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S1 Digital Rock Image processing

We used a large dataset of three-dimensional images extracted from X-ray computed micro-tomo-
graphy (µCT) scans of sandstone and carbonate rock samples at a resolution of 2.25µm/voxel.24, 27

The µCT system scans cylindrical rock plugs, as seen in Fig. S1a. A 26 mm-long and 10 mm-wide
rock plug suitable for our system (Skyscan 1272, Bruker), was imaged as two-dimensional pro-
jections of the pore space. The three-dimensional digital rock image is reconstructed out of these
two-dimensional projections using the built-in Bruker software (NRecon, version 1.7.0.4, with the
Reconstruction engine InstaRecon, version 2.0.2.6). The reconstructed volume of the fully digi-
tized rock sample obtained from the µCT measurements is usually cropped into smaller volumes
that are more computationally manageable, while retaining statistically significant rock properties.
For a set of sandstone rock samples scanned at a resolution of 2.25µm/voxel, it was observed that
a Representative Elementary Volume (REV) of about 10003 voxels was sufficient to yield accurate
rock property predictions like porosity and permeability24. Additional image processing methods
are applied to the digitized rock following the procedures described in references24, 43 to equalize
contrast differences due to mineralogical compositions across images. To fully eliminate image
and measurement artifacts resulting in very bright spots in the image, all voxels above a 99.8%
threshold in the grayscale cumulative histogram have been removed and the remaining grayscale
levels have been remapped to span the full [0, 255] scale. To reduce noise, a 3D non-local means
filter44, 45 was applied, which is available in Fiji46, using a smoothing factor of 1 and automatically
estimated sigma47 parameters.

Finally, several thresholding algorithms have been implemented to segment the grayscale
images and separate the pore space (darker) from the rock matrix (lighter), depending on the rock
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type. For instance, using a threshold level calculated by the IsoData method48 was sufficient to ac-
curately segment the sandstone grayscale images into solid (white) and void (black) space leading
to binary images24, but a 3-level multilevel Otsu method49 was needed to properly group sub-
porous regions, with little expected flow, with the mineral matrix for carbonate samples27. Fig.
S1b displays an example of this segmentation process as applied to a 225µm ⇥ 225µm cross-
section of a carbonate rock tomography, where the grayscale image on the left is segmented into
the binary image on the right. The Enhanced Hoshen-Kopelman algorithm50 is used to locate all
pore clusters, determine the pore volume fraction, and eliminate the pore clusters that are not con-
nected to the percolating pore network. The connected pore space is then taken as the true measure
of porosity.

Supplementary Figure S1: Digital rock image processing. a) Examples of porous rock plugs and
their plastic sample holders. b) Tomography cross section with dimensions 225µm ⇥ 225µm
in grayscale (left) and its corresponding binarized image (right), scanned at a resolution of
2.25µm/voxel.

S2 Capillary Network extraction and centerlines representation

The CNM representation is based on the Centerline extraction algorithm24. A centerline is a thin,
one-dimensional object that captures a 3D object’s main symmetry axes, summarizing its main
shape into a set of curves51, 52. Starting from the 3D binary image, our network extraction algorithm
transforms the pore space into voxel-wide lines at the center of the pore channels, finding the most
central paths from inlet pores to outlet pores through a centrality-based cost function inspired
by the Dijkstra’s Minimum Path algorithm 37. The resulting graph is interpreted as a cylindrical
capillary (a short cylinder), one voxel long, but whose diameter is the distance to the closest solid
voxel. The full algorithm description can be found in Neumann et al.24.

The digital rock image in Fig. S2a has dimension of (225µm)3 and was digitized in 8-bit
grayscale using one million (1003) voxels, each representing a physical region of (2.25µm)3. After
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segmentation, about 26% of the voxels in the resulting binary image of Fig. S2b, are identified as
pore space, 64.5% of which touch the rock surface. After undergoing the extraction procedure,
the capillary network model of the sample provides an accurate representation of the rock porous
geometry as seen in Fig. S2c. This CNM representation contains 4069 capillaries with a color-
coded diameter scale. The capillary network of the Berea sandstone sample analyzed in this paper,
of size equalto 10003 voxels, displays a porosity of 33% and results in a CNM with 2.7 ⇥ 106

capillaries.

