Supplement 1

Includes (1) a description of Categorical Classification models, (2) their Python codes and (3) Utilities for pre and post
processing.

1. Categorical Classification models for the quantification of glycogen granules.

As stated in the main article, we assembled two categorical classifiers, “Locations” and “Granules”, respectively for the
region identification and granule-counting tasks. A key component of the categorical approach, which allowed the
practical separation of the tasks, was the division of the original EM images into sub-images. The process is illustrated
with Supplement 1 Fig. 1. Every EM image (of 4096 x 4096 pixels, at 0.4 nm per pixel, or recast to that pixel distance)
was divided into sub-images of 256 x 256 pixels. As an example, the sub-images derived from the portion of original
image within the white frame are expanded in the inset.

The subdivision proved advantageous for both tasks: sub-images are squares of 102.4 nm sides, of area smaller than
those of the regions of interest; hence, most of them could be assigned entirely to a region. Also, their volume
(~0.0006 3) is such that the number of granules within is generally below 10, which in principle reduces the counting
task to a classification in 10 classes (0 to 9 granules). As an example, the sub-image in the red frame is assigned to the

image85.jpg image86.jpg

image117jpg

DNE 1 -
\mage129.jpg image130.jpg image131.jpg image132.jpg imagel133,jpg image134.jpg

Supplement 1 figure 1. Basis of the categorical classification approach. EM images are split into sub-images. Regardless of
original magnification, images are first recast to 0.4 nm/pixel. The images are then split into sub-images of 256 x 256 pixels and
102.4 nm sides. The set at bottom right results from splitting the area within the white frame. Sub-images are submitted to the two
Al models for classification according to location and number of granules. As illustrated, sub-images provide reasonable resolution
for location within the myofiber, and seldom contain more than 9 granules, thus simplifying the task of the granule counting module.
The figure also illustrates that the intermyofibrillar regions can be identified by their content of SR and T tubular membranes, and the
absence of filamentous elements.

“3-grain” class by the Granules classifier and to the “near-SR” class (i.e., the inter-myofibrillar cytosol) recognizable for
absence of filaments.

0 A band

1 | band

2 near Z disk
- = = = = = = = =]
| 3 A-l border

4 near-SR

intra-SR

5
6 Mitochondria

Supplement 1 figure 2. Sub-images are assigned to locations within the myofiber. The “Locations” model is trained to
classify sub-images in the 7 classes shown. Each class is represented by a number, from 0 to 6, as listed. Four other
classes, numbered 7 to 10 and necessary for technical reasons, are illustrated with figure 4.

1.1 The "Locations” categorical model. A first model was built to determine the location of every sub-image. 7
location classes of interest were defined: A-band, I-band, Z disk, A-l border, intra-SR, near-SR, mitochondria, illustrated
with Supplement 1 Fig. 2. Each of these locations was identified by a digit, as listed in the figure.

The set of 92 EM images obtained with a single microscope at VCU consisted of 62 obtained at 0.77 nm per pixel from 5
human subjects, and 30 at 0.4 nm/pixel. The locations model was applied first to the 15360 sub-images of 256 x 256
pixels derived from 60 of the images in the set at 0.77 nm/pixel (4 human subjects); 512 sub-images, from a 5% patient,
became available later. Adding to this group the sub-images derived from the 30 EM images obtained at 0.4 nm/pixel
degraded, instead of improving, the overall performance; for this reason, their application was limited to the set
acquired at the lower magnification. The segmentation models described in the main article did not have this notable

2

limitation.

Both the “Locations” and “Granules” categorical
models were built based on “ResNet50” (He et
al., 2015), the model that introduced the
Residual Networks structure. Code of both
models are shared at the end of this
Supplement. Our Locations model has 175 layers
of units (“neurons”). All layers but the last 3,
which carry out the classification task specific to
our model, are common to ResNet50, our “base”
model.

The 15872 available sub-images (62 x 256) were
processed in 4 groups: a training group of 4032
sub-images, a validation group of 1344 sub-
images, a test group of 1152, used to quantify
performance of the trained model, and the
remaining 9344, the “production” set. A single
annotator assigned one of the location labels to
each sub-image of the training, validation and
test sets. The location labels were a total of 11 (0
to 10), as 4 classes had to be added for technical
reasons. Sub-images belonging to the 11
location classes are shown in Supplement 1 Fig.
3.

The Locations model has a total of 23,610,000
adjustable parameters, of which 22,539 belong
to the layers specific to our problem and the rest
are shared with the base model, which is
available pre-trained, with parameters optimized
to perform image classification on the
“Imagenet” database (https://www.image-
net.org/). Following transfer-learning practice
(Weiss et al., 2016), the optimization or fitting
Supplement 1 figure 3. Sub-images in different to locations and granule process started from the parameter values
counts classes. The integers below each sub-image are labels, respectively | (weights) of the base model, and proceeded to
of location and granules count, assigned by the trainer. Location labels are | graqually increase in successive iterations the

as listed in Fig. 3, with the addition of ‘7’ and 10’ for edge regions of rotated
images, ‘8’ for completion edge regions in expanded images, and ‘9’ for
sub-images deemed unclassifiable by the trainer. Labels for granule counts
are ‘0’ for zero granules, ‘1’ for 1 or 2, 2" for 3 to 5 and ‘3’ for 6 or more
granules. ‘4’ was assigned when the number of granules was not clear to
the trainer.

numbers of parameters allowed to vary. The
maximum accuracy on the validation set (0.819)
was obtained by freeing all 7,906,000
parameters between layers # 159 and the final
layer, # 275. The Locations model optimized in
this way was then tested on 1152 sub-images;

899 of those were labeled correctly, for an accuracy of 0.78. Much of the inaccuracy was due to mis-identifying
“technical” regions (borders after rotation, unidentifiable, etc.) which were not included in the final counts, thus not
contributing to the overall error.

