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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The proposed approach is very interesting, however I noted two main problems for this study: 

 

1) Only 8 subjects have been involved, and in some experiments (dumbbell curl and treadmill/outdoor 

locomotion test) just one participant was tested 

 

2) the (inter- and intra-operator) reliability of measures with respect to Sensor placements were not 

assessed. 

 

Another minor comment regards the Inverse kinematics, that is often used in biomechanical studies, so 

this approach deserves to be better explained in Introduction 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The Authors illustrate a method for estimating the equivalent torque generated at the level of simple 

joints in a minimally invasive way, i.e. without resorting to laboratory set-ups. 

The basic idea is to find a correlation between the increase in the thickness of the involved primary 

muscle and the torque delivered at joint level. To this end, they use amplitude mode (A-mode) ultrasonic 

transducers, which are known to be better suited to the purpose as they are simpler and more portable 

than brightness mode (B-mode) transducers. 

It is well known that 1D A-mode ultrasound scans can be used to measure the thickness of soft tissues, 

e.g. a muscle. Therefore the objective is to show how it is possible to correlate the variation in thickness 

of a muscle with the torque applied to a joint. 

The experiments are conducted on two joints with superficial primary muscles: the elbow (biceps 

brachii, BB) and the knee (rectus femoris, RF). 

 

The Authors correctly point out that the evaluation of joint torques can provide useful information for 

estimating the risk of injury in sport or for evaluating the progress of a rehabilitation therapy. This is 



certainly true. They can also add that this evaluation would have an important impact in the field of 

ergonomics for the prevention of work-related injuries, which have an even greater socio-economic 

impact. 

The authors righlty mention the limitations of EMG saying that "EMG measures the electrical activation 

of a muscle, representing neurological input rather than the muscle’s mechanical output". However, they 

do not mention the Mechanomyogram (MMG), which instead provides a signal in response to actual 

muscle contraction. 

Resistive elastic bands, which can be used to determine the change in shape of a superficial muscle, such 

as BB or RF, can also provide information that follows neurological input. Given that they are limiting 

themselves to superficial primary muscles, it cannot be excluded that conductive elastic bands can also 

provide an equally informative signal, especially in conjunction with IMUs and using data fusion 

techniques, which do not necessarily require computationally expensive methods. 

 

The Authors want to demonstrate the effectiveness of their algorithm (MBTA) to determine muscle 

thickness in a simple way. But the analysis is not conducted in real-time, but rather in post-processing. 

Therefore, the doubt remains as to the possibility of using this approach to monitor the torque delivered 

during the execution of daily tasks. Surely the need for manual image segmentation does not help. 

 

It is unclear how the MBTA algorithm might work in the case of deep muscles. 

 

The use of different ultrasonic elements is not new and the performance seems not to improve previous 

results, e.g. Tsutsui, Y., Tanaka, T., Kaneko, S.I. and Feng, M.Q., 2005, October. Duplex ultrasonic muscle 

activity sensor. In SENSORS, 2005 IEEE (pp. 4-pp). IEEE. 

 

Validation of the algorithm requires further experimental work. In fact, the tests on elbow flexion and on 

walking were conducted on a single subject. How can this result be considered significant? And why a 

single subject was involved in some experiments, while 8 in others? 

 

How does the algorithm work in the case of deeper muscles or in the case of ball-socket joints? 

 

The article's approach is rather empirical. The basic idea is to look for a correlation between the variation 

in thickness of a muscle and the equivalent torque applied to a joint. For example, (MT+Ang)^2 was used 

as one of the input variable for fitting. Using the sum of heterogeneous quantities is not a robust choice, 

because the result would depend from the used units. Also, a quadratic relationship is used “because it 

could capture the commonly observed curvilinear relationship between muscle deformation and 

contraction intensity”. This is a rather trenchant approach. Is it a second order approximation of any non-

linear response? What about the use of exponential functions or higher-order polynomials? In my 



opinion, the most elegant approach would have been starting from biomechanical muscle contraction 

models. 

 

MINOR DETAILS 

- The expression "radio frequency" applied to ultrasound waves is a bit of a misnomer, which 

unfortunately is used by some authors. 

- The 4 transducers are inclined at a certain angle, and the reader is referred to Fig. 1. But in fig. 1 it is 

not clear that they are. The lines representing the SET axes should probably be slanted. 

- 4 SETs are used to find the one with the most intense echo. Would 3 suffice? Would 5 or 6 be better? In 

short, how was the number of SETs determined? 

- The model of the rechargeable battery pack (“RRC, Germany”) should be inserted in Methods. 

- In "Experimental methods and data processing" the arm dominance should be declared (now it is 

stated: “regardless of the dominance”) 

- In "Dynamometer testing" it is stated that gravitational torques are modelled as "a linear function to 

joint angle". This not clear. I would expect a trigonometric function, similar to that in Eq. 1. 

- In "Dumbbell curl rigid body model" L is the distance from the elbow to the hand. Since the hand has its 

own length, this is a generic definition. Authors should better indicate the anatomical reference points 

used to assess the lengths. 

- Equation 1 assumes that the centre of gravity lies in the middle of L. Why? 

 

 

Reviewer #2 (Remarks on code availability): 

 

The code is complete and clear. Data are available and results reproducible. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript “Estimation of Joint Torque in Dynamic Activities Using Wearable A-Mode Ultrasound” 

reports a dynamic muscle thickness extraction and joint torque estimation method based on wearable A-

mode ultrasound. The study proposes a multi-view A-mode ultrasound sensing solution and a hybrid 

muscle thickness tracking method for robust extraction of muscle thickness in dynamic motions, as well 

as a second-order polynomial fitting method that integrates joint kinematic information for better joint 



torque estimation. Exhaustive simulations and experiments were performed to validate the effectiveness 

of the proposed method, with very promising results achieved. This work will contribute to an in-depth 

understanding of muscle activity during dynamic and unconstrained movements and holds great 

promise for biomechanics and rehabilitation robotics research. 

 

1. The main innovation of this paper is to achieve accurate muscle thickness tracking using wearable A-

mode ultrasound through a multi-view sensing strategy and a hybrid muscle thickness extraction 

algorithm. While the algorithm works well for offline analysis, I am interested in how the algorithm can 

be used for real-time applications (e.g., real-time estimation of joint torque for robot control). As a 

lightweight sensing strategy, it will be more interesting to combine A-mode ultrasound with wearable 

robotics, which requires real-time computational power of the algorithms. Offline analysis is also 

important for certain biomechanical studies, however, B-mode ultrasound can also work well in this 

case. 

 

2. Regarding the muscle boundary tracking algorithm, the authors state that the sensor with the 

strongest echoes is used when measuring muscle thickness. This sensor selection method helps to select 

the sensor with the least rotation to the target muscle. However, during the muscle contraction, the 

deformation of the muscle changes the relative angle between the muscle and the sensor, which means 

that the optimal sensing angle is constantly changing during muscle contraction. How did the authors 

solve this problem? For offline analysis, some filtering methods can help smooth out the results, even if 

there is some jitter. However, this can cause problems for online applications. In terms of the simulation 

study in Fig. S3, what is the amplitue of the sine wave? 

 

3. For the comparison of A-mode and B-mode ultrasound for muscle thickness tracking in Fig. S4, the 

processing of B-mode ultrasound is still in an A-mode way. The authors selected some columns from the 

B-model ultrasound image to simulate the use of A-mode ultrasound sensing. Since it is comparative 

analysis here, why not extract the muscle thickness from the B-mode to provide a better ground truth? 

 

4. There are quite a few single case experiments in the paper, such as dumbbell curls and 

treadmill/outdoor locomotion tests. These experiments make more sense to the reader, and it would be 

nice to extend them a bit. In particular, for the dumbbell curl experiment (Fig. 3), I am supervised that 

the elbow torque estimated by the A-mode ultrasound matched the simple simulation model quite well. 

 

5. In terms of second-order polynomial fitting, it is basically similar to the linear regression applying a 

second-order polynomial basis function. Incorporating joint kinematics into the model also makes sense 

because both muscle activation (thickness in this case) and muscle length (joint kinematics) affect the 

joint torque. When building the polynomial fitting model, did the authors use the data covering all the 

different contraction tasks? If so, the model might be overfitted because all the data came from 



repeatable movements. It is better to test the generalisability of the model by training and testing it on 

different contraction tasks. 

 

6. In the locomotion test, the authors took the hip-knee angle difference and the thigh angle input 

kinematic variables. What is the difference between thigh angle and hip angle? I recommend inputting 

hip and knee angles into the model because the model will handle the difference if necessary. 

 

7. In Fig.1 D, the red line doesn’t appear to match the strongest echo in the signal. 
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Reviewer #1 
The proposed approach is very interes�ng, however I noted two main problems for this study: 
 
1) Only 8 subjects have been involved, and in some experiments (dumbbell curl and treadmill/outdoor 
locomo�on test) just one par�cipant was tested. 
 