Supplementary Figure S2: Capillary Network extraction. 3D grayscale digital rock image (a)
and 3D binary image (b) of a Berea sandstone sample with 1003 voxels. Capillary network repre-
sentation (c) of the sample mapping the rock pore geometry with a color-coded diameter

S3 Single-phase flow simulation

The fined-grained capillary network representation of the rock’s pore space described in section
S2 was employed to simulate both single and two-phase fluid flow with a high level of geometri-
cal accuracy. We assume laminar flow and apply equations relating pressure and flow rate within
each capillary, followed by conservation of mass at each node, to build a large system of coupled
equations in sparse matrix form. The system solution contains local properties such as the distri-
bution of pressure and flow rate at each point in the network, as well as global flow properties like
permeability24.

Fig. S3 displays the results of single-phase, pressure-driven flow simulations using the capil-
lary network representation of a 10003 voxel sandstone rock sample as input geometry. A pressure
gradient of 10 kPa/m between opposite sides along one axis is applied to drive the flow of a sim-
ple fluid with density 1000 kg/m3 and dynamic viscosity 1.002 mPa.s, representing water at 1 atm,
through the capillary network. Fig S3 is showing the induced pressure field inside the 3D sandstone
sample of dimensions 2.25mm ⇥ 2.25mm ⇥ 2.25mm. Due to the sparse nature of all matrices
involved, single-phase flow simulations are very efficient and can be simulated within minutes,
depending on its connected pore structure and the direction of the flow. The absolute permeability

3



for this REV was computed to be 105, 92 and 54 mD along the X-, Y- and Z-axis, respectively.

Supplementary Figure S3: Single-phase fluid flow simulation. Simulated pressure fields inside
a capillary network induced by single-phase flow of a a simple fluid representing water at 1 atm .
The flow was driven by an external 10 kPa/m pressure gradient imposed across the (a) X-axis (b)
Y-axis and (c) Z-axis.

S4 Two-phase flow simulations

Two-phase flow simulations track the displacement in time of the fluid interface within each capil-
lary of the CNM. We restrict the modeling to incompressible fluids under laminar, one-dimensional
flow along the length of each capillary. Each fluid-fluid interface is assumed perpendicular to the
flow direction, i.e. piston-like displacement. The pressure difference between the ends of each cap-
illary is expressed in Eq. 3 as the sum of various physical effects, some depending on the position
x(t) of the fluid interface. In addition to the externally applied pressure gradient, viscous forces
and capillary pressure, the physical equations of two-phase flow in capillaries may also include
hydrostatic, kinetic, and inertia contributions. Under the assumptions of Table 2, the contributions
from hydrostatic, kinetic and inertial forces appear at least one order of magnitude smaller than the
least significant of the other three contributions, hence the choice of terms kept in Eq. 3.

Tracking of the fluid interfaces across the network of capillaries proceeds in alternating se-
quences of free evolution and jumps. During free evolution, the effective interfaces move along
their respective capillaries, but without leaving them, via integration of the DAE system. Fig. S4a
displays a simple network of 6 capillaries, represented by capi, where i = 1..6, sharing a single
central node labeled with the pressure P7 at that point. This example illustrates the free evolution
time interval until the fluid interface in cap6 reaches the central node. Jump events occur when an
interface reaches a node and leaves its current capillary to enter one or more neighbouring capillar-
ies. In this step, free evolution pauses, the interfaces are redistributed throughout the network, and
the system of DAE is rewritten to account for the changes in interface locations. As an example, in
Fig. S4b, an interface that reached the end of one capillary (cap6) is removed, and new interfaces
are created at the entrances of the connected capillaries. After this rearrangement, free evolution
resumes. Depending on the local pressure state, some capillaries may become plugged, that is, the

4



Supplementary Figure S4: Fluid interface evolution in capillary network. a) Time step where
fluid interface progresses through the capillary before reaching a node, and b) time step after fluid
interface in cap6 reaches the central node and transitions to all connected capillaries.

pressure conditions may not favor flow and the interface becomes frozen at the location of nearest
node. It is possible that events such as the merging of fluids, reversal of flow, or changes in the
pressure conditions at a later time may start favoring flow again and lead to the capillary becoming
unplugged. All possibilities are handled carefully during the redistribution of interfaces among the
capillaries.

