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Supplementary Methods 

Variance Partitioning 

Variance partitioning, also known as commonality analysis S1, allows for the variance in 

BOLD data (across time points for a given voxel) explained by the CSVA model to be 

partitioned into unique variance terms for subsets of features and combinations of these sub-sets 

S1,S2. As illustrated in figure S6, we used variance partitioning to examine variance explained by 

the CSVA model over and above that attributable to semantic category or affective features 

alone. 

We first fit models for the following subsets of features and combination of subsets: semantic 

category features (Sem, n=21 features), affective features (Aff: valence x arousal, n=6 features), 

semantic category features + affective features (Sem+Aff, n=27 features), semantic category x 

affective features (Sem.Aff, n=126 features), compound features that carry both semantic and 

emotional information, e.g. rotten food, mutilated humans, (SE, n=18 features),  semantic 

category and SE features (Sem+SE, n=39 features), affective and SE features (Aff+SE, n=24 

features), semantic category and affective and SE features (Sem+Aff+SE), semantic category x 

affective features + SE Features (Sem.Aff+SE, n=144 features). Note, for subjects 1 and 3, due 

to the additional semantic categories of plants and vehicles, there were 23 Semantic features 

(Sem), 138  semantic category x affective features (Sem.Aff) and 156 Sem.Aff +SE features; see 

main methods for futher details. 

For each model, the ridge coefficient (lambda) was allowed to vary across voxels to allow for 

an accurate estimation of the optimal lambda, and thus highest explained variance, per voxel. 

Cross-validation (50-fold) was used to select the optimal lambda from a 20 value log-space 

ranging from 0-1000. The squared prediction accuracy (r2) from these 9 models was then 

combined to determine the variance partitions as follows: 

1. σ2U(Sem) = r2(Sem+Aff+SE) - r2(Aff+SE) 
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2. σ2U(Aff) = r2(Sem+Aff+SE) - r2(Sem+SE) 

3. σ2U(SE) = r2(Sem.Aff +SE) - r2(Sem.Aff) 

4. σ2U(Sem.Aff) = r2(Sem.Aff+SE) - r2(Sem+Aff+SE) 

5. σ2C(Sem+Aff) = r2(Sem+SE) + r2(Aff+SE) - r2(Sem+Aff+SE) - r2(SE) 

6. σ2C(Sem+SE) = r2(Sem+Aff) + r2(Aff+SE) - r2(Sem+Aff+SE) - r2(Aff) 

7. σ2C(Aff+SE) = r2(Sem+Aff) + r2(Sem+SE) - r2(Sem+Aff+SE) - r2(Sem) 

8. σ2C(Sem+Aff+SE) = r2(Sem+Aff+SE) + r2(Sem) + r2(Aff) + r2(SE) - r2(Sem+Aff) - r2(Sem+SE) - r2(Aff+SE) 

9. σ2C(Sem.Aff+SE) = r2(Sem.Aff+SE) + r2(Sem.Aff) - r2(Sem+Aff+SE) - r2(Sem+Aff) 

Note: unique variance terms are denoted σ2C(XX) for feature set XX, combined variance terms are 

denoted σ2C(XX+YY) for combined variance between feature sets XX and YY.  

 

 Traditionally variance partitioning uses in-sample r2, meaning the explained variance is 

estimated on the same data used to fit the models S1. Voxel-wise modeling assesses model fit 

using out-of-sample correlation, or prediction accuracy (r). Conducting variance partitioning on 

out-of-sample data introduces additional technical challenges. When partitioning in-sample 

explained variance, the sum of all the unique and shared terms is guaranteed to equal the 

variance explained by the full model. However, when partitioning out-of-sample data it is 

possible that the sum of the unique and shared terms are greater than the explained variance of 

the full model. To address this issue, we utilized a technique developed by de Heer and 

colleaguesS2 to estimate, and apply, a bias term per variance partition to account for over-fitting.  

We estimated variance explained only by semantic category x affective interactions or 

addition of SE features (i.e. variance explained by mutilated land-mammals not land-mammals in 

general) by using the following feature sub-sets: σ2U(Sem.Aff) + σ2U(SE) + σ2C(Sem.Aff+SE), i.e. partitions 

3+4+9, see Fig S6. Put another way, this is the variance explained by the CSVA model minus 
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variance that could be explained by responses to either semantic category or affective features 

alone. 

 

Controlling for physiological noise 

Respiration and pulse-oximetry signals were obtained during fMRI data collection using a 

Biopac recording system (Biopac MP150 Data Acquisition Unit, Biopac UIM100C with Nonin 

8600FO) for pulse oximetry, and Biopac RSP100C with Biopac TSD221 for respiration. 

Preprocessing was conducted using the Physiological Log Extraction for Modeling (PhLEM) 

Matlab ToolboxS3. This toolbox implements the RETROICOR method S4 for creating nuisance 

regressors. A sine and cosine phase time-series are generated from the respiration data, and two 

cosine and sine phase time-series from the pulse-oximetry data, giving 6 time-series in total. The 

variance in the estimation and validation BOLD data explained by these nuisance regressors was 

removed. The CSVA model was fit to the residual data from the estimation runs and CSVA 

model feature weights obtained. Prediction accuracies were calculated using the residual 

validation data. Scatter plots were used to compare prediction accuracies with physiological 

noise controlled for in this fashion against those without physiological noise controlled for (as 

described in the main text). These are presented in Figure S3.  