We thank the reviewer for their construc�ve feedback regarding the need for more par�cipants to 
improve the robustness of the work. In response, we have increased the number of par�cipants from 
8 to 10 for the dynamometer tests and from 1 to 5 for the dumbbell curl and treadmill locomo�on 
tests. With the newly added par�cipants, we now have similar par�cipant pools to other relevant 
papers in the field. For example: 

- N = 5 in Mar�n, Jack A., et al. "Gauging force by tapping tendons." Nature communications 9.1 
(2018): 1592. 

- N = 8 in Alvarez, Jonathan T., et al. "Towards so� wearable strain sensors for muscle ac�vity 
monitoring." IEEE Transactions on Neural Systems and Rehabilitation Engineering 30 (2022): 
2198-2206. 

- N = 6 in Zhou, Yu, et al. "Bio-signal based elbow angle and torque simultaneous predic�on 
during isokine�c contrac�on." Science China Technological Sciences 62 (2019): 21-30. 

 
We have maintained N=1 for the outdoor locomo�on test. We jus�fy this choice based on the absence 
of ground truth in outdoor environments and the primary objec�ve of this test, which is to 
demonstrate applicability in real-world se�ngs rather than quan�ta�ve valida�on of the proposed 
method (which is the goal for the treadmill part with N=5). 
 
With the added par�cipants, we obtained results comparable to the ones from the original 
submission. We refer the reviewer to the revised manuscript with highlighted changes for a 
comprehensive overview but have included a few call outs below. 
 
[Updated Text]  
Results 
Elbow torque es�ma�on during isokine�c contrac�ons 
To evaluate the es�ma�on of corresponding joint torque from parallel muscles, we acquired … on ten 
healthy adults while performing … 
… 
Across all par�cipants, the individualized models achieved RMSEs of 3.89 ± 0.86 Nm (mean ± SD), 
NRMSEs of 7.6 ± 1.4%, and coefficients of determina�on (R2) of 0.92 ± 0.03 (table S1).  
 
Elbow torque es�ma�on during dumbbell curls 
To inves�gate func�onal applica�ons of elbow torque es�ma�on, we performed a study on five 
par�cipants during dumbbell curls. 
… 
For all par�cipants, there was close agreement between the es�mated and calculated torque (Fig. S8), 
with the average elbow torque increasing propor�onally to the weight of the dumbbell (Fig. 3e, Fig. 
3f). Quan�ta�vely, absolute errors in average torque measurements were 1.25 ± 0.71 Nm for no 
weight, 1.18 ± 0.57 Nm for medium weights, and 2.41 ± 0.94 Nm for heavy weights across all 
par�cipants. Qualita�vely, … 
 
Knee torque es�ma�on during isokine�c contrac�ons 
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To evaluate the es�ma�on of corresponding joint torque from pennate muscles, we collected … on ten 
par�cipants during isokine�c RF contrac�ons. 
… 
By fi�ng (MT, Ang)2 on data from each par�cipant across all contrac�ons (Fig. 4c), we obtained 
individualized models with RMSEs of 12.59 ± 3.12 Nm, NRMSEs of 7.0 ± 1.3%, and R2 of 0.92 ± 0.02 
(table S1).  
 
Knee torque es�ma�on during treadmill and outdoor locomo�on 
To evaluate knee torque es�ma�on during unconstrained dynamic ac�vi�es, we performed a 
treadmill study on five par�cipants and a single-par�cipant outdoor locomo�on demonstra�on. 
… 
By fi�ng quadra�c fits on data from each par�cipant across all treadmill condi�ons, we obtained 
individualized models with RMSEs of 17.43 ± 5.09 Nm, NRMSEs of 6.0 ± 1.1%, and R2 of 0.92 ± 0.03 
(table S2).  
 
[Updated Figures] 
Results 
Elbow torque es�ma�on during dumbbell curls 
(We included the following subfigures in Fig. 3 to show the results from all 5 par�cipants.) 

 
Fig. 3. Elbow torque es�ma�on during dumbbell curls. (E) Average es�mated torque for all 
par�cipants (n = 5) at different weight condi�ons. Each color represents data for one par�cipant. Each 
dot is obtained by taking the average of all contrac�ons (n = 6) within the respec�ve condi�on. (F) 
Average calculated torque for all par�cipants (n = 5) at different weight condi�ons. 
 
Knee torque es�ma�on during treadmill and outdoor locomo�on 
(We updated Fig. 5c and Fig. 5d to show the effects of locomo�on type and slope level on RMSEs for 
all 5 par�cipants. Also, we changed the plots from bar plots to box plots to beter show the underlying 
data distribu�on.) 
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Fig. 5. Knee torque es�ma�on during treadmill and outdoor locomo�on. (C) Distribu�ons of RMSEs 
for different locomo�on types across all par�cipants (n = 5). Colored dots represent the RMSE for each 
par�cipant. (D) Distribu�ons of RMSEs for different slope levels across all par�cipants (n = 10). 
 
Supplementary Informa�on 
(We added the following supplementary figure to show data for all par�cipants during the dumbbell 
curl test.) 

 
Fig. S8: Data from different par�cipants during the dumbbell curl study. Each row represents BB 
thickness (le� column), elbow angle (center le� column), es�mated elbow torque (center right 
column), and calculated elbow torque from a rigid body model (right column) for one par�cipant 
during curls with different dumbbell weights. Data from Par�cipant 1 is shown in Fig. 3. Lines and 
shaded regions represent mean ± SD (n = 6 repe��ons). 
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2) the (inter- and intra-operator) reliability of measures with respect to Sensor placements were not 
assessed. 
 

We thank the reviewer for poin�ng out the need for such a reliability assessment. We fully agree that 
it is important to evaluate the effect of sensor placement to beter understand the method’s 
performance during realis�c applica�ons. In response, we conducted a single-par�cipant sensi�vity 
analysis on transducer placement and have added the following text and figure to show the analysis 
results.  
 
[Updated Text] 
Results 
Knee torque es�ma�on during isokine�c contrac�ons 
Lastly, we performed a single-par�cipant sensi�vity analysis to understand the effect of transducer 
placement (Supplementary Text). By collec�ng A-mode ultrasound at 18 different loca�ons across the 
RF, we observed that transducer placement largely affected the ultrasound quality of the deep RF 
boundary but did not drama�cally affect the correla�on to knee torque (Fig. S9). However, applying 
the fit obtained from a specific loca�on to neighboring loca�ons led to increasing es�ma�on errors, 
highligh�ng the importance of minimizing sensor placement dri� during use. 

 
[Updated Figure] 
Supplementary Informa�on 

 
Fig. S9: Sensi�vity analysis on transducer placement. (A) SETs were placed on 18 different loca�ons 
(3 by 6 grid) across the RF muscle. At each loca�on, the par�cipant performed 4 repe��ons of passive, 
concentric, and eccentric knee extensions on the dynamometer. (B) Muscle boundary prominence 
scores from all tested loca�ons. This score is designed to quan�ta�vely assess the ultrasound signal 
quality of the deep RF muscle boundary. Specifically, this score is calculated by averaging the 
maximum peak prominence of the raw ultrasound data within the region of interest across all �mes 
frames and then normalizing the scores from all loca�ons. (C) Coefficients of determina�on scores for 
(MT, Ang)2 models from all loca�ons. Each model was obtained using the ultrasound and 
dynamometer data collected at the respec�ve loca�on. (D) Normalized RMSEs obtained by fi�ng a 
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(MT, Ang)2 model on the reference loca�on (starred in B, C, and D) and evaluated on the 8 neighboring 
loca�ons. 
 

 
Another minor comment regards the Inverse kinema�cs, that is o�en used in biomechanical studies, so 
this approach deserves to be beter explained in Introduc�on 
 

Thank you for your sugges�on. We have indeed used inverse dynamics to obtain ground truth knee 
torque in our treadmill locomo�on test and agreed that it should be beter introduced. We have 
updated the Introduc�on, adding a beter descrip�on of the technique.  
 
[Old Text] 
Introduc�on  
Modeling techniques (e.g., inverse dynamics, computa�onal musculoskeletal models)16,17 and surface 
electromyography (EMG)18,19 have tradi�onally been used to indirectly es�mate both muscle force and 
joint torque. However, simula�on models rely on a combina�on of kinema�c and lab-based kine�c 
measurements, limi�ng their use to primarily research environments9. 
 
[Updated Text] 
Introduc�on 
Modeling techniques (e.g., inverse dynamics, computa�onal musculoskeletal models)16,17 have 
commonly been used to indirectly es�mate both muscle force and joint torque. Specifically, inverse 
dynamics can reliably es�mate joint torques within a rigid body model using mo�on and external 
force measurements. With addi�onal op�miza�on and biomechanical constraints, musculoskeletal 
models can further es�mate individual muscle forces. Despite these simula�on models’ wide use in 
biomechanical studies, they rely on intensive computa�on with a combina�on of measurements (e.g., 
mo�on-capture systems, force pla�orms) that are yet largely constrained to research environments9.  
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Reviewer #2 
The Authors illustrate a method for es�ma�ng the equivalent torque generated at the level of simple 
joints in a minimally invasive way, i.e. without resor�ng to laboratory set-ups. 
The basic idea is to find a correla�on between the increase in the thickness of the involved primary 
muscle and the torque delivered at joint level. To this end, they use amplitude mode (A-mode) ultrasonic 
transducers, which are known to be beter suited to the purpose as they are simpler and more portable 
than brightness mode (B-mode) transducers. 
It is well known that 1D A-mode ultrasound scans can be used to measure the thickness of so� �ssues, 
e.g. a muscle. Therefore, the objec�ve is to show how it is possible to correlate the varia�on in thickness 
of a muscle with the torque applied to a joint. 
The experiments are conducted on two joints with superficial primary muscles: the elbow (biceps 
brachii, BB) and the knee (rectus femoris, RF). 
 