A more realistic example of the time evolution of a two-phase simulation is displayed in Fig.
S5a and Fig. S5b, representing the injection of supercritical CO2 over time as it pushes the resident
water in a small portion of a Berea sandstone rock modeled as a network of connected capillaries.
From the knowledge of the position of the fluid interface in all capillaries, we can compute the
saturation as a function of time as displayed in Fig. S5c. Saturation of the rock sample by the
injected fluid an important property in the study of CO2 infiltration into the porous rock. Plotting
the saturation as a function of the volume of CO2 injected, as in Fig. S5d, provides a measure of
the injection efficiency.

S5 Simplified capillary network representation

Unlike single-phase (stationary) flow that can be simulated within minutes, even on the network
representation of a REV-sized rock sample with millions of nodes and links, dynamic simula-
tions rapidly become unfeasible even on small sample sizes and large computing resources due
to their time-dependent nature. To overcome this limitation, we employ sets of smaller capillary
networks that remain representative of the original capillary network, to run two-phase simulations
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Supplementary Figure S5: Two-phase fluid flow simulation. Dynamics of two-phase fluid flow
simulation at a) time t1 and b) time t2. Measure of scCO2 saturation into the porous rock as c) a
function of time and d) a function of injected volume.

and extract flow properties. Previous works have demonstrated the importance of the geometric
properties of porous media, in particular, the distributions of sizes and shapes of pores and throats,
and also topology parameters such as connectivity and coordination number distribution38. Thus,
in order to produce realistic predictions, our smaller and simplified capillary networks are required
to accurately match the morphology of the original rock sample.

To create the simplified capillary network, we have developed a custom Python script based
on the OpenPNM53 framework capable of generating arbitrary 3D capillary networks in regular
(cubic) and random configurations. A regular capillary network comprises a 3D cubic structure
delimited by the sample size dimensions LX , LY and LZ , where capillaries are created parallel to
the axes on a regular mesh, intersecting at regular intervals. The intersection between capillaries,
referred to as a node, defines its coordination number. The coordination number is the number of
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links associated to each node in the network. For example, in Supplementary Figure S4a the P7
point shows a coordination number of 6, while the rest of the nodes display a coordination number
of just 1. One can create different cubic network configurations with coordination numbers from 6
to 26 by connecting faces, edges, corners, and their combination. In the random capillary network,
a set of points (or nodes) are randomly distributed in 3D space delimited by the sample dimensions
LX , LY and LZ . In both regular and random capillary network cases, the connections between
nodes, when present, become capillaries.

Our simplified capillary networks are built by iterating over the following steps until the
porosity of the synthesized network is within a predefined margin from that of the original. In a
first step, the coordination number of each node is assigned by choosing from the probability dis-
tribution of the original capillary network (see Fig. S6a and Fig. S7a for examples of coordination
number probability distribution in a regular and a random capillary network, respectively, overlaid
with the distribution of the original sample). Then, capillaries connected to a node are deleted if
needed to match the assigned coordination number. In a third step, capillary diameters are assigned
by randomly choosing from the diameter probability distribution of the original capillary network
(see Fig. S6b and Fig. S7b for examples of capillary diameter probability distribution in a regular
and a random capillary network, respectively, overlaid with the distribution of the original sample).
The final step in each iteration involves calculating the porosity of the simplified network by divid-
ing the capillary volume by the sample volume and comparing it to the porosity of the original rock
sample. This algorithm guarantees that the simplified network preserves the following properties:
(i) porosity; (ii) capillary diameter distribution; and (iii) node coordination number distribution.
Examples of 2D simplified capillary networks in regular and random configurations can be seen in
Fig. S6c and Fig. S7c, respectively. Examples of 3D simplified capillary networks in regular and
random configurations can be seen in Fig. S6d and Fig. S7d, respectively.