1.2 The “Granules” categorical model. It was built using the same procedure described for the Locations model.
As explained before, the small sub-images contained a maximum of 9 or 10 granules. Therefore, initially we built an
actual “granule counter”, namely a classifier model with 11 possible classes or labels (granule counts of 0, 1, ...9 or
greater; 10 for unclassifiable). This 11-classes ResNet50, was nearly identical to the Locations model. The sole
processing difference was the addition of “data augmentation” to the training set, by mirror imaging and rotation of
the originals through multiple angles. This operation could not be used for the Locations model, as it would change the

3

direction angles of the characteristic striations essential for identifying A and | bands. Data augmentation allowed a
reduction of the training set to 2560 labeled sub-images.

The initial trials with Granules, however, failed to achieve accuracies better than 0.7. Interpreting this failure as due to
lack of accuracy in the training materials (i.e., inability of the trainer to assign numbers of granules correctly and
consistently), we simplified the task by “binning” counts into 5 classes: class ‘0’ for images with no granules, ‘1’ for 1 or
2 granules, ‘2’ for a 3-5 count, ‘3’ for 6 or more and ‘4’ for the unclassifiable. Thus, the model ceased to be a “counter”,
becoming a quantifier of lower precision. The Python code and block diagram of the Granules model, which only differs
from the Locations model in its last layers, are presented at the end of this Supplement. The validation accuracy of this
simplified task reached 0.81 or 81% for a fit that adjusted 5,517,000 parameters, starting at layer 165. On a 1024-image
test set, the accuracy reached 0.77. Because the inaccuracies were both in excess and deficit of the “ground truth”, the
net error in computed totals is likely to be substantially less than the accuracy figure.

0 1 2 3 4 5 6 7 8 9
A band Iband | Zdisk |A-lborder| near SR |intra-SR | mitoch | intra-fibril | inter-fibril total
1 Sub-images 4805 3542 1382 71 3417 197 823 9800 4437 14237
2 granules 684 1914 121 19 4077 4 44 2738 4125 6863
3 volume, 3 3.03 2.22 0.86 0.05 2.15 0.13 0.51 6.16 2.79 8.95
4 | concentration, u- 226 862 141 380 1896 31 86 444 1478 767

Supplement 1 Table 1. Distribution of glycogen granules derived by categorical classifications. Columns 0 to 6 correspond to classes
of the “Locations” model. Column 7 calculates numbers for the entire intra-myofibrillar region by combining entries in columns 0 to 3.
Column 4, of class “near-SR”, together with column 5 (“Intra-SR”), listing images fully within SR vesicles, and mitochondria, are
added together to generate the numbers in the inter-myofibrillar space (Col. 8). Totals, listed in Col. 9, exclude the unclassifiable and
completion sub-images. Similar tabulations of the counts from individual subjects, are presented in Supplemental Table 2.

The two categorical classifiers were applied to images from 5 subjects, only one of which was MHN (negative in the
MHS diagnostic test). Hence, the results are not suitable for a comparison between MHS and MHN muscles. They do
provide information on the distribution per region and are used in the main text for a comparison with the output of
the semantic segmenters.

The main quantitative outputs are as follows: the study comprised 8.95 cubic microns of cell space, with an overall
concentration of ~767 granules per cubic micron. The near-SR space (or inter-myofibrillar cytosol) contained the
highest density of granules, at 1896 per cubic micron. The | band had a ~4 times greater concentration of granules than
the A band. There were few granules near mitochondria and the few “intra-SR” ones were likely the result of
superposition of intra- and near-SR regions in the 60 nm-thick sections. As described in the main text, the total content
of granules evaluated by the semantic segmenters on the same subjects was roughly similar. The regional distribution
of granules was also similar. The calculations listed in Table 1 were repeated separately for the images of samples
from the 5 individual patients, and are reported in Supplement 1 Table 2. There were differences between subjects,
the significance of which cannot be evaluated -- on account of the limited number of patients in this sample. One
difference stands out, however; patient #143, the one with the highest Clinical Index (summarizing fairly severe signs
and symptoms) had just 233 granules per cubic micron, on account of intra-myofibrillar regions almost devoid of
granules as well as a reduced inter-myofibrillar content. A more robust comparison of glycogen content is done in the
main text, using the semantic segmentation approach.

1.3 Other Categorical Classifier models. We built alternative models for the two classification tasks using other
available structures. These included VGG-16 (Simonyan and Zisserman, 2015), a Very Deep Convolutional Network
model with approximately 138 million parameters that is a current favorite for image identification tasks with large
numbers of classes, the Inception model (Szegedy et al., 2015), which with 7 million parameters reached accuracies
comparable to VGG-16, and MobileNetV2 (Sandler et al., 2019), which at 3.4 million parameters is designed to be used
in small computer systems, including cell phones. The procedures were the same as described for ResNet50, namely, a
substitution of the last (or “top”) layers for our particular purposes, and use of transfer learning to start from the
parameters reached by training the models on the large Imagenet dataset. None of these reached substantially better
accuracy in either the locations or granule counting tasks. The only difference noticed was a somewhat lower accuracy
of MobileNetV2, but the full exploration of transfer learning that would be needed to affirm that this model is inferior

for the present tasks was not done. In conclusion, with the level of effort that we could muster, we did not find better
alternatives to the ResNet50-derived models presented here.

Two-output models. Models that perform simultaneously the assignment of location and the counting of granules
were also built. Two-output models have obvious advantages; they simplify and streamline the process, in addition to
making possible the immediate computation of variables derived from the two outputs.

