoch intra-fibril inter-fibril total 

1 Sub-images 4805 3542 1382 71 3417 197 823 9800 4437 14237 
2 granules 684 1914 121 19 4077 4 44 2738 4125 6863 
3 volume, µ3 3.03 2.22 0.86 0.05 2.15 0.13 0.51 6.16 2.79 8.95 
4 concentration, µ-3 226 862 141 380 1896 31 86 444 1478 767 

 
Supplement 1 Table 1.  Distribution of glycogen granules derived by categorical classifications. Columns 0 to 6 correspond to classes 
of the “Locations” model.  Column 7 calculates numbers for the entire intra-myofibrillar region by combining entries in columns 0 to 3.  
Column 4, of class “near-SR”, together with column 5 (“Intra-SR”), listing images fully within SR vesicles, and mitochondria, are 
added together to generate the numbers in the inter-myofibrillar space (Col. 8).  Totals, listed in Col. 9, exclude the unclassifiable and 
completion sub-images.  Similar tabulations of the counts from individual subjects, are presented in Supplemental Table 2.  
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for the present tasks was not done.  In conclusion, with the level of effort that we could muster, we did not find better 
alternatives to the ResNet50-derived models presented here. 

Two-output models.  Models that perform simultaneously the assignment of location and the counting of granules 
were also built. Two-output models have obvious advantages; they simplify and streamline the process, in addition to 
making possible the immediate computation of variables derived from the two outputs.    

To build a simple two-output model we took as input for training a set of images with two labels each (location and 
number of granules in our case) and provided for two outputs, the corresponding “predictions” of location and granule 
count.  The loss for optimization was calculated jointly from the differences between true value and guesses of location 
and numbers. As done for the single-output models, the four basic structures (ResNet50, VGG-16, Inception and 
MobileNet) were tried.   The Python listing of the VGG-16 model with dual output is shared at the end of this 
supplement.  Because none reached accuracy of classification comparable to that of the one-output models, the 
approach was not pursued further.      

 

  

 A 
band 

I band Near Z 
disk 

A-I 
border 

Near-SR SR Mitoch 
ondria 

Intra-
fibrillar 

Inter-
fibrillar 

All 
regions 

patient 146, MHS 
          

Images 1000 1055 114 2 549 56 19 2171 624 2795 

Granules 155 205 6 0 981 0 2 366 983 1349 

Volume, µ3 0.63 0.66 0.07 0.00 0.35 0.04 0.01 1.36 0.4 1.76 

Concentration, µ-3 246 308 77 0 2841 0 125 269 2458 766 

patient 173, MHS 
       

      

Images 1641 944 277 9 587 1 223 2871 811 3682 

Granules 328 944 32 2 1521 0 26 1306 1547 2853 

Volume, µ3 1.03 0.59 0.17 0.01 0.37 0.00 0.14 1.8 0.51 2.31 

Concentration, µ-3 317 1589 184 265 4118 0 185 726 3033 1235 

patient 139, MHN 
       

      

Images 1236 1230 436 50 1279 107 188 2952 1574 4526 

Granules 168 700 50 17 1226 2 13 935 1241 2176 

Volume, µ3 0.78 0.77 0.27 0.03 0.80 0.07 0.12 1.85 0.99 2.84 

Concentration, µ-3 216 905 183 540 1524 22 112 505 1254 766 

patient 143, MHS 
       

      

Images 775 154 501 2 931 32 356 1432 1319 2751 

Granules 12 38 33 0 330 2 0 83 332 415 

Volume, µ3 0.49 0.10 0.32 0.00 0.59 0.02 0.22 0.91 0.83 1.74 

Concentration, µ-3 24 390 106 0 564 75 0 91 400 239 

patient 145, MHS 
       

      

Images 153 159 54 8 71 1 37 374 109 483 

Granules 21 27 0 0 19 0 3 48 22 70 

Volume, µ3 0.10 0.10 0.03 0.01 0.04 0.00 0.02 0.24 0.06 0.30 

Concentration, µ-3 213 265 0 0 425 0 129 200 367 233 

Supplemental Table 2. Quantity and concentration of glycogen granules, by location and individual patient, as 
determined by the AI models.  Incomplete cells reflect no images placed by the Locations model in the “A-I border” 
class. The “totals” section of the Table is identical to Table 1 in the article. Note sparsity of granules in patient #143, 
especially marked in the A and I bands. 
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2. Python code of the three modules used in the categorical study 