Thank you for your though�ul and thorough overview of this work. We appreciate the comments and 
sugges�ons you provided!  
 

 
The Authors correctly point out that the evalua�on of joint torques can provide useful informa�on for 
es�ma�ng the risk of injury in sport or for evalua�ng the progress of rehabilita�on therapy. This is 
certainly true. They can also add that this evalua�on would have an important impact in the field of 
ergonomics for the preven�on of work-related injuries, which have an even greater socio-economic 
impact. 
 

Thank you for your insigh�ul comment and poin�ng out the poten�al implica�on of joint torque 
es�ma�on in ergonomics. As rightly pointed out by the reviewer, there are substan�al socio-economic 
impacts associated with work-related injuries. To address your sugges�on, we have edited the 
Discussion of the manuscript by including the following sentence and references.  
 
[Updated Text] 
Discussion 
Moreover, given the prevalence of work-related lateral epicondyli�s (tennis elbow)60 and occupa�onal 
knee disorders61, tracking elbow and knee torque while conduc�ng physically demanding jobs could 
also help facilita�ng beter workplace ergonomics and preven�ng work-related injuries. 
 
References 
60. Bretschneider, S. F., Los, F. S., Eygendaal, D., Kuijer, P. P. F. M. & Molen, H. F. van der. Work-
relatedness of lateral epicondyli�s: Systema�c review including meta-analysis and GRADE work-
relatedness of lateral epicondyli�s. Am. J. Ind. Med. 65, 41–50 (2022). 
61. Reid, C. R., Bush, P. M., Cummings, N. H., McMullin, D. L. & Durrani, S. K. A Review of Occupa�onal 
Knee Disorders. J. Occup. Rehabilita�on 20, 489–501 (2010). 
 

 
The authors rightly men�on the limita�ons of EMG saying that "EMG measures the electrical ac�va�on 
of a muscle, represen�ng neurological input rather than the muscle’s mechanical output". However, they 
do not men�on the Mechanomyogram (MMG), which instead provides a signal in response to actual 
muscle contrac�on. 
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We thank the reviewer for their comment and appreciate the opportunity to enrich the background 
informa�on presented in the Introduc�on. In response to your comment, we have included the 
following sentences and references to describe MMG in the context of this work.  
 
[Updated Text] 
Introduc�on 
Mechanomyography (MMG) es�mates muscle mechanical loads by measuring the lateral oscilla�ons 
elicited from contrac�ng muscle fibers. Despite being considered as the mechanical counterpart to 
EMG, MMG is highly suscep�ble to mo�on ar�fact from limb movement, especially during dynamic 
ac�vi�es23,24.  
 
References 
23. Ibitoye, M. O., Hamzaid, N. A., Zuniga, J. M. & Wahab, A. K. A. Mechanomyography and muscle 
func�on assessment: A review of current state and prospects. Clin Biomech 29, 691–704 (2014). 
24. Posatskiy, A. O. & Chau, T. The effects of mo�on ar�fact on mechanomyography: A compara�ve 
study of microphones and accelerometers. J. Electromyogr. Kinesiol. 22, 320–324 (2012). 
 

 
Resis�ve elas�c bands, which can be used to determine the change in shape of a superficial muscle, such 
as BB or RF, can also provide informa�on that follows neurological input. Given that they are limi�ng 
themselves to superficial primary muscles, it cannot be excluded that conduc�ve elas�c bands can also 
provide an equally informa�ve signal, especially in conjunc�on with IMUs and using data fusion 
techniques, which do not necessarily require computa�onally expensive methods. 
 

We thank the reviewer for their insigh�ul comment for a more comprehensive review of exis�ng 
technologies. We agree with the reviewer that there exist many exci�ng works aiming to capture 
muscle shape changes with affordable and computa�onally lightweight solu�ons. Sensorized elas�c 
bands or force myography (FMG) being one of the elegant solu�ons. However, such sensing bands are 
o�en wrapped around the en�re limb of interest, capturing signals from all agonist-antagonist muscle 
pairs within the limb (e.g., shape changes from both the elbow flexors and extensors). Sensi�ve so� 
strain sensors have been recently proposed to capture the localized skin deforma�on, but s�ll lack the 
specificity between superficial and deep muscles (e.g., combined shape changes from the biceps 
brachii and the underneath brachialis). We believe that ultrasound holds a unique advantage of 
providing muscle specific measurements, which enabled our work of evalua�ng the correla�on 
between A-mode captured RF and BB deforma�ons to knee and elbow torques. To capture this 
informa�on, we have modified the Introduc�on with new sentences describing FMG. Once again, 
thank you for the opportunity to ar�culate this more clearly.   
 
[Old Text] 
Introduc�on 
Ultra-sensi�ve so� strain sensors adhered to skin can non-invasively capture the underlying muscle 
bulge, which has been found to posi�vely correlate with changes in joint torque during dynamometer 
tests24. However, this surface-level measurement cannot dis�nguish between deforma�ons from 
superficial and deep muscles. 
 
[Updated Text] 
Introduc�on 
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Force myography (FMG) captures the muscle geometry change by measuring pressure varia�ons on 
the skin that occurs from muscle bulging. By using a band of pressure sensors wrapped around the 
limb, FMG captures the net shape change from all muscles within the limb, o�en including agonist 
and antagonist muscle pairs25. More recently, ultra-sensi�ve so� strain sensors have been adhered to 
skin to capture the localized skin deforma�on from the underlying muscle bulge, which has been 
found to posi�vely correlate with changes in joint torque during dynamometer tests26. However, this 
surface-level measurement cannot decouple deforma�ons from superficial and deep muscles. 
 
References 
25. Xiao, Z. G. & Menon, C. A Review of Force Myography Research and Development. Sensors Basel 
Switz 19, 4557 (2019). 
 

 
The Authors want to demonstrate the effec�veness of their algorithm (MBTA) to determine muscle 
thickness in a simple way. But the analysis is not conducted in real-�me, but rather in post-processing. 
Therefore, the doubt remains as to the possibility of using this approach to monitor the torque delivered 
during the execu�on of daily tasks. Surely the need for manual image segmenta�on does not help. 
 

Thank you for your interest in the real-�me aspect of our algorithm. Indeed, both the MBTA and 
torque es�ma�on are currently conducted in post-processing. However, we believe in their poten�al 
for real-�me implementa�on, given the simplicity of the involved processing. Specifically, it would be 
interes�ng for future research to replace the manual image segmenta�on with an automa�c 
calibra�on process that determines the region of interes�ng based on an individual’s weight and 
height. In response, we have updated our wri�ng to highlight the method’s poten�al for real-�me 
applica�on. 
 
[Updated Text] 
Discussion  
Third, while the MBTA demonstrates poten�al for real-�me implementa�on (Methods), current 
torque es�ma�on is conducted in post-processing. Future efforts could focus on developing a 
centralized system to simultaneously log ultrasound and IMU data and perform the torque es�ma�on 
algorithm in real-�me.  
 
Methods 
Muscle boundary tracking algorithm (MBTA) 
Although the MBTA is currently implemented in post-processing, its required computa�onal steps are 
straigh�orward. The algorithm operates with an average run�me of less than 0.3 milliseconds per 
frame on a standard CPU (Intel Core i7-10750H @ 2.60 GHz), showcasing its poten�al for real-�me 
use. To transi�on to real-�me implementa�on, further developments could involve pre-defining the 
region of interest based on body measures, such as weight and height, replacing low-pass filters with 
the simpler moving average filters, and implemen�ng the algorithm on a field programmable gate 
array (FPGA). Notably, the 2D box filter in the brightness-based method and the smoothing filters in 
the final fusion step may introduce �me delays in tracking. Therefore, it is important to op�mize filter 
parameters, like filter size and cutoff frequency, for specific applica�ons to minimize these delays.  
 

 
It is unclear how the MBTA algorithm might work in the case of deep muscles. 
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Thank you for your interest in the MBTA algorithm. Indeed, the MBTA can track the boundaries of 
deep muscles, such as the vastus intermedius (one of the deeper thigh muscles). We have revised our 
wri�ng and included a subfigure in Fig. S1 to show the MBTA’s applicability for deep muscles.  
 
[Updated Text] 
Results 
Muscle thickness tracking during mo�on 
The MBTA can con�nuously track thickness changes in both superficial and deep muscles during 
contrac�ons (Fig. S1). 
 
[Updated Figure] 
Supplementary Informa�on 

 
Fig. S1: Overview of the muscle boundary tracking algorithm (MBTA). (F) MBTA-traced boundaries of 
the biceps brachii (BB), rectus femoris (RF), and vastus intermedius (VI) (red lines) overlaid on A-mode 
ultrasound data from (A) 
 

 
The use of different ultrasonic elements is not new and the performance seems not to improve previous 
results, e.g. Tsutsui, Y., Tanaka, T., Kaneko, S.I. and Feng, M.Q., 2005, October. Duplex ultrasonic muscle 
ac�vity sensor. In SENSORS, 2005 IEEE (pp. 4-pp). IEEE. 
 