To build a simple two-output model we took as input for training a set of images with two labels each (location and
number of granules in our case) and provided for two outputs, the corresponding “predictions” of location and granule
count. The loss for optimization was calculated jointly from the differences between true value and guesses of location
and numbers. As done for the single-output models, the four basic structures (ResNet50, VGG-16, Inception and
MobileNet) were tried. The Python listing of the VGG-16 model with dual output is shared at the end of this
supplement. Because none reached accuracy of classification comparable to that of the one-output models, the
approach was not pursued further.

A I band | NearZ | A-l Near-SR | SR Mitoch | Intra- Inter- All

band disk border ondria | fibrillar | fibrillar | regions
patient 146, MHS
Images 1000 | 1055 114 2 549 56 19 2171 624 2795
Granules 155 205 6 0 981 0 2 366 983 1349
Volume, 3 0.63 | 0.66 0.07 0.00 0.35 0.04 |0.01 1.36 0.4 1.76
Concentration, w3 | 246 308 77 0 2841 0 125 269 2458 766
patient 173, MHS
Images 1641 | 944 277 9 587 1 223 2871 811 3682
Granules 328 944 32 2 1521 0 26 1306 1547 2853
Volume, 3 1.03 | 0.59 0.17 0.01 0.37 0.00 |0.14 1.8 0.51 231
Concentration, u3 | 317 1589 | 184 265 4118 0 185 726 3033 1235
patient 139, MHN
Images 1236 | 1230 | 436 50 1279 107 188 2952 1574 4526
Granules 168 700 50 17 1226 2 13 935 1241 2176
Volume, 13 0.78 | 0.77 0.27 0.03 0.80 0.07 |0.12 1.85 0.99 2.84
Concentration, u® | 216 905 183 540 1524 22 112 505 1254 766
patient 143, MHS
Images 775 154 501 2 931 32 356 1432 1319 2751
Granules 12 38 33 0 330 2 0 83 332 415
Volume, 3 0.49 |0.10 0.32 0.00 0.59 0.02 | 0.22 0.91 0.83 1.74
Concentration, p3 24 390 106 0 564 75 0 91 400 239
patient 145, MHS
Images 153 159 54 8 71 1 37 374 109 483
Granules 21 27 0 0 19 0 3 48 22 70
Volume, 3 0.10 |0.10 0.03 0.01 0.04 0.00 | 0.02 0.24 0.06 0.30
Concentration, u* | 213 265 0 0 425 0 129 200 367 233
Supplemental Table 2. Quantity and concentration of glycogen granules, by location and individual patient, as
determined by the Al models. Incomplete cells reflect no images placed by the Locations model in the “A-I border”
class. The “totals” section of the Table is identical to Table 1 in the article. Note sparsity of granules in patient #143,
especially marked in the A and | bands.

2. Python code of the three modules used in the categorical study

2.1. The Locations model in coarse training mode. Presented as a Jupyter Notebook. Command lines are
grouped in cells to mark the basic functions. Notebook functionality allows for individual execution of cells. Cell 1 loads
program libraries; 2 and 3 input images and their trainer-assigned labels, using the Dataset format; 4 builds the
network structure using Keras’s “Functional AP1” interface. Note that ResNet50, the base model, is imported pre-
trained on the Imagenet dataset, and devoid of its “top” (last) layers, so they can be replaced by ones designed for the
task at hand. Cell 5 defines the variable “loss”, used to quantify and minimize error, as well as the correction or
“learning” rate and compiles the program. Cell 6 sets the first stage of training as 10 iterations (epochs) over the
training set and starts execution.

import matplotlib.pyplot as plt

import numpy as np :L
import os

import tensorflow as tf

import tensorflow.keras.layers as tfl

from tensorflow.keras.preprocessing import image_dataset_from_directory as idd

from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation
from tensorflow.keras.layers import Dense,Flatten

from tensorflow.keras.models import Sequential

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.utils import plot_model

¥ = np.loadtxt{"C: /Users/erios/images_3_color_15k_labeled/labels_for_locations.txt", dtype="int")
y2list = 1ist(Y) 2
IM3 SIZE = (224, 224)

directory = "C:/Users/erios/images_3_color_15k_labeled/" 23
train_dataset = idd({directory, labels=y2list,lsbel_mode="int', shuffle=False,color_mode="rgh’,
batch_size=32,image size=IMG_5IZE, validation_split=8.25, subset='training',seed=42)
validation_dataset = idd(directory, labels=y2list,label_mode="int", shuffle=False,color_mode="rgb’,
batch_size=32,image_size=IMG_SIZE, validation_split=8.25, subset='validation®,seed=42)
preprocess_input = tf.keras.applications.resnet5@.preprocess_input

def locations_model({image shape=IMG_5IZE, data_augmentation=data_augmenter()):
input_shape = image_shape + (3,) Zl

base_model = tf.keras.applications.Reshet5@{input_shape=input_shape, include_top=False,
welghts="imagenet')
#‘

base_model.trainable = False

print{"Number of layers in the base model: ", len(base_model.layers))
inputs = tf.keras.Input(shape=input_shape)

#x = dota_augmentation{inputs)

preprocess_input(inputs)

base_model(x, training=False)

= tfl.GlobalAveragePooling20() ({x)

= tfl.Dropout(.2)(x)

outputs = tfl.Dense(1l, activation = "softmax”)(x)

model = tf.keras.Model({inputs, outputs)

.
X
X
X

return model

model? = locations_model(IMG_SIZE, data_augmentation)

model?.compile{optimizer=Adam({learning_rate=8.881), ES
loss=tf.keras.losses.SparselategoricalCrossentropy(from_logits=False),
metrics=['accuracy'])

initial epochs = 18
total_epochs = initial_epochs 6
history = model?.fit(train_dataset, walidation_data=validation_dataset, epochs=initial_epochs)