Several methodologies have been proposed to generate stochastic pore network models38–40.
Although some approaches considered relevant geometrical and topological properties of pore
space, such as pore-size, throat-size and coordination number distributions, two-phase flow sim-
ulation results on the networks generated have shown poor accuracy as compared to those of the
original sample38. The Pore Network Model separates the pore space into spherical pores and cylin-
drical throats, which places limitations to accurately approximate the intricate pore geometry. Our
statistically sampled capillary networks (ssCN), on the other hand, are built from the more accurate
capillary network representation of the pore space24 (see section S2), achieved through a sequence
of short cylinders with gradually changing radii matching the local pore geometry extracted from
the microtomography. As the ssCN built from this CNM preserves geometrical properties of the
rock morphology relevant to fluid flow, namely porosity, capillary diameter distribution, and node
coordination number distribution, it can more accurately approximate the original. Below, we as-
sess the fidelity of the approximation against permeability measurements. The impact of these
improvements on the accuracy of CO2 drainage saturation, however, is limited due to the difficulty
to compute two-phase flow in the original rock CNM.

Single-phase permeability calculations on ⇠50 different network configurations optimized
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Supplementary Figure S6: Regular simplified capillary network. a) Node coordination number
probability distributions and b) capillary diameter probability distribution of the synthesized net-
work and the network of the original rock sample. c) 2D regular simplified capillary network with
the capillaries represented in blue lines and the nodes in red dots. d) 3D regular simplified capillary
network.

to represent the original Berea sandstone sample are shown in Fig. S8. The flow was imposed
by applying an external 10 kPa/m pressure gradient along each axis. The simplified network op-
timization routine does not take into account the value of the permeability in the feedback loop.
Potentially higher fidelity in the permeability value could be obtained by optimizing against this
variable, however it requires running single phase simulations after each iteration, thus increasing
the computational needs. The enhancements would also require an understanding of the influ-
ence of the pore geometry on the rock permeability in all X,Y,Z directions, as permeability of the

8



Supplementary Figure S7: Random simplified capillary network. a) Node coordination num-
ber probability distributions and b) capillary diameter probability distribution of the synthesized
network and the network of the original rock sample. c) 2D random simplified capillary network
with the capillaries represented in blue lines and the nodes in red dots. d) 3D random simplified
capillary network.

original sample may not by isotropic. These additions to the optimization routine are certainly
important enhancements to be included in future extensions to the code. Nevertheless, agree-
ment within 2X of the permeability value ofthe original rock sample can be considered as good
agreement.54 From these results, we conclude that a network size of 1500 capillaries, about 0.5%
of the total number of capillaries in the original sample, represents a good trade-off between accu-
racy and computational cost, with an average permeability within ±3� of the original. We observe
that larger representations with more capillaries do improve precision but not the accuracy of the
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average estimate.

Supplementary Figure S8: Permeability vs ssCN Size. Mean permeability over the ensemble of
⇠ 50 simplified random network configurations along the (a) X-axis, (b) Y-axis, (c) Z-axis and (d)
the mean across all three axes, as a function of the number of capillaries per network.

S6 Pressure Distribution Within Capillary Network

The resulting distribution of pressures after simulating the injection of scCO2 into one of the sim-
plified capillary networks is plotted in Fig. S9 under varying conditions of externally applied
pressure gradient and fluid interface contact angle. This pressure distribution is the result of the
interplay between the driving pressure gradient and the internal viscous and capillary forces in
each capillary as described in section S4. For the range of capillary diameters shown in Fig.1b,
capillary pressures within the network are estimated to be around 4 kPa for contact angles between
20� and 80�, as per the second term of right hand side of Eq. 3. We observe in Fig. S9a that a
driving pressure gradient around 1⇥ 104 Pa/m is not sufficient to overcome the capillary pressures
within the network for a contact angle of 20�. As a consequence, the fluid flow in this low pressure
gradient regime is mostly driven by capillary pressure which tends to produce low CO2 saturation.