We thank the reviewer for their comment and the opportunity to further clarify the objec�ves and 
contribu�ons of our work. We agree with the reviewer that there has been prior work on using 
mul�ple single-element transducers to evaluate muscle func�ons. However, our study aims not to 
present a new way for fusing signals from mul�ple transducers, but rather to inves�gate the 
applicability of A-mode ultrasound for joint torque es�ma�on during various dynamic ac�vi�es (which 
required us to use mul�ple transducers to ensure signal quality). We have modified the Introduc�on 
to ar�culate this objec�ve more clearly.  
 
We have also thoroughly read the publica�on you listed. While they had very nice results, they were 
generated from a single par�cipant during sta�c isometric knee extensions. We evaluated mul�ple 
par�cipants (N=10) during isokine�c elbow flexions and knee extensions at various speeds. In 
addi�on, we also evaluated the effec�veness of our method with 5 par�cipants during unconstrained 
dynamic ac�vi�es of dumbbell curls and treadmill and outdoor locomo�on. However, we appreciate 
the explora�on by Tsutsui et al., as it is one of the earliest works in wearable A-mode ultrasound and 
have included their work as an addi�onal reference in our paper.  
 
[Old Text] 
Introduc�on 
Only a few studies have inves�gated es�ma�ng hand grip force during sta�c grips43,44 or elbow torque 
during controlled isokine�c elbow flexions45. The use of A-mode ultrasound for reliable muscle 
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deforma�on measurement and joint torque es�ma�on during dynamic and unconstrained func�onal 
tasks remains unexplored. 
 
[Updated Text] 
Introduc�on 
Only a few studies have inves�gated es�ma�ng hand grip force45,46 and knee torque47 during sta�c 
isometric contrac�ons or elbow torque during controlled isokine�c elbow flexions48. The use of A-
mode ultrasound for reliable muscle deforma�on measurement and joint torque es�ma�on during 
dynamic and unconstrained func�onal tasks remains unexplored. Hence, it remains a gap to 
inves�gate the applicability of A-mode ultrasound for con�nuous tracking of muscle mechanical loads 
during unconstrained dynamic ac�vi�es in real-world environments.  
 
References 
47. Tsutsui, Y., Tanaka, T., Kaneko, S. & Feng, M. Q. Duplex Ultrasonic Muscle Ac�vity Sensor. IEEE 
Sens., 2005 310–313 (2005) doi:10.1109/icsens.2005.1597698. 
 

 
Valida�on of the algorithm requires further experimental work. In fact, the tests on elbow flexion and on 
walking were conducted on a single subject. How can this result be considered significant? And why a 
single subject was involved in some experiments, while 8 in others? 
 

We thank the reviewer for poin�ng out the need for more par�cipants. We originally designed the 
dynamometer tests (N = 8) as the main evalua�on for this work and the remaining single-par�cipant 
tests (dumbbell curl and treadmill/outdoor locomo�on) as demonstra�ons. However, we 
acknowledge the lack of par�cipants for making claims regarding the method’s effec�veness in 
unconstrained dynamic ac�vi�es. In response, we have now extended the par�cipant pool from 8 to 
10 for the dynamometer tests and from 1 to 5 for the dumbbell curl and treadmill locomo�on tests. 
With the newly added par�cipants, we now have similar par�cipant pools to other relevant papers in 
the field. For example: 

- N = 5 in Mar�n, Jack A., et al. "Gauging force by tapping tendons." Nature communications 9.1 
(2018): 1592. 

- N = 8 in Alvarez, Jonathan T., et al. "Towards so� wearable strain sensors for muscle ac�vity 
monitoring." IEEE Transactions on Neural Systems and Rehabilitation Engineering 30 (2022): 
2198-2206. 

- N = 6 in Zhou, Yu, et al. "Bio-signal based elbow angle and torque simultaneous predic�on 
during isokine�c contrac�on." Science China Technological Sciences 62 (2019): 21-30. 

 
We have maintained N=1 for the outdoor locomo�on test. We jus�fy this choice based on the absence 
of ground truth in outdoor environments and the primary objec�ve of this test, which is to 
demonstrate applicability in real-world se�ngs rather than quan�ta�ve valida�on of the proposed 
method (which is the goal for the treadmill part with N=5). 
 
We refer the reviewer to the revised manuscript with highlighted changes for a comprehensive 
overview of all changes but have included a few call outs below. 
 
[Updated Text]  
Results 
Elbow torque es�ma�on during isokine�c contrac�ons 
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To evaluate the es�ma�on of corresponding joint torque from parallel muscles, we acquired … on ten 
healthy adults while performing … 
… 
Across all par�cipants, the individualized models achieved RMSEs of 3.89 ± 0.86 Nm (mean ± SD), 
NRMSEs of 7.6 ± 1.4%, and coefficients of determina�on (R2) of 0.92 ± 0.03 (table S1).  
 
Elbow torque es�ma�on during dumbbell curls 
To inves�gate func�onal applica�ons of elbow torque es�ma�on, we performed a study on five 
par�cipants during dumbbell curls. 
… 
For all par�cipants, there was close agreement between the es�mated and calculated torque (Fig. S8), 
with the average elbow torque increasing propor�onally to the weight of the dumbbell (Fig. 3e, Fig. 
3f). Quan�ta�vely, absolute errors in average torque measurements were 1.25 ± 0.71 Nm for no 
weight, 1.18 ± 0.57 Nm for medium weights, and 2.41 ± 0.94 Nm for heavy weights across all 
par�cipants. Qualita�vely, … 
 
Knee torque es�ma�on during isokine�c contrac�ons 
To evaluate the es�ma�on of corresponding joint torque from pennate muscles, we collected … on ten 
par�cipants during isokine�c RF contrac�ons. 
… 
By fi�ng (MT, Ang)2 on data from each par�cipant across all contrac�ons (Fig. 4c), we obtained 
individualized models with RMSEs of 12.59 ± 3.12 Nm, NRMSEs of 7.0 ± 1.3%, and R2 of 0.92 ± 0.02 
(table S1).  
 
Knee torque es�ma�on during treadmill and outdoor locomo�on 
To evaluate knee torque es�ma�on during unconstrained dynamic ac�vi�es, we performed a 
treadmill study on five par�cipants and a single-par�cipant outdoor locomo�on demonstra�on. 
… 
By fi�ng quadra�c fits on data from each par�cipant across all treadmill condi�ons, we obtained 
individualized models with RMSEs of 17.43 ± 5.09 Nm, NRMSEs of 6.0 ± 1.1%, and R2 of 0.92 ± 0.03 
(table S2).  
 
[Updated Figures] 
Results 
Elbow torque es�ma�on during dumbbell curls 
(We included the following subfigures in Fig. 3 to show the results from all 5 par�cipants.) 

 
Fig. 3. Elbow torque es�ma�on during dumbbell curls. (E) Average es�mated torque for all 
par�cipants (n = 5) at different weight condi�ons. Each color represents data for one par�cipant. Each 
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dot is obtained by taking the average of all contrac�ons (n = 6) within the respec�ve condi�on. (F) 
Average calculated torque for all par�cipants (n = 5) at different weight condi�ons. 
 
Knee torque es�ma�on during treadmill and outdoor locomo�on 
(We updated Fig. 5c and Fig. 5d to show the effects of locomo�on type and slope level on RMSEs for 
all 5 par�cipants. Also, we changed the plots from bar plots to box plots to beter show the underlying 
data distribu�on.) 

 
Fig. 5. Knee torque es�ma�on during treadmill and outdoor locomo�on. (C) Distribu�ons of RMSEs 
for different locomo�on types across all par�cipants (n = 5). Colored dots represent the RMSE for each 
par�cipant. (D) Distribu�ons of RMSEs for different slope levels across all par�cipants (n = 10). 
 
Supplementary Informa�on 
(We added the following supplementary figure to show data for all par�cipants during the dumbbell 
curl test.) 
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Fig. S8: Data from different par�cipants during the dumbbell curl study. Each row represents BB 
thickness (le� column), elbow angle (center le� column), es�mated elbow torque (center right 
column), and calculated elbow torque from a rigid body model (right column) for one par�cipant 
during curls with different dumbbell weights. Data from Par�cipant 1 is shown in Fig. 3. Lines and 
shaded regions represent mean ± SD (n = 6 repe��ons). 
 

 
How does the algorithm work in the case of deeper muscles or in the case of ball-socket joints? 
 

Thank you for your interest in extending our work beyond the presented muscles and joints. As 
responded to your 5th comment, the MBTA can track the thickness of deep muscles (e.g., the VI). 
While we are intrigued by the poten�al of A-mode-based torque es�ma�on in deeper muscles and 
more complex joints, we believe that these aspects are beyond the scope of the current work. In 
response, we have modified the Discussion by clarifying the scope of this work and outlining 
promising future direc�ons regarding more diverse muscles and joints.  
 