2.2. The Granules model illustrated in “prediction” mode. The structure is nearly identical to that of
“Locations”. Note in Cell 2 input of images without labels (i.e., granule counts are not given, as they will be predicted by
the model). Cell 3 defines the data augmenter. As with the Locations example, Cell 4 implements the construction of
the model in coarse tuning form, with the parameters of ResNet50 layers frozen at their pretrained values. Cell 5
defines the fine-tuning conditions, making layers beyond 164 “trainable” and decreasing the learning rate. The last
layer launches classification (prediction) of the input images and produces a readable output list.

import tensorflow as tf
import tensorflow.keras as K 1
import matplotlib.pyplot as plt

import numpy as np

import PIL

from tensorflow.keras import layers

from tensorflow.keras.layers.experimental.preprocessing import RandomFlip, RandomRotation

from tensorflow.keras.layers import Dense,Flatten

from tensorflow.keras.models import Sequential

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing import image dataset_from directory as idd

from tensorflow.keras.utils import plot_model

import os

Use this cell for imoges subjet to predictions.

BATCH_SIZE = 32 2
IMG_SIZE = (224,224)

directory = "C:/Users/erios/images_3_color_no_label/"

predict_dataset = idd{directory,labels=None,image size=IMG_SIZE,batch_size=32,shuffle=False,color_mode='rgb',seed=42)

Data augmentation is applied before the pretrained model
def data_augmenter(): 3
data_sugmentation = tf.keras.Sequential()
data_augmentation.add(RandomFlip ' horizontal'))
data_augmentation.add{RandomFlip('vertical'))
data_sugmentation.add(RandomRotation(@.2))
return data_augmentation

Model building. Adds ResNet58 model to g Sequentiol API (ResNet5@ iz not seguential)
data_sugmentation = data_augmenter() 4
resnet_model = Seguential()
pretrained_model= tf.keras.applications.ResMet58{include_top=False,
input_shape=(224,224,3), pooling='avg', weights='imagenest')
for layer in pretrained_model.layvers:
layer.trainable=False
resnet_model.add(data_augmentation) #when using ougmentotion,
resnet_model .add(pretrained_model)
resnet_model.add(Dense(512, activation='relu')})
resnet_model.add(Dense(5, activation='softmax'))

base_model = resnet_model.layers[1] # now with fime funming.
base_model.trainable = True # Troins more Layvers and uses a 18x Lower Learning rate 5
fine_tune_at = 164
for layer im base_model.layers[:fine_tune_at]:
layer.trainable = False
resnet_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy (from_logits=False),
optimizer = tf.keras.optimizers.Adam{learning rate=0.8281), metrics=['accuracy'])

probs = resnet_model.predict({predict_dataset) # lgunches exscution in "prediction” mods
preds = probs.argmax(axis=-1) 6
textstring = ("C:/Users/erios/images_3_color_no_label/pred_granules_column.txt™)
f = open{textstring, "w")
for i in range{len{preds}):
f.write("\n"+str{i)+" "+str{preds[i])}) # produces o two-column text output
f.close()

2.3. The essential components of a two-output (Counts and Locations) model. The example also
illustrates the use of a different pretrained model, VGG!6. The base structure must be imported, which is done in Cell
1. Cell 2 builds the model using the “functional API” (a programming interface in the Keras environment, which allows
for the structure bifurcation that produces two outputs). The crucial separation of outputs into outputsl (granule
counts, with 5 classes) and outputs2 (locations, with 11 classes) is done in the last lines of model description.

from tensorflow.keras.applications.vggle import VGG16 :L

This function implements a model with two outputs, classifying the images for granule numbers and location.
def resnet model(image shape=IMG SIZE, data_ augmentation=data_augmenter()): :2
IMG_SHAPE = IMG_SIZE + (3,)
input shape = IMG_SHAPE #(224,224,3)
base model= tf.keras.applications.vGGl6(include top=False,
input shape=IMG SHAPE,
pooling="avg',
weights="imagenet")
base model.trainable = False
inputs = tf.keras.Input(shape=input shape)
X = preprocess_input(inputs)
X = base model(x, training=False)
X = tfl.Dense(512, activation="relu')(x)
outputsl = tfl.Dense(5, name='granule count')(x)
outputs2 = tfl.Dense(11, name='location')(x)

model = tf.keras.Model(inputs, outputs=[outputsl,outputs2])

return model

model2 = resnet_model(IMG_SIZE, data augmentation) #crucial step. resnet model is a function, not a model :3

3. Utilities.

Ancillary programs that implement and streamline preprocessing of EM images. All are written in IDL language (Harris
Geospatiale, Paris, France). IDL is a “high-level” programming environment with Fortran-like syntax. Programs are
commented (green font), for easy transcription to other languages, including Python. Additional guidance in their use
will be available upon request to the corresponding author.

3.1. Location_5digit_11_labels. A program to split and classify EM images into sub-images and labels used by the Al
model “Location”.

Produces sub-images in JPEG format and a text file with “labels” 0-10, indicative of location as assigned by the user.

3.2.image_splitter_granule_counter_5digit_Sclasses. A similar program, to split images and produce a text file
with granule counts assigned by user. Labels output is simplified to 5 classes: 0 for zero granules, 1 for 1 or 2, 2 for 3 to
5, 3 for 6 or greater, 4 for unclassifiable.

3.3. Image_splitter_5digit_no_label. A program to split EM images into sub-images to be used by either model in
“prediction” mode. These sub-images therefore have no labels pre-assigned by the user/trainer. Program will rapidly
split all EM images in the input folder, subject to user approval.