For stronger externally applied pressure gradients, we observe a significant change in the
pressure distribution of Fig. S9a and S9b towards higher pressures for both 20� and 90� contact
angles. As the pressures induced by the external driving force are now sufficient to overcome the

10



opposing viscous and capillary forces, even under conditions of low contact angles, it is thus able
to unplug many capillaries and reach higher saturation values. For the flow condition depicted in
Fig. S9a, namely, 1 ⇥ 107 Pa/m pressure gradient and 20� contact angle, we obtained saturation
values of 20% to 40%. But, more strikingly, for the condition represented in Fig. S9b, i.e., 1⇥ 107

Pa/m pressure gradient and 90� contact angle, we obtained saturation values reaching 80%.

Supplementary Figure S9: Pressure distributions within the CNM Distribution of resulting pres-
sures at the ends of capillaries for (a) contact angle 20�, and pressure gradients 1 ⇥ 104 Pa/m and
1⇥ 107 Pa/m; (b) contact angle 90� and pressure gradients 1⇥ 104 Pa/m and 1⇥ 107 Pa/m.

S7 Saturation vs Injected Volume

Fig. S10a shows an example of supercritical CO2 saturation as a function of time in the sandstone
rock sample under study at a temperature of 473 K and an external pressure gradient of 5 ⇥ 106

Pa/m for a range of contact angles. The curves and shaded areas in the plot represent the mean
and standard deviation of the simulations performed in an ensemble of ⇠ 50 ssCN, along the X, Y
and Z axis. Alternatively we can display the saturation as a function of the scCO2 injected volume
(in units of “pore volume”), as shown in Fig. S10b for the same simulation results. To reduce the
influence of backward flow, the injected volume in this context is computed from the sum of the
scCO2 saturation at each time step plus the volume of scCO2 ejected from the outlet capillaries,
calculated by integrating over time the product of the outlet capillaries cross sectional area and the
local flow speeds, normalized by the total pore volume occupied by all capillaries in the network.

Fig. S10b shows that for most contact angles, the saturation of scCO2 reaches a plateau,
indicating that fluid is not being retained within the pore space. As a measure of the injection
efficiency, we define the variable Weighted Saturation (wS) as the measured saturation (S) scaled
by the ratio of saturation to injected volume (IV), that is, wS = S S

IV , with units of pore volume
of injected CO2. As the saturation plateaus, the value of the wS peaks and any additional injection
does not result in further permeation of the pore space with potential for capillary trapping. This
variable thus emphasizes the effect that the CO2 injected volume has in the maximum achievable
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saturation, as observed in Fig. S10c (for a range of pressure gradients, with fixed 85� contact angle)
and Fig. S10d (for a range of contact angles, with fixed 5⇥ 106 Pa/m pressure gradient).

Supplementary Figure S10: Weighted Saturation vs. Injected Volume. Outcome of two-phase
simulations measured as the mean and standard deviation of the results from an ensemble of 50
ssCN, assuming supercritical CO2 as injected fluid, water as resident fluid, a temperature of 473 K
and an applied pressure of 1⇥ 106 Pa/m. (a) Saturation of supercritical CO2 as a function of time
for various values of contact angle. (b) Saturation as a function of injected volume across various
values of contact angle. (c) Weighted saturation as a function of injected volume for a fixed contact
angle of 85� and a range of applied pressure gradients, and (d) weighted saturation as a function of
injected volume for a fixed applied pressure of 5⇥106 Pa/m and the range of contact angles.