[Updated Text] 
Discussion 
Lastly, our study focused primarily on superficial muscles (e.g., BB and RF) and hinge joints (e.g., elbow 
and knee). While the MBTA can track the thickness of deep muscles (Fig. S1), using deep muscle 
dynamics for es�ma�ng joint torque, especially in more complex ball-and-socket joints, remains 
interes�ng and unexplored.  
 

 
The ar�cle's approach is rather empirical. The basic idea is to look for a correla�on between the varia�on 
in thickness of a muscle and the equivalent torque applied to a joint. For example, (MT+Ang)^2 was used 
as one of the input variable for fi�ng. Using the sum of heterogeneous quan��es is not a robust choice, 
because the result would depend from the used units. Also, a quadra�c rela�onship is used “because it 
could capture the commonly observed curvilinear rela�onship between muscle deforma�on and 
contrac�on intensity”. This is a rather trenchant approach. Is it a second order approxima�on of any non-
linear response? What about the use of exponen�al func�ons or higher-order polynomials? In my 
opinion, the most elegant approach would have been star�ng from biomechanical muscle contrac�on 
models. 
 

We thank the reviewer for their comment, which helped us to improve the clarity of the paper. To 
clarify, we intended to apply the quadra�c fit on muscle thickness (MT) and joint kinema�cs (Ang), as 
two independent input variables, rather than on the sum of the two variables. We recognize that the 
nota�on, (MT+Ang)2, might have been confusing. We have changed it to (MT, Ang)2 and have updated 
the relevant text to avoid poten�al confusion.  
 
Addi�onally, we agree with the reviewer that our approach in iden�fying the model func�on has been 
empirical. We also fully agree that deriving the func�on from a commonly accepted biomechanical 
model would have been a more elegant and beter approach. However, to our knowledge, it has been 
challenging to develop accurate and accessible biomechanical models on muscle 3D deforma�on. 
Therefore, exis�ng work has explored a spectrum of nonlinear func�ons, including quadra�c, cubic, 
exponen�al, and even more advanced machine learning models. In our work, we chose the quadra�c 



14 
 

fit mainly for its simplicity. However, we acknowledge the empirical nature of this approach and have 
included a new subsec�on in the Methods to clarify these design decisions.  
 
[Old Text] 
Results 
Elbow torque es�ma�on during isokine�c contrac�ons 
For each par�cipant, we applied a quadra�c fit to data from all condi�ons with BB thickness and 
elbow angle as input variables and elbow torque as the target variable [(MT+Ang)2] (Fig. 2c). We chose 
the 2nd order quadra�c fit because it could capture the commonly observed curvilinear rela�onship 
between muscle deforma�on and contrac�on intensity26,27,46,48,51. 
 
[Updated Text] 
Results 
Elbow torque es�ma�on during isokine�c contrac�ons 
For each par�cipant, we applied a quadra�c fit to data from all condi�ons (Methods). The quadra�c 
fit, denoted as (MT, Ang)2, uses two input variables, BB thickness and elbow angle, and es�mates 
elbow torque as the target variable (Fig. 2c).  
 
Methods 
Quadra�c fit on muscle thickness and joint kinema�cs  
The non-linear rela�onship between muscle deforma�on and force produc�on has been widely 
reported in literature28,49,51. However, it remains challenging to develop accurate and accessible 
biomechanical models that comprehensively capture the muscle’s complex 3D deforma�on during 
contrac�on71, not to men�on the interac�ons with neighboring muscles64. In prac�ce, this challenge 
has led to a rather empirical approach in defining the rela�onship between muscle deforma�on 
measurements and joint torque es�mates. Specifically, a spectrum of models, including quadra�c29, 
cubic26, exponen�al72, and even more complex machine learning45–48 models have been suggested to 
describe such rela�onship. In this work, we chose the quadra�c fit, mainly for its simplicity, to 
describe the mapping from muscle thickness and joint kinema�cs to joint torque.  
 

 
MINOR DETAILS 
- The expression "radio frequency" applied to ultrasound waves is a bit of a misnomer, which 
unfortunately is used by some authors. 
 

We thank the reviewer for this important correc�on. We have revised our terminology and removed 
the term “radio frequency” in reference to ultrasound signals throughout the manuscript.  
 

 
- The 4 transducers are inclined at a certain angle, and the reader is referred to Fig. 1. But in fig. 1 it is 
not clear that they are. The lines represen�ng the SET axes should probably be slanted. 
 

Thank you for your detailed observa�on. We have updated Fig. 1a by slan�ng the transducers to have 
a more realis�c representa�on of the system. 
 

Old Fig. 1a Updated Fig. 1a 
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- 4 SETs are used to find the one with the most intense echo. Would 3 suffice? Would 5 or 6 be beter? In 
short, how was the number of SETs determined? 
 

Thank you for your ques�on regarding the number of SETs used in our study. In response, we have 
added the below sentence in the Methods to clarify our design decision. In summary, using more 
transducers at a larger range of angles increases the likelihood of capturing data with strong echoes. 
However, it also leads to a larger transducer assembly and could poten�ally decrease the frame rate 
(assuming each SET operates sequen�ally rather than in parallel). In our work, we empirically 
determined that four SETs were sufficient based on our preliminary tes�ng.  
 
[Updated Text] 
Methods 
Amplitude-mode ultrasound system 
The choice of four transducers was based on preliminary tests as this number provided a good balance 
between capturing signals with sufficient echo strength and achieving reasonable technical 
specifica�ons including assembly size and frame rate (90 Hz).  
 

 
- The model of the rechargeable batery pack (“RRC, Germany”) should be inserted in Methods. 
 

Thank you for catching this. We have modified the relevant sec�on in Methods to include the model 
of the batery.  
 
[Updated Text] 
Methods 
Amplitude-mode ultrasound system 
For system wearability, we powered the ultrasound instrument with a rechargeable batery pack 
(RRC2054, RRC Power Solu�ons, Germany) and housed all electronics in a backpack (Fig. 5e). 
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- In "Experimental methods and data processing" the arm dominance should be declared (now it is 
stated: “regardless of the dominance”) 
 

Thank you for poin�ng this out. To avoid confusion, we have removed the phrase “regardless of the 
dominance”. Addi�onally, we have included two new tables, Table S3 and Table S4, to document the 
par�cipant informa�on for the different experiments. These tables also declare the dominant sides of 
all par�cipants. 
 
[Updated Text] 
Supplementary Informa�on 
Table S3: Par�cipant informa�on for dynamometer tests. 

 Gender Age Height (cm) Mass (kg) Dominant side 
Par�cipant 1 F 26 162 58 Right 
Par�cipant 2 F 29 160 59 Right 
Par�cipant 3 M 29 183 83 Right 
Par�cipant 4 M 33 177 77 Right 
Par�cipant 5 F 28 164 52 Right 
Par�cipant 6 M 27 180 88 Le� 
Par�cipant 7 M 37 184 77 Right 
Par�cipant 8 M 25 189 80 Right 
Par�cipant 9 M 30 181 70 Right 
Par�cipant 10 M 26 170 62 Right 

 
Table S4: Par�cipant informa�on for dumbbell curl and treadmill locomo�on tests. 

 Gender Age Height (cm) Mass (kg) Dominant side 
Par�cipant 1 M 29 183 83 Right 
Par�cipant 2 M 24 193 84 Le� 
Par�cipant 3 M 27 180 88 Le� 
Par�cipant 4 M 30 181 70 Right 
Par�cipant 5 F 29 160 59 Right 

 
 

 
- In "Dynamometer tes�ng" it is stated that gravita�onal torques are modelled as "a linear func�on to 
joint angle". This not clear. I would expect a trigonometric func�on, similar to that in Eq. 1. 
 

Thank you for catching this. We have updated the gravita�onal torque correc�on model from a linear 
func�on to a sinusoidal func�on and re-run all analyses accordingly. Although this update did not alter 
the previously reported results much, we agree that the sinusoidal func�on is a more accurate 
representa�on of the gravita�onal torque in dynamometer readings.  
 
[Old Text] 
Methods 
Experimental methods and data processing 
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To isolate biological torque changes, we first modeled gravita�onal torque (torque measurements in 
passive contrac�ons) as a linear func�on to joint angle and subsequently subtracted this func�on from 
torque measurements in all passive and ac�ve contrac�ons. 
 
Supplementary Informa�on 

 
 
[Updated Text] 
Methods 
Experimental methods and data processing 
To isolate biological torque changes, we first modeled gravita�onal torque (torque measurements in 
passive contrac�ons) as a sinusoidal func�on to joint angle and subsequently subtracted this func�on 
from torque measurements in all passive and ac�ve contrac�ons. 
 
Supplementary Informa�on 

 
 

 
- In "Dumbbell curl rigid body model" L is the distance from the elbow to the hand. Since the hand has its 
own length, this is a generic defini�on. Authors should beter indicate the anatomical reference points 
used to assess the lengths. 
 

Thank you for your comment. We have revised the wri�ng with clearer anatomical reference points.  
 
[Updated Text] 
Methods 
Dumbbell curl rigid body model 



18 
 

𝐿𝐿 is the distance from the cubital fossa (elbow pit) to the center of the third metacarpal bone (center 
of the hand) at 0° wrist flexion. 
 