3.4. Text manipulation utilities. Simple programs that modify label files and serve as examples for formatted
input/output.

3.4a. correct_label_last character. A program that allows correction of individual entries in the “labels” text file.
3.4b. add_index_to_labels. Will add an index number to each row in a one-column list of labels.

3.4c. squeeze_labels_to_range. Will reduce the range of labels, for example, from 0-10 to 0-4. Used to reduce the
number of classes in Granules model.

3.5. EM_image_filter. Will apply Lee filter to EM images. Filtering, not used in preprocessing for the Al models, is
found to help the visualization for classification by the user/trainer.

3.6. Split_15Kk_rot. A program to expand images obtained at 15,000 magnification to an equivalent magnification of
29,000. It also allows for rotation of the original image to align longitudinal striations (myofibrils) “vertically” and then
splits the expanded EM image into 4 4096x4096 images suitable for further processing into sub-images.

3.1. Image splitter and labeling for Locations model.

pro location_Sdigit_11_labels

first part is an image_splitter. Takes one 4096 x 4096 EM image (TIFF) and splits it in 256 (256x=256) sub-images

:suitable for analysis by AI programs

:the user enters the location label (0:4 1:I 2:Z 3:A-I. 4:SR-AI 5:5SR 6:MITO 7:ROTATED EDGES 8:GRAY COMPLETION 9:UNCLASSIFIABLE)

;10 1= the label for rotation-limit areas (part rotation, part original image)

center ('') means keep same location as last one (important time saver)

;for use with Resnets_11_locations, outputs are in "fake RGB" format, 1.e. R, G and B channels have identical content

;labels and images are output to file as soon as they are classified by trainer.

:If program stops or crashes, output text must be closed by the command-line statement close.om. There will be no loss of data.
EM images are entered and approved for process. After an image is completed (256 sub-images) the user may stop processing

. then, on resumption, the user must answer 'v' to the guestion whether to append to existing output file.

dummy="" & pnum=""

inimage="'"

s1de=4096-256 : the number of sub-images in either x or y direction (16)
len=side”2 ; total number of su-images from one EM image (256)
zfi¥§t=3072 ;adjustable starting value for numbering sub-images and labels

=nfirst

indir="C “Users“erios“EH_Images“15k_expanded:’ ; input directory
outdir="'C:“Users erios~images_3_color_15k_labeled~here™' folder for sub-image output
outfilesoutdir+'labels for locations more train. tz=t’ . text document with labels assigned by trainer
RGBswitch=1
print, 'append to existing? answer y or n' : implements adding to an existing labels file

read. dummy, prompt = 'append? v or n:'
if dummy =g 'v' then begin
openu,om, outfile, 7get_lun :must be opened for write and read (“openu”)
WHILE ~ EOF({om) DO begirl]
readf , om, dummy

k=k+1
endvhile
print, 'starting output= ' .k
stop ;for debugging. use if needed

éndif else begin
openw, om. outfile.sget_lun opened for writing only (“openw")

endelse

inlist=file_search(indir, '#.tif') :.will process every EM image in the folder
n=n_elements(inlist)

y=strarr(n*len+nfirst+100) :will contain labels for sub-images. a string array in this version
for m=0 ., n-1 do begin :will go through folder and offer to skip file

nfst = k k—nfst then will be the index of sub-images

infile = inlistim) & print, 'reading '.infile

img=read_tiff (infile)

;stop for debugging

im_grid=float(img) ;a grid. showing where image will be split

for i=257,3841,256 do im_grid(i—2:i+2,%)=255

for j=257.3841. 256 do im_grid(%, j-2:342)=255

imre=congrid(im_grid, 768, 768, cubic=-0.5) ;must first reduce size of EM image to 768x768, to show on the screen
window, 0, xsize=7608, ysize=760, xpos=0, ypos=0, title=infile :defines window for display

tv.imre. sorder :display

read.dumny., prompt='enter to continue. "c" change. "s" stop. "e" end & output. ' ;reject image with =

1f dummy eq 'c' then goto. jumpskipimage

1f dummy eq 's' then stop

if dummy eq 'e' then goto, jumptoout ;get out of processing loop
will split image into 256 sub-images

imarr=bytarr(len, 256, 256)

for j=0,=side-1 do begin ;3 is row index
for i=0,side-1 do begin ;1 is column index —-horiz. coord.-—. rows will be completed first
p=k-nfst ;index of sub-images within image m

imarr(* * p)=img(256%i: 206%(i+1)-1, 256%7: 2h6%(j+1)-1)
loc="'rov '+strcompress(string(i). remove_all)+' col '+strcompress(string(i). remove_all)
window, 1, xsize=256,ysize=120, xpos=770,ypos=0, title=loc . for display of individual sub-imnage

tv,congrid{imarr(*, % p), 128,123, cubic=-0 5), /order ;which is shown at half size for wvisibility
strk=string(k)
print, 'image '.strk :sub-image index (counter) converted to string

if k 1t 10 then strk='0000'+ strk

if {(k gt 9) and (k lt 100) then strk = '000'+ strk ;counter must have 5 digits, for sorting
if (k gt 99) and (k 1t 1000) then strk = '00'+ strk