S8 Simulation Toolkit for Scientific Discovery (ST4SD)

In our study we scanned through 4 temperature scenarios, studied 8 fluid-interface contact angles
per scenario and no less than 8 different driving pressure gradient cases per angle, totaling 256
different injection conditions to be simulated. Per injection condition, 150 flow simulations were
executed applying driving pressure along all three axes on each of the 50 simplified capillary net-
works in the ensemble, requiring proper parsing and aggregation of nearly 40,000 simulations. To
manage the large parameter space, we leveraged high-throughput automated simulation workflows.
In particular, we employed the Simulation Toolkit for Scientific Discovery (ST4SD) 41 to automate
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the execution of long simulation campaigns with several chained steps. The use of such workflow
scheduler ensures the reproducibility of our results and enable efficiency gains by optimising the
use of computing resources.

Supplementary Figure S11: Schematic ST4SD workflow. Automated computational methodol-
ogy showing, from left to right, experiment definition, preparation of inputs, simulation execution,
output parsing, and aggregation of results

Fig. 1 illustrates the conceptual workflow and Fig. S11 shows the sequence of steps executed
in an ST4SD experiment. A CNM representation of a rock sample is used as input to the ST4SD
routine. This capillary network model is, however, too detailed to solve numerically in a two-phase
flow scenario, so we generate tens of simplified capillary networks that meaningfully represent
the properties of the original network (see Supplementary Section S5). Each simplified capillary
network is then used as input to independent flow simulations that will estimate relevant physical
properties in each representative network. Finally, the individual results from each simplified
network are aggregated and combined into a single estimate that applies to the reference network.

Fig. S11 shows two connected workstreams. Workstream A refers to the process of gener-
ating a large ensemble of simplified capillary networks from that of a high-resolution digital rock
sample. The Dataset Generation step follows the methodology described in Supplementary Section
S5. Taking the original rock sample CNM as input, the workflow launches in parallel many pro-
cesses to generate simplified capillary networks. In each parallel process, the algorithm alternates
between molding a (initially random) set of connected capillaries into matching the morphological
properties of the reference rock, and running single-phase flow simulations to assess the perme-
ability until a convergence criterion is reached. The outcome of this workstream is an ensemble of
simplified capillary networks whose morphological properties mimic those of the original network.

Workstream B refers to the simulated injection of scCO2 on an ensemble of simplified cap-
illary networks and extracting relevant properties from the aggregate of the results. A simulation

13



parameter grid containing all the values to be executed is used as input to the preparation step
of workstream B. Per instance of this simulation grid, the values of parameters such as applied
pressure, temperature or contact angle are inserted into the configuration files of the simplified
capillary networks produced in workstream A. In the execution step, two-phase fluid flow simula-
tions are executed for the ensemble of networks and the interfaces are tracked within the capillaries
to extract saturation values as a function of time. During parsing the saturation of all networks are
averaged as a function of time and injected volume, and passed to the aggregation step where they
are saved together with the results from other instances.

S9 Injection Safety and Efficiency

Fig. 3 of the main manuscript explores the efficiency and security of the scCO2 drainage process
in deep reservoirs at a fixed 473 K temperature. Fig. S12 explores the safety of the process
by plotting the value of saturation at 90% of the maximum vs. the injected volume required to
reach that point. Injected volumes beyond 1 PV indicate that some of the scCO2 was not retained
within the sample, representing a leakage concern. We observe larger values of injected volume
required to achieve similar levels of saturation with lower temperatures. Fig. S13 explores the
efficiency of the injection process by plotting the maximum weighted saturation of scCO2 as a
function of injected volume, representing the largest achievable saturation volume without scCO2

breakthrough. Data points closer to the diagonal represent maximum injection efficiency, and this
trend improves with higher temperatures.
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Supplementary Figure S12: Value at 90% maximum saturation vs. injected volume. Green
colors represents the CO2-wet regime, red shows the zero capillary pressure regime and blue rep-
resents the intermediate-wet regime. Larger marker sizes represent higher pressure gradients at
temperatures a) 323 K, b) 373 K c) 423 K and d) 473 K.
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Supplementary Figure S13: Maximum weighted saturation vs injected volume. Green col-
ors represents a CO2-wet regime, red shows the case of zero capillary pressure and, in blue, the
intermediate-wet regime. Larger markers represent higher pressure gradients at temperatures a)
323 K, b) 373 K c) 423 K and d) 473 K.
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