 
- Equa�on 1 assumes that the centre of gravity lies in the middle of L. Why? 
 

Thank you for your ques�on regarding the rigid body model from the dumbbell curl test. To simplify 
the mathema�cal model, we assumed that the forearm and the hand is a rigid rod with uniformly 
distributed mass. Therefore, its center of gravity lies in the middle of L. We acknowledge that this is a 
significant simplifica�on and would likely lead to some of the discrepancies in the es�ma�on. We have 
revised our wri�ng to state this assump�on and its poten�al implica�ons more clearly.  
 
[Updated Text] 
Results 
Elbow torque es�ma�on during dumbbell curls 
Such discrepancy is likely atributed to factors such as muscle co-contrac�on, which the rigid model 
cannot capture, as well as the various simplifying assump�ons employed in the rigid body model 
(Methods).  
 
Methods 
Dumbbell curl rigid body model 
We modeled the forearm and hand as a rigid rod with uniformly distributed mass and the dumbbell as 
a point mass at the distal end of the rod (Fig. S7). 
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Reviewer #3 
The manuscript “Es�ma�on of Joint Torque in Dynamic Ac�vi�es Using Wearable A-Mode Ultrasound” 
reports a dynamic muscle thickness extrac�on and joint torque es�ma�on method based on wearable A-
mode ultrasound. The study proposes a mul�-view A-mode ultrasound sensing solu�on and a hybrid 
muscle thickness tracking method for robust extrac�on of muscle thickness in dynamic mo�ons, as well 
as a second-order polynomial fi�ng method that integrates joint kinema�c informa�on for beter joint 
torque es�ma�on. Exhaus�ve simula�ons and experiments were performed to validate the effec�veness 
of the proposed method, with very promising results achieved. This work will contribute to an in-depth 
understanding of muscle ac�vity during dynamic and unconstrained movements and holds great 
promise for biomechanics and rehabilita�on robo�cs research. 
 

Thank you for your accurate and comprehensive overview of our work. We really appreciate your 
insigh�ul comments and your acknowledgement of the poten�al impact of our work.  
 

 
1. The main innova�on of this paper is to achieve accurate muscle thickness tracking using wearable A-
mode ultrasound through a mul�-view sensing strategy and a hybrid muscle thickness extrac�on 
algorithm. While the algorithm works well for offline analysis, I am interested in how the algorithm can 
be used for real-�me applica�ons (e.g., real-�me es�ma�on of joint torque for robot control). As a 
lightweight sensing strategy, it will be more interes�ng to combine A-mode ultrasound with wearable 
robo�cs, which requires real-�me computa�onal power of the algorithms. Offline analysis is also 
important for certain biomechanical studies, however, B-mode ultrasound can also work well in this 
case. 
 

We thank the reviewer for their interest in the real-�me aspect of our algorithm. We completely agree 
with the reviewer that wearable robo�cs is a very exci�ng field and could be a great applica�on for 
our work if it could be implemented in real-�me. Although the MBTA and torque es�ma�on are 
currently conducted in post-processing, we believe in their poten�al for real-�me implementa�on. In 
response to your comment, we have updated our wri�ng to highlight the poten�al of our work for 
real-�me applica�ons.  
 
[Updated Text] 
Discussion  
Third, while the MBTA demonstrates poten�al for real-�me implementa�on (Methods), current 
torque es�ma�on is conducted in post-processing. Future efforts could focus on developing a 
centralized system to simultaneously log ultrasound and IMU data and perform the torque es�ma�on 
algorithm in real-�me. 
 
Methods 
Muscle boundary tracking algorithm (MBTA) 
Although the MBTA is currently implemented in post-processing, its required computa�onal steps are 
straigh�orward. The algorithm operates with an average run�me of less than 0.3 milliseconds per 
frame on a standard CPU (Intel Core i7-10750H @ 2.60 GHz), showcasing its poten�al for real-�me 
use. To transi�on to real-�me implementa�on, further developments could involve pre-defining the 
region of interest based on body measures, such as weight and height, replacing low-pass filters with 
the simpler moving average filters, and implemen�ng the algorithm on a field programmable gate 
array (FPGA). Notably, the 2D box filter in the brightness-based method and the smoothing filters in 
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the final fusion step may introduce �me delays in tracking. Therefore, it is important to op�mize filter 
parameters, like filter size and cutoff frequency, for specific applica�ons to minimize these delays.  
 

 
2. Regarding the muscle boundary tracking algorithm, the authors state that the sensor with the 
strongest echoes is used when measuring muscle thickness. This sensor selec�on method helps to select 
the sensor with the least rota�on to the target muscle. However, during the muscle contrac�on, the 
deforma�on of the muscle changes the rela�ve angle between the muscle and the sensor, which means 
that the op�mal sensing angle is constantly changing during muscle contrac�on. How did the authors 
solve this problem? For offline analysis, some filtering methods can help smooth out the results, even if 
there is some jiter. However, this can cause problems for online applica�ons. In terms of the simula�on 
study in Fig. S3, what is the amplitue of the sine wave? 
 

We thank the reviewer for their carefully inspec�on and poin�ng out the poten�al confusion in our 
wri�ng. The reviewer is completely right that the angle between the target muscle boundary and the 
transducer constantly changes during ac�ve contrac�on. We addressed this issue with the MBTA by 
fusing outputs from two different tracking methods to provide robust muscle thickness tracking during 
mo�on. Our original wri�ng might have been unclear in delivering this point. We have revised our 
wri�ng to make it clearer.  
 
Yes, filtering techniques, like low-pass filters, can effec�vely remove the mo�on-induced jiters in 
thickness tracking. Although our current implementa�on of the MBTA is in post-processing, as 
men�oned in our response to your previous comment, we believe it has the poten�al to be 
implemented in real-�me. And the moving average filter can be a real-�me alterna�ve to low-pass 
filters, but with a small �me delay.  
 
The sine wave in Fig. S3 has amplitudes ranging from 1 to 20 to simulate the 95% signal drop. We have 
revised Fig. S3 by adding the proper y-axis label.  
 
[Old Text] 
Results 
Muscle thickness tracking during mo�on 
To enable joint torque es�ma�on, we developed a method to robustly measure muscle thickness 
using A-mode ultrasound. We designed a transducer mount capable of holding four SETs at different 
angles (Fig. 1a), which can be worn on the limb above the target muscle (Fig. 1b, Fig. 1c). Addi�onally, 
we developed a custom muscle boundary tracking algorithm (MBTA) that iden�fies the transducer 
with the strongest echoes and measures changes in muscle boundary depth and muscle thickness 
(Fig. 1d). We designed the transducer mount and the MBTA to account for the dependence of 
ultrasound echo intensity on the angle of incidence. Specifically, the ultrasound signal strength is 
maximized when the transducer faces parallel to the boundary of interest, but quickly degrades with 
misalignments (Fig. S2). In prac�ce, the angle between the skin and the muscle boundary differs 
among par�cipants and changes during mo�on. To mi�gate the effect of such angle varia�on, we 
implemented the sensor redundancy to accommodate the different muscle shapes among 
par�cipants and designed the MBTA to withstand mo�on-induced varia�ons in echo intensity (Fig. S1).  
 
[Updated Text] 
Results 
Muscle thickness tracking during mo�on 
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To enable joint torque es�ma�on, we designed a transducer mount capable of holding four SETs at 
different angles (Fig. 1a), which can be worn on the limb above the target muscle (Fig. 1b, Fig. 1c). This 
sensor redundancy was implemented to account for the difference in muscle shape among 
par�cipants. Specifically, ultrasound echo intensity is highly dependent on the angle of incidence, with 
the intensity maximized when the ultrasound beam hits the target boundary at a 90° angle (Fig. S2). 
With mul�ple transducers at a range of angles, we increased the likelihood of normal incidence while 
collec�ng from muscles with different sizes and shapes.  
 
To measure muscle thickness, we developed a custom muscle boundary tracking algorithm (MBTA) 
that iden�fies the transducer with the strongest echoes and uses its signal to measure muscle 
boundary depth (Fig. 1d). The MBTA can con�nuously track thickness changes in both superficial and 
deep muscles during contrac�ons (Fig. S1). In prac�ce, muscle deforma�on constantly alters the angle 
between its boundary and the transducer, especially during dynamic mo�on. To address the resultant 
varia�ons in ultrasound echo intensity, the MBTA fuses results from two different tracking methods to 
provide robust es�ma�on of muscle thickness (Supplementary Text). To test the MBTA’s tracking 
performance and robustness, we… 
 

 
3. For the comparison of A-mode and B-mode ultrasound for muscle thickness tracking in Fig. S4, the 
processing of B-mode ultrasound is s�ll in an A-mode way. The authors selected some columns from the 
B-model ultrasound image to simulate the use of A-mode ultrasound sensing. Since it is compara�ve 
analysis here, why not extract the muscle thickness from the B-mode to provide a beter ground truth? 
 