if (k gt 999) and (k 1t 10000) then strk = '0'+ strk

print .k, ': '+ loc + 'enter region ' ;classification by user done here

print, '0:A 1:1 2:Z 3:A-1 4:SR-AI S:SR 6 MIT 7:ROT B:GRAY 9:7

read, num,prompt = ''':KEEP 0:A 1:I 2:Z 3:A-I,4:5SR-AI 5:5R 6:M 7:ROT 8:GRAY 3:7 c—go back: '
if num eg '' then num= old
1f num eg 'u' then num= '9°' ;the Al modules require a numeral (0 to 10)
1f num egq 's’' then num= '0°' :but the user here may also introduce a letter
1f num =g 'i1' then num= '1' a for A band, 1 for I band, z for Z disk, stc
if num =g 'z' then num= '2°'
if num =g 'r' then num= '10°
if num eq 'm' then num= '6'
if num eg 's' then num= 'S’
if num eg 'g' then num= '8’
if num eg 'ai' then num= '3’
if num eq 'si’' then num= '4°
if num eg 'rr' then num= '7’
old= nun
vik)=numn
print. 'file'.k.' is in ', v(k).' region'
imout=intarr(3,6 256, 256) ;conversion to RGB
for g=0,2 do imout{qg,# *)=inarr{* % p)
outname=strcompress(outdir+' image'+strk+' jpg',/remove_all) .produces the name of the sub-image on output
write_jpeg,outname, imout,quality=100, /order, /true :sub-images written in JPEG format
printf.om. k., w(k). format='(I3 A4B8)" :labels y(k) are preceded by the image number 'k': one per line in text fil
k=k+1
endfor
endfor ;ENDS LOCATION LABELING AND OUTPUT OF SUB-IMAGES OF ONE EH IHAGE
jumpskipinage:
;stop .debugging
endfor ;conpleted loop over EM images
print, 'last output file number: ', strk ;equal to ¥ of sub-images minus one.
n_sub_images=fix(strk)+l & print, '¥ of sub-images: ', 6n_sub_images

read, dunny, prompt='enter to continue to text output'
if dummy ne '' then stop

jumptoout : ;normal end from within main loop
close,omn & free_lun,on
print, 'labels output to
stop

end

+ outfile +

3.2. Image splitter and labeling for granule counter

pro image_splitter granule counter_Sdigit_Sclasses

;similar to the locations program (Utilities 1). See annotations there

;;output is simplified to 5 levels: 0 granules, 1 or 2. 3 to 5. 6 or more. unclassifiable
:the display of the sub-image for counting is compressed to half size

side=4096-256

len=side”2

nfirst=2816 . added sub-images starting at 2816

k=nfirst
dummy=""

& num=

outdir='C:“\Users‘erios“images_for_training_granules 15k>' & sub='images here~' output folder for sub-images

outfile=outdir+'¥_list2 t=t' :will contain labels M
print, 'append to existing? answer y or n'
read, dumny, prompt = 'append? y or n:'
1f dummy eq 'v’' then begin
openu.om,outfile, “get_lun ;must be opened for write and read
WHILE ~ EOF(om) DO begin
readf . om. dummy

k=k+1

endvhile

print, 'starting output= ',k + nfirst ;just keeping track during execution
endif else begin

openw, om, outfile, get_lun ;open for writing (new)
endelse
indir='C:“\Users“erios“EM_Imnages:\15k_expanded_filtered\' cadd 15k expanded files
sindir='C: \Users“Eduardo“EH_Images-' ;for laptop
inlist=file_search(indir+'= tif') ;note, will use all tiff images in folder

:must reject the ones already done
n=n_elements{inlist)

cy=intarr{n%*len) ;will contain labels for sub-images
y=strarr(n¥*len+100) ;will contain labels for sub-images. a string array in this version
for m=0 ., n-1 do begin ;will go through directory and offer to skip file

nfst = k :k-nf=st then will be the index of sub-images

infile = inlist(m) & print, 'reading ',infile
img=read_tiff(infile)

im_grid=float(img)

for i1=257,3841,256 do im_grid(i-2:1i+2, *)=255

for j=257.3841.256 do im_grid(=. j-2:j+2)=255
imre=congrid(im_grid. 768, 768, cubic=-0 5)

window, 0. xsize=768 ysize=768, gpos=0, ypos=0, title=infile
tv.imre. /order

read.dummy. prompt=‘enter to continue., "c" change. "s" stop. "e" end & output,
if dummy eg 'c’' then goto, jumpskipinage

if dummy eg 's' then stop

if dummy egq 'e' then goto, jumptoout

; will split image into 256 sub-images
imarr=bytarr(len. 256, 256)

;reject image with s

for j=0.side-1 do begin ;3 is row index
for 1=0.side-1 do begin ;1 1s column index —--horiz. coord.--. rows will be completed first
p=k-nfst ;index of sub-images within image m

imarri(*, % p)=img(256%i:256%(i+1)—1,6 256%]:256%(j+1)-1)
loc="row '+strcompress(string(j). /remove_all)+' col '+strcompress(string(i). remove_all)
window. 1l xsize=256, ysize=128 xpos=770 ypos=0. title=loc
tv, congrid{imarr(*, % p). 129, 129 cubic=-0 5). order
strk=string(k)
if k 1t 10 then strk='0000"+ strk
if (k gt 9) and (k 1t 100) then strk = '000'+ strk
1f (k gt 99) and (k 1t 1000) then strk = '00'+ strk
if (k gt 999) and (k Lt 10000) then strk = '0'+ strk
print_k.': '+ loc +'. enter number of granules. string. for 0. "s" stop’
read. num.prompt = ‘enter ¥ granules. 0-8. 9 or u = unknown. "s" stop: '
if num eq 's' then stop :
if num =g '' then begin ;simplifies entering 0
y(k) = 0
goto, jumpcase
endif
if num =g 'u’ then begin ; unknown
num = "9°
endif
the CASE statement avolds the mental conversion to a reduced set of number counts
;1 or 2 will be interpreted as 'l', 3-5 as '2'; 6 or more as '3'; u as '4'
case fix(num) of