2.1. The Locations model in coarse training mode.  Presented as a Jupyter Notebook. Command lines are 
grouped in cells to mark the basic functions. Notebook functionality allows for individual execution of cells. Cell 1 loads 
program libraries; 2 and 3 input images and their trainer-assigned labels, using the Dataset format; 4 builds the 
network structure using Keras’s “Functional API” interface.  Note that ResNet50, the base model, is imported pre-
trained on the Imagenet dataset, and devoid of its “top” (last) layers, so they can be replaced by ones designed for the 
task at hand. Cell 5 defines the variable “loss”, used to quantify and minimize error, as well as the correction or 
“learning” rate and compiles the program.  Cell 6 sets the first stage of training as 10 iterations (epochs) over the 
training set and starts execution. 
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2.2. The Granules model illustrated in “prediction” mode. The structure is nearly identical to that of 
“Locations”. Note in Cell 2 input of images without labels (i.e., granule counts are not given, as they will be predicted by 
the model).  Cell 3 defines the data augmenter. As with the Locations example, Cell 4 implements the construction of 
the model in coarse tuning form, with the parameters of ResNet50 layers frozen at their pretrained values. Cell 5 
defines the fine-tuning conditions, making layers beyond 164 “trainable” and decreasing the learning rate. The last 
layer launches classification (prediction) of the input images and produces a readable output list. 
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2.3. The essential components of a two-output (Counts and Locations) model. The example also 
illustrates the use of a different pretrained model, VGG!6.  The base structure must be imported, which is done in Cell 
1. Cell 2 builds the model using the “functional API” (a programming interface in the Keras environment, which allows 
for the structure bifurcation that produces two outputs).  The crucial separation of outputs into outputs1 (granule 
counts, with 5 classes) and outputs2 (locations, with 11 classes) is done in the last lines of model description.  
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3. Utilities. 

Ancillary programs that implement and streamline preprocessing of EM images.  All are written in IDL language (Harris 
Geospatiale, Paris, France).  IDL is a “high-level” programming environment with Fortran-like syntax.  Programs are 
commented (green font), for easy transcription to other languages, including Python. Additional guidance in their use 
will be available upon request to the corresponding author. 

 

3.1. Location_5digit_11_labels.  A program to split and classify EM images into sub-images and labels used by the AI 
model “Location”. 

Produces sub-images in JPEG format and a text file with “labels” 0-10, indicative of location as assigned by the user. 

3.2. image_splitter_granule_counter_5digit_5classes.  A similar program, to split images and produce a text file 
with granule counts assigned by user.  Labels output is simplified to 5 classes: 0 for zero granules, 1 for 1 or 2, 2 for 3 to 
5, 3 for 6 or greater, 4 for unclassifiable. 

3.3. Image_splitter_5digit_no_label.  A program to split EM images into sub-images to be used by either model in 
“prediction” mode. These sub-images therefore have no labels pre-assigned by the user/trainer. Program will rapidly 
split all EM images in the input folder, subject to user approval. 

3.4. Text manipulation utilities.  Simple programs that modify label files and serve as examples for formatted 
input/output. 

3.4a. correct_label_last_character. A program that allows correction of individual entries in the “labels” text file.   

3.4b. add_index_to_labels.  Will add an index number to each row in a one-column list of labels. 

3.4c. squeeze_labels_to_range.  Will reduce the range of labels, for example, from 0-10 to 0-4. Used to reduce the 
number of classes in Granules model. 

3.5. EM_image_filter. Will apply Lee filter to EM images. Filtering, not used in preprocessing for the AI models, is 
found to help the visualization for classification by the user/trainer. 

3.6. Split_15k_rot.  A program to expand images obtained at 15,000 magnification to an equivalent magnification of 
29,000. It also allows for rotation of the original image to align longitudinal striations (myofibrils) “vertically” and then 
splits the expanded EM image into 4 4096x4096 images suitable for further processing into sub-images. 
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3.1. Image splitter and labeling for Locations model.  
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3.2. Image splitter and labeling for granule counter 

 

  



12 

 

3.3. Image splitter of sub-images to be classified by models (“predicted”). 
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3.4. Text manipulation utilities 

4a. 

 

4b. 
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4c. 
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3.5. Filter for EM images 
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3.6. To expand and rotate EM images 
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Protocol 

Preprocessing.  All done with IDL utilities (or similar) provided in Appendix 3. 

1. If starting from low magnification (i.e., 15,000) use expander program (Utilities 6), which also allows for rotation in 
order to align longitudinal striations (myofibrils) with vertical. 

2. Use image splitter/classifier, to divide EM images into sub-images and assign a class (label). Work separately for 
Locations (Utilities 1) and Granules (Utilities 2).   These will produce sub-images and a text file of labels. 

3. Explore using Lee-filtered images, which may improve visibility of granules and facilitate their counting. Use EM 
filtering (Utilities 5). 

 

 

 