Thank you for your thorough review of our experiment. We agree with the reviewer that it would be 
preferable to use an image-based technique for processing the B-mode data than to simulate A-mode 
data from it. In response, we have reprocessed the B-mode data by finding the 2D muscle boundary 
within each B-mode ultrasound image and measuring the thickness over �me at the loca�on 
corresponding to the SET placement. As shown below, this updated processing technique did not 
dras�cally change the comparison results.  
 
[Old Text] 
Results 
Muscle thickness tracking during mo�on 
Compared to the muscle thickness measured with B-mode, A-mode ultrasound achieved an RMSE of 
0.46 mm and a NRMSE of 1.6%, … 
 
Supplementary Informa�on 
Comparing muscle thickness tracking using A-mode and B-mode ultrasound 
In post-processing, we extracted a ver�cal line from each B-mode image, specifically from a column 
near the SET loca�on (Fig. S4c). We then concatenated these lines to form a signal resembling A-mode 
ultrasound data and applied the MBTA to determine the ground truth muscle boundary depth (Fig. 
S4d). 
 
[Updated Text] 
Results 
Muscle thickness tracking during mo�on 
Compared to the muscle thickness measured with B-mode, A-mode ultrasound achieved an RMSE of 
0.48 mm and a NRMSE of 1.7%, … 
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Supplementary Informa�on 
Comparing muscle thickness tracking using A-mode and B-mode ultrasound 
In B-mode processing, we first cropped ultrasound images to isolate the target muscle boundaries. We 
then found the 2D muscle boundary from each B-mode image by iden�fying a line spanning across 
the full width of the image and produces the highest mean pixel intensity (Fig. S4c). Lastly, we 
extracted a single depth value from the iden�fied line at the loca�on corresponding to SET placement, 
recorded it over �me, and used the resul�ng �me-series data as the ground truth muscle thickness 
(Fig. S4d).  
 
[Updated Figure] 

 
Fig. S4: Comparison of A-mode and B-mode ultrasound for muscle thickness tracking. (A) Illustra�on 
of the experimental setup. (B) Photograph of a 3D printed case that can mount up to eight A-mode 
SETs and a B-mode linear array transducer (LAT). (C) Iden�fica�on of 2D muscle boundary (green 
dashed line) using the B-mode image at each �me frame. (D) B-mode measured �me-series muscle 
thickness plots obtained by extrac�ng depth values from the iden�fied muscle boundaries near the 
SET placement (white ver�cal dashed line in C). (E) A-mode ultrasound data with MBTA tracing (green 
dashed line) overlaid. (F) Time-series error plots comparing A-mode-based with B-mode-based muscle 
thickness measurements. Red lines represent the RMSE of 0.48 mm.  
 

 
4. There are quite a few single case experiments in the paper, such as dumbbell curls and 
treadmill/outdoor locomo�on tests. These experiments make more sense to the reader, and it would be 
nice to extend them a bit. In par�cular, for the dumbbell curl experiment (Fig. 3), I am supervised that 
the elbow torque es�mated by the A-mode ultrasound matched the simple simula�on model quite well. 
 

We thank the reviewer for their comment to extend the par�cipant pool for the dumbbell curl and the 
locomo�on tests. We acknowledge the lack of par�cipants for making stronger claims regarding the 
method’s effec�veness in unconstrained dynamic ac�vi�es. In response, we have increased the 
number of par�cipants in the dumbbell curl and treadmill locomo�on tests to 5.  
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We have maintained N=1 for the outdoor locomo�on test. We jus�fy this choice based on the absence 
of ground truth in outdoor environments and the primary objec�ve of this test, which is to 
demonstrate applicability in real-world se�ngs rather than quan�ta�ve valida�on of the proposed 
method (which is the goal for the treadmill part with N=5). 
 
We refer the reviewer to the revised manuscript with highlighted changes for a comprehensive 
overview of the changes but have included a few call outs below. Also, we were surprised by the 
match in the dumbbell curl experiment as well and now show similar trends in the other 4 new 
par�cipants in the newly added Fig. S8. 
 
[Updated Text]  
Results 
Elbow torque es�ma�on during dumbbell curls 
To inves�gate func�onal applica�ons of elbow torque es�ma�on, we performed a study on five 
par�cipants during dumbbell curls. 
… 
For all par�cipants, there was close agreement between the es�mated and calculated torque (Fig. S8), 
with the average elbow torque increasing propor�onally to the weight of the dumbbell (Fig. 3e, Fig. 
3f). Quan�ta�vely, absolute errors in average torque measurements were 1.25 ± 0.71 Nm for no 
weight, 1.18 ± 0.57 Nm for medium weights, and 2.41 ± 0.94 Nm for heavy weights across all 
par�cipants. Qualita�vely, … 
 
Knee torque es�ma�on during treadmill and outdoor locomo�on 
To evaluate knee torque es�ma�on during unconstrained dynamic ac�vi�es, we performed a 
treadmill study on five par�cipants and a single-par�cipant outdoor locomo�on demonstra�on. 
… 
By fi�ng quadra�c fits on data from each par�cipant across all treadmill condi�ons, we obtained 
individualized models with RMSEs of 17.43 ± 5.09 Nm, NRMSEs of 6.0 ± 1.1%, and R2 of 0.92 ± 0.03 
(table S2).  
 
[Updated Figures] 
Results 
Elbow torque es�ma�on during dumbbell curls 
(We included the following subfigures in Fig. 3 to show the results from all 5 par�cipants.) 

 
Fig. 3. Elbow torque es�ma�on during dumbbell curls. (E) Average es�mated torque for all 
par�cipants (n = 5) at different weight condi�ons. Each color represents data for one par�cipant. Each 
dot is obtained by taking the average of all contrac�ons (n = 6) within the respec�ve condi�on. (F) 
Average calculated torque for all par�cipants (n = 5) at different weight condi�ons. 
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Knee torque es�ma�on during treadmill and outdoor locomo�on 
(We updated Fig. 5c and Fig. 5d to show the effects of locomo�on type and slope level on RMSEs for 
all 5 par�cipants. Also, we changed the plots from bar plots to box plots to beter show the underlying 
data distribu�on.) 

 
Fig. 5. Knee torque es�ma�on during treadmill and outdoor locomo�on. (C) Distribu�ons of RMSEs 
for different locomo�on types across all par�cipants (n = 5). Colored dots represent the RMSE for each 
par�cipant. (D) Distribu�ons of RMSEs for different slope levels across all par�cipants (n = 10). 
 
Supplementary Informa�on 
(We added the following supplementary figure to show data for all par�cipants during the dumbbell 
curl test.) 

 
Fig. S8: Data from different par�cipants during the dumbbell curl study. Each row represents BB 
thickness (le� column), elbow angle (center le� column), es�mated elbow torque (center right 
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column), and calculated elbow torque from a rigid body model (right column) for one par�cipant 
during curls with different dumbbell weights. Data from Par�cipant 1 is shown in Fig. 3. Lines and 
shaded regions represent mean ± SD (n = 6 repe��ons). 
 

 
5. In terms of second-order polynomial fi�ng, it is basically similar to the linear regression applying a 
second-order polynomial basis func�on. Incorpora�ng joint kinema�cs into the model also makes sense 
because both muscle ac�va�on (thickness in this case) and muscle length (joint kinema�cs) affect the 
joint torque. When building the polynomial fi�ng model, did the authors use the data covering all the 
different contrac�on tasks? If so, the model might be overfited because all the data came from 
repeatable movements. It is beter to test the generalisability of the model by training and tes�ng it on 
different contrac�on tasks. 
 

Thank you for your insigh�ul comment. Indeed, in the dynamometer tests (Fig. 2, Fig. 4), we 
generated quadra�c models using data from all contrac�on tasks. We used all available data in these 
two experiments because our goal was to explore whether simple and descrip�ve rela�onships could 
be established from muscle deforma�on to joint torque, rather than to propose a new ML-based 
es�ma�on algorithm. Notably, this technique of assessing rela�onships using all available data is 
commonly employed in similar biomechanical studies, such as:  

- Mar�n, Jack A., et al. "Gauging force by tapping tendons." Nature communications 9.1 (2018): 
1592. 

- Alvarez, Jonathan T., et al. "Towards so� wearable strain sensors for muscle ac�vity 
monitoring." IEEE Transactions on Neural Systems and Rehabilitation Engineering 30 (2022): 
2198-2206. 

- Hodges, P. W., Pengel, L. H. M., Herbert, R. D. & Gandevia, S. C. Measurement of muscle 
contrac�on with ultrasound imaging. Muscle Nerve 27, 682–692 (2003). 

 
Yet, in the dumbbell curl and outdoor locomo�on tests, we trained and evaluated the model using 
data from different contrac�on tasks (Fig.3, Fig. 5f, Fig. 5g). Specifically, we trained quadra�c fits with 
data collected on the dynamometer and treadmill and subsequently evaluated them during 
unconstrained dumbbell curls and outdoor locomo�on ac�vi�es.  
 
Moreover, in our experiments, the number of data points significantly exceeded the tunable 
parameters in quadra�c models. For example, for one par�cipant from the dynamometer test, the 
(MT, Ang) 2 model used 10858 data points to determine 6 tunable coefficients in the model. Given this 
substan�al data-to-parameter ra�o, we were less concerned about the risk of model overfi�ng. 
Addi�onally, we have incorporated two new references to support our claim that simpler models 
enhance generalizability and transferability.  
 