0: yik)="0"
1: wik)= "1" ;any interpretive program of the result should eguate this a=s 1.5 granules
2 wik)= "1’
3 wik)= "2°
4: vst}- '%' ;any interpretive program of the result should equate this as 4 granules
51w = '2!
6 yik)= '3
;: ygt}= :g: ;any interpretive program of the result should equate this as 7.5 granules
coylk)=
9: yik)= "4’
Endcase
junpcase:
print, 'file’' k.’ 1= in ', w(k).' granules class’'
imout=intarr(3, 256, 256) ;conversion to RGB
for g=0,2 do imout(g,*, *)=imarr(*, * p)
outname=strcomnpress(outdir+sub+ inage '+strk+' . jpg’./remove_all) ;note use of subdirectory "sub”,
write_ jpeg,outname, imout,quality=100, /order./true .order = 1, (0,0) at top left
printf.om, k., y(k), format='(IB A8)' :image index and its label, per line of text output
k=k+1 number of sub images advances by 1
endfor
endfor : splitting of original image concludes
jumpskipimage: ; image rejected
endfor : goto new image (loop over m index)
read, dummy, prompt='enter to continue to text output’
1f dummy ne '' then stop
jumptoout : :normal end from within main loop
close.om & free_lun.om ;the batch output above were replaced by individual output of w(k)
stop
end

11

3.3. Image splitter of sub-images to be classified by models (“predicted”).

pro image_splitter Sdigit_no_label
ctakes one 4096 = 4096 tiff image and splits it in 256 (256x256) sub-images
;similar to the previous Utilities. See annotations there.
;for use with ResnNetS0, outputs are in "fake RGB", i.e. R, G and B channels have identical content
:no-label version produces sub-images that will be "predicted" by either Locations or Granules progranm. .
dummy="" & inimage='' & side=4096/256 & len=side”’
indir='C:“\Users erios EMimages_for prediction™\’
outdir='C:\Users‘erios“images_for_ prediction“hers\'
filelist=file search{indir, '®= tif"')
n=n_elenent={filelist)
k=0 & nfirst=0 & print, 'enter starting value for numbering no-label images., integer:
read,.nfirst, prompt=' starting wvalue for numbering: 0, 256, 512, etc.:'
n_current=nfirst-1 ;thus, if nfirst=0, the generic number k+n_current will start at 0
for 1=0.,n-1 do begin
infile=filelist(l)
img=read_tiff(infile)
imre=congrid(img, 768, 768)
window, [, xsize=760, ysize=760, xpos=0, ypos=0, title=infile
tv, imre, ‘order
read,dummy, prompt='enter to continue, c to skip image'
1f dummy =g 'c' then goto., jumpskipimage
imarr=bytarr(256. 256, len)
k=0 :k is a counter of subimages, with walues between 0 and len-1
n_start=n_current+l :because k starts at 0, I add 1 to n_current
for j=0.side-1 do begin ;] i= rov index
for i=0.=ide-1 do begin ;1 i= column index —-horiz. coord.——. rows will be completed first
imarr(*, % k)=img(2C6%i: 256 (i+1)—1, 256%5: 256%(3+1)-1)
outarr=reform(imarr{*, * kL))
1f RGBswitch eg 1 then begin ;changes to an RGB format of output
outarre = intarr(3,256,256)
for m=0,2 do outarre(n. *, *)=outarr
outarr = outarre
endif
n_current=k+n_start
strk=strcompress(n_current . /remove_all) :will complete numbering length for natural sorting
;counter of sub-images in complete set (several EM images)
if strlen{strk) lt 2 then strk="'0000"+ strk
if strlen(strk) eg 2 then strk = '000'+ strk
if strlen(strk) eg 3 then strk = '00'+ strk
if strlen(strk) eq 4 then strk = '0'+ strk
outnamne=strcompress{outdir+’'image’' +strk+' . jpg'. remove_all)
kwiite_jpeg,uutnane,autarr,qualitv-lﬂﬂ,/nrder,/true corder = 1, (0.0) at top left
=k+1
endfor
endfor
jumpskipimage:
;stop
endfor
print, 'last output file number: ', strk
stop
end

12

3.4. Text manipulation utilities

4a.

pro correct_label_ last_character
corrects an error. changes integer at end of output line from 9 to 4
can be easily modified for similar purposes

indir='C:“\Uszers erios images for_ training_granules™' ;change as needed
infile=indir+'¥Y listZ t=t' & outfile=infile :will over—-write
origfile=indir+ ' orig. t=t’

file copy.infile origfile :will use origfile as= input

file_delete.infile

infile=origfile ;these lines prepared a new "YV_list2" file for output

:while preserving the original
openw,om.outfile, Aget_lun
openy, im,. infile, /get_lun

imdat=""
while “EOF(im) do begin
readf . im, imdat, format="'(Ale)"' reads from orig.tzxt., which must have 16 character lines

.change as needed
1f (strmid(imdat.15)) egq '9' then imdat=strmid(imdat. 0.15)+'4"’
printf. om.imdat. format="(416)" :prints every line to Y_list2. txt
endwhile
close,im & Free lun.im
close.om & Free lun.om
stop
end

4b.

pro add_index_to_labels
will take a one column list of labels and add an index number to each row
produces a separate output text document
: first index number selectable as "nfirst"]
nfirst= 0 & d=0 & dummy="'"'
indir="'C: “Users“erioshimages_3_color_ 15k labeled-'
infile=indir+'labels for_ locations. txt'
outdir="C:“Userserios images_3_color_no_labsl™'
outfile=indir+' label=s_for_ locations_index0. t=t'
openw,.omn,outfile, 7get_lun
openr,im,infile, /get_lun
k=nfirst &
while “EOF(im) do begin
readf.im.d & print,'d= '.d
printf om,strcompress(k, /remove_all).d ;L format="(2I8)"
k=k+1
endvwhile
print, 'k = 'k
close, im & Free_lun.im
close,omn & Frese lun,omn
stop
end