However, we recognize that our original wri�ng might not have clearly conveyed these points. We 
have revised the relevant sec�on in Discussion to ar�culate these arguments more clearly and to 
suggest that incorpora�ng more advanced machine learning algorithms could be a promising direc�on 
for future research. Once again, we thank the reviewer for helping us to strengthen the paper.  
 
[Old Text] 
Discussion  
To describe the rela�onship between input measures (muscle thickness, joint angle) and joint torque, 
we used a simple 2nd order polynomial fit, which offers advantages in preven�ng overfi�ng and 
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improving model generalizability. A strength of our es�ma�on was the robustness across different 
contrac�on speeds (Fig. 2d, Fig. 4d) and types (concentric vs eccentric) (Fig. 2e, Fig. 4e). Our 
es�ma�on also showed generalizability across par�cipants, as our generalized models produced less 
than 4% addi�onal NRMSEs compared to individualized models for both elbow and knee torque 
es�ma�on (Table S1). In contrast, prior A-mode ultrasound studies have primarily used more 
advanced machine learning algorithms, such as deep neural networks, for various classifica�on 
applica�ons38,40–42 and con�nuous joint kinema�cs61 or sta�c grip force43,44 es�ma�on. These 
algorithms automa�cally learn salient features from A-mode ultrasound data and map them to target 
variables. However, their training processes o�en require substan�al amounts of data due to the large 
number of tunable parameters within the model. In comparison, we alleviated the data requirement 
by introducing the MBTA and applying a rela�vely simple quadra�c fit on the extracted muscle 
thickness, rather than on raw A-mode ultrasound data. As an example, in the dumbbell curl 
demonstra�on, we constructed the elbow torque es�mator using only 15 isokine�c contrac�ons (5 
passive, 5 concentric, 5 eccentric). We expect that combining a feature extrac�on method, like the 
MBTA, with advanced machine learning algorithms could further improve es�ma�on accuracy in the 
future, poten�ally by fusing mul�ple measurements from the same muscle or leveraging 
measurements from different muscles.  
 
[Updated Text] 
Discussion 
To describe the rela�onship of muscle thickness and joint kinema�cs to joint torque, we used a simple 
2nd order polynomial fit, which offers advantages in model generalizability and transferability due to its 
simple architecture66,67. Specifically, we showed in the dynamometer tests that applying the quadra�c 
fit to all contrac�ons yielded comparable results across different contrac�on speeds (Fig. 2d, Fig. 4d) 
and types (concentric vs eccentric) (Fig. 2e, Fig. 4e). We further showed in the dumbbell curl and the 
outdoor locomo�on tests that quadra�c models trained using controlled contrac�ons can generate 
promising results in unconstrained dynamic tasks (Fig. 3c, Fig. S8, Fig. 5f, Fig. 5g). In contrast, prior A-
mode ultrasound studies have primarily used more advanced machine learning algorithms, such as 
deep neural networks, by training them directly on the raw ultrasound data. Despite enabling various 
classifica�on applica�ons40,42–44 and con�nuous joint kinema�cs68 or sta�c grip force45,46 es�ma�on, 
these algorithms o�en require substan�al amounts of training data due to the large number of 
tunable parameters within the model. In comparison, we alleviated the data requirement by training 
the rela�vely simple quadra�c fit on the extracted muscle thickness data, rather than raw A-mode 
signals. As an example, we trained the elbow torque es�mator for dumbbell curls using only 15 
isokine�c contrac�ons (5 passive, 5 concentric, 5 eccentric). In the future, we expect that combining a 
feature extrac�on method, like the MBTA, with advanced machine learning algorithms could enable 
more accurate torque es�ma�on, poten�ally by fusing mul�ple measurements from the same muscle 
or leveraging measurements from different muscles.  
 
References 
66. Forster, M. R. Key Concepts in Model Selec�on: Performance and Generalizability. J. Math. Psychol. 
44, 205–231 (2000). 
67. Lute, A. C. & Luce, C. H. Are Model Transferability And Complexity An�the�cal? Insights From 
Valida�on of a Variable-Complexity Empirical Snow Model in Space and Time. Water Resour. Res. 53, 
8825–8850 (2017). 
 

 
6. In the locomo�on test, the authors took the hip-knee angle difference and the thigh angle input 



27 
 

kinema�c variables. What is the difference between thigh angle and hip angle? I recommend inpu�ng 
hip and knee angles into the model because the model will handle the difference if necessary. 
 

We thank the reviewer for poin�ng out this poten�al confusion. Hip angles can be calculated by taking 
the difference between pelvis and thigh angles, which are the segment angles measured by the pelvis 
and thigh IMUs respec�vely. We acknowledge that these terms may not have been clearly defined in 
the original submission. Therefore, we have revised the Methods sec�on to provide clearer 
defini�ons.  
 
We also agree with the reviewer that the quadra�c fit should be capable of conduc�ng subtrac�ons 
among the different angles if necessary. To have more intui�ve input variables, we have updated the 
kinema�c inputs to the model from the original “hip-knee angle difference and thigh angle” to “pelvis, 
thigh, and shank angles” instead. We have also updated all the results in reflec�on of this change.  
 
[Old Text] 
Results 
Proof of concept: Knee torque es�ma�on during treadmill and outdoor locomo�on 
The fited quadra�c model used three inputs: RF thickness, hip-knee angle difference, and thigh angle. 
 
Methods 
IMU-based kinema�cs calcula�on and gait segmenta�on 
At each �me frame, we measured body segment angles (angles of the forearm, upper arm, torso, 
thigh, shank, and foot rela�ve to gravity) by redefining the IMU global frame (with one axis aligned 
with the joint axis and another pointed against gravity) and finding the pitch angle between the local 
and the updated global frames around the joint axis. We then calculated joint angles (elbow, knee, 
and hip angles) by subtrac�ng the angles of two adjacent segments (e.g., knee angle = thigh angle – 
shank angle).  
 
[Updated Text] 
Results 
Knee torque es�ma�on during treadmill and outdoor locomo�on 
These results were generated using quadra�c models with RF thickness, along with pelvis, thigh, and 
shank angles (directly measured by IMUs) as input variables. These input variables were used to 
capture the combined effect of muscle deforma�on and joint kinema�cs on knee torque es�ma�on.  
 
Methods 
IMU-based kinema�cs calcula�on and gait segmenta�on 
With these assump�ons, each IMU can measure the angle of respec�ve body segment (forearm, 
upper arm, pelvis, thigh, shank, and foot) rela�ve to gravity. Specifically, we measured these segment 
angles by redefining the IMU global frame (with one axis aligned with the joint axis and another 
pointed against gravity) and finding the angle between the local and the updated global frames 
around the joint axis. Joint angles can then be calculated by subtrac�ng the angles of two adjacent 
segments (e.g., hip angle = pelvis angle - thigh angle, knee angle = thigh angle - shank angle). 
 

 
7. In Fig.1 D, the red line doesn’t appear to match the strongest echo in the signal.  
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Thank you for your detailed observa�on. The MBTA tracks the depth of muscle boundaries by using a 
short window of data around each �me frame, rather than solely relying on the data from that specific 
�me frame (Methods). As a result, the MBTA measurement at any given �me frame may not 
necessarily align to the strongest echo in the ultrasound signal. We acknowledge that our previous Fig. 
1d may have been confusing. In response, we have updated the figure by removing the red lines from 
the insets and now use these insets solely for visualizing the raw A-mode waveforms.  
 

Old Fig. 1d 

 
 

Updated Fig. 1d 

 
 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors addressed my concerns, they even increased the sample size, so I am satisfied about the 

work done in the revised version of the manuscript 

 

 

Reviewer #2 (Remarks to the Author): 

 

 

 

 

 

 

 

 

Ergonomics 

Enthesopathy is a major occupational disease. Authors decided to focus on epicondylitis. It would be 

useful to mention the prevalence of this condition, so to better assess the potential impact of the 

technology in ergonomics. 

A simple mention in the discussion is quite lateral. Please mention the potential application in 

ergonomics since the abstract/introduction. 

 

MMG 

Quite dated references are provided (2012, 2014) to support the conclusion that “MMG is highly 

susceptible to motion artifact from limb movement, especially during dynamic activities”. Compensation 

strategies, involving the multimodal use of additional sensors (e.g. accelerometers) is not mentioned 

here. The advantage of the proposed sensory system is not thoroughly explained. 

 

Resistive elastic bands 



Authors state: “We believe that ultrasound holds a unique advantage of providing muscle specific 

measurements”. The answer would be more convincing if the proposed technology were compared with 

alternative, multimodal sensing technologies. 

 

Real-time use 

OK 

 

Use of different ultrasonic elements 

OK 

 

Number of participants to validate the algorithm 

OK 

 

How the algorithm works in the case of deeper muscles or in the case of ball-socket joints 

OK 

 

Empirical approach 

Replacing (MT+Ang)^2 with (MT, Ang)^2 is but a cosmetic change. Authors should list possible 

biomechanically grounded models, compare them, and show how/why the model they propose is to be 

preferred. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed my questions carefully, and I have no more questions now. 
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