13

4c.

pro squeeze_label_to_range
changes labels to a narrower range.
outdir="C:“Users‘erios™images_for_training granules-’'
outfilesoutdir+'¥Y_list2 t=t'
indir="C:“Userserios“images_for_training_granules“'
infile=indir+'test t=t'
openw,om,outfile, “get_lun
openr,im,infile, “get_lun
imdat=""
while “EOF(im) do begin
readf . im. imdat . format="({416)"'
num=fixi{strmid{imdat, K 15)}
case num of

0: ad="0"
2. ad="1"
4: ad="2"
7 ad="3"
9: ad="4"
ENDCASE

imdat=strmid{imdat_ 0, 15)+ad : changed character is placed last in lind]
printf. om.imdat. format="{416)"

endwhile

close.im & Free_ lun.im

close.om & Free_lun.om

stop

end

3.5. Filter for EM images

pro EM_image filter
;image_filter takes tiff images and applies Lee filter algorithm. Outputs to *\filtered
;with '"f' after original name.

dummy=""

b=5 spatial frequency parameter for Lee filter

outdirs='C: “\Users‘erios EM_images_for_ granulesfiltered™' output directory|
indir='C:“\Userserio=“EM_images_for_granules-'

inlist=file_search{indir+'= tif') :note, will use all images in folder
n=n_elements(inlist)

for m=0 . n-1 do begin :will go through directory and offer to skip file

infile = inlist{m) & print., 'reading ' 6 infile
img=float{read_tiff{infile))
ingr=congrid(img. 768,768, cubic=—0 5)
window, l, ®size=768, ysize=768 gpos=778 ypos=0, title = 'filtered’
window. . ®size=768, ysize=760 . 2pos=0.ypos=0. title = infile
tvscl, imgr, “order
will apply Lee filter

imgl=lesfilt(img,5)
imglr=congrid{imgl, 768, 768, cubic=-0.5)
wzet, 1l & twscl,imglyr, Zorder
read, dumny, prompt='enter to continue, "c" change., "s" stop
1f dummy egq 'c' then goto, jumpskipimage
if dummy =g 's=' then stop
start=strpos(infile, '~\', /reverse_search)+1
base=strmid{infile.(, start)
name=strmid(infile, start,k 26)
outfilesbase+'filtered™ ' +name+'_f tif' & print,outfile
write tiff,outfile,imgl
junpskipinage: ; lmage rejected

endfor ; goto new image (loop over m index)

stop

end

15

3.6. To expand and rotate EM images

pro split_15k rot
:to split EM images obtained at 15k magnification into 4 40964096 pixel images
;expanded to an equivalent magnification of 29k,
;offers to perform rotation (to align striations “"vertically”).
expands using cubic interpolation. then pads to reach a 8192 by 8192 images
:which are then split into 4 4096 = 4096 EM images suitable for further processing to sub-inages
inimage=""
outdir="'C: “Users erios EM_Imnages>’
lendir=strlen{outdir)
indir=outdir+ 15k’ :where source images are placed
filelist=file_search(indir,K '*_15k#* tif') —uses every tiff file in folder
n=n_eclenents(filelist)
for k=0.n-1 do begin
infile=filelist(k)
common_name=strmid(infile. strpos{infile, "'k*')+2)
first_part=strmid(common_name, [, strpos(common_namnes, '_15k'))
outname=outdir+first_part+' 29k’
img=read_tiff{infile)
imre=congrid(img, 768, 768)
window, . ®size=760, ysize=760, gpos=0, ypos=0, title=infile

tv, imre
| print, 'option to rotate reference. in degrees. clockwise, always from original'’
an=0 & nxc=100 & anu=0 :starting angle
jumprotatel:
read. an. prompt='rotation angle. deg., 50 to continue:’
if an eq 50 then goto.jumprotateZ ;do not rotate
anu=an
imrot=rot{(imre). anu, cubic=-0 5) ;rotation also uses cubic interpolation

for j=63,767.64 do imrot(*, j)=255 ;a grid for display
tvscl. (imrot)
goto, jumprotatel

jumprotate

inrot=rat(img,anu,cubic=—0.5)

expand, imrot, 7936, 7936, inge Jimge is original expanded to 29k magnification
imgex=bytarr(8192,8192)+128 ;to complete array that will be split in 4
ingex(0, 0)=inge ;fills in the image. last rowv and last column will be flat grey (value=1

imgout=bytarr(4.4096,4096) :buffer for output images
imgout (0, * *)=imgex((: 4095 0:4035)
imgout(l,*® *)=imgex(0:4095,40%96:8191)
imgout (2, %, *)=ingex(4096:8191,0:4095)
imgout(d.* *)=ingex(4096:8191, 4096:8191)
for 1=0,3 do begin
outnamnel=strconpress(outname+string(l)+' tif' K sremove_all)
write_tiff. outnamel. imgout(l, * %)
endfor
endfor
stop
end

16

Protocol

Preprocessing. All done with IDL utilities (or similar) provided in Appendix 3.

1. If starting from low magnification (i.e., 15,000) use expander program (Utilities 6), which also allows for rotation in
order to align longitudinal striations (myofibrils) with vertical.

2. Use image splitter/classifier, to divide EM images into sub-images and assign a class (label). Work separately for
Locations (Utilities 1) and Granules (Utilities 2). These will produce sub-images and a text file of labels.

3. Explore using Lee-filtered images, which may improve visibility of granules and facilitate their counting. Use EM
filtering (Utilities 5).

17