 

Supplementary PCAs  

Using physiological noise controlled data. 

PCA was conducted on OTC voxel-wise CSVA feature weights estimated using the 

physiological noise controlled data. The same voxels were used as for the PCA reported in the 

main text. Pearson correlation coefficients were estimated between the top 3 original group PCs 
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and those obtained using the physiological noise controlled data. Correlations between the top 3 

“physio-removed’ CSVA PCs and the original CSVA PCs were extremely high (rs>0.99), 

indicating very little effect of physiological noise on the dimensionality of tuning within OTC . 

 

Changing voxel selection criteria. 

Non-EVC OTC. Retinotopic mapping (using both rotating wedges and contracting and expanding 

circles) was used to define early visual cortex (EVC, namely V1-V4) for each participant. Voxel 

section criteria was as for the main OTC analysis described above with the additional criteria that 

only voxels in non-EVC OTC were included. See Figure S9 and Table S3.  

 

Whole-cortex (expanded selection). 

Here we included all cortical voxels where the CSVA model showed a significant fit (see Table 

S3).  Figure S8A shows the amount of variance explained by the top 10 group-level PCs of this 

expanded-voxel-selection PCA, and figure S8B shows the correlation between the top three PCs 

from this analysis and those from the OTC-restricted PCA reported in the main text. Figure S11 

shows the projection of PC scores from this supplementary PCA onto cortical flatmaps.  

 

Orbital frontal cortex (OFC). 

A structural OFC ROI was created by combining superior, middle, inferior and medial OFC 

ROIs from the AAL template S5. The resultant ROI was back-projected from MNI space to 

subject anatomical space using a non-linear transformation (spatial normalization from SPM8), 

and then into subject functional space using a linear 12-dimensional affine transformation 

(spatial co-registration from SPM8).  
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All voxels within this ROI where the CSVA model showed a significant fit were included in 

a PCA of CSVA model feature weights (see Table S3). Figure S12A shows the amount of 

variance explained by the top 10 group-level PCs. We used leave-one-out cross validation 

(LOOCV) to compare feature loadings for the top three group-level PCs and the top three PCs 

obtained by subject-wise PCAs (see Figure S12C). Figure S13 shows the projection of PC scores 

from this PCA onto cortical flatmaps.  

 

Non-OFC frontal cortex. 

This ROI was created by combining the following 5 AAL template structural ROIs: superior, 

middle, and superior medial frontal regions, as well as frontal inferior operculum and frontal 

inferior triangularis. These ROIs were back-projected into subject functional space in the same 

manner as for the OFC ROI.  

All voxels within this ROI where the CSVA model showed a significant fit (see Table S3) 

were included in a PCA of CSVA model feature weights. Figure S12B shows the amount of 

variance explained by the top 10 group-level PCs. We used leave-one-out cross validation 

(LOOCV) to compare feature loadings for the top three group-level PCs and the top three PCs 

obtained by subject-wise PCAs (see Figure S12D). Figure S14 shows the projection of PC scores 

from this PCA onto cortical flatmaps.  

 

PCA controlling for low-level image features  

To determine the extent to which tuning to CSVA model features is merely explained by 

covariance with low level image features, we fit the Gabor model to the estimation data and 

regressed out the variance explained before fitting the CSVA model to the residuals. PCA was 
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conducted on the resultant CSVA model feature weights for OTC voxels divided into (a) non-

EVC OTC and (b) EVC. See Figure 7. 

 

Representational Similarity Analyses (RSA) 

 Prior work using multivoxel pattern analysis (MVPA) and specifically Representational 

Similarity Analysis (RSA) has failed to find interactions of stimulus valence and animacy in 

OTC S6. This might reflect the smaller amount of fMRI data per subject used in this prior work 

resulting in lower within-subject power to detect effects. Alternatively, RSA based MVPA might 

be less sensitive than the voxel-wise modeling approach adopted here, especially for studying 

voxel response profiles in a multi-dimensional space. This issue is likely to be of interest to some 

readers. Hence we conducted supplementary analyses using MVPA based RSA to relate image 

similarity in a space defined by image animacy, arousal and valence (see Table S5) to similarity 

in activation patterns across OTC.  We conducted additional parallel analyses for OTC excluding 

EVC and for the two frontal ROIs (OFC and non-OFC frontal cortex). We also conducted RSA 

using semantic only and Valence by Arousal model (dis)similarity matrices (see Table S5).  

 

Methods 

Representational similarity analysis (RSA) is conducted by correlating representational 

dissimilarity matrices which quantify (dis)similarity, across images, in BOLD activity patterns 

(brain RDMs) with model-based RDMs which quantify (dis)similarity, across images, in model 

feature space.   

We first preprocessed the BOLD data using SPM 8, conducting slice time correction, 

realignment, and linear detrending. High-pass filtering was not used (beyond linear detrending) 
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to avoid the accidental removal of low-frequency stimulus signals resulting from only 2 

presentations of each stimulus. Spatial smoothing was also not conducted S7.  

SPM 8 was then used to estimate a t-contrast across all brain voxels for each of the 1440 

estimation stimuli, which quantified each voxel’s average response to each stimulus relative to 

baseline. Nuisance regressors accounting for movement were included in the model, as well as a 

constant bias term per run to account for differences in baseline BOLD activity between runs. 

Each unique image was assigned an event, and the resulting t-contrast for that event was used to 

obtain the voxel-wise response amplitudes for the brain RDM. Implicit masking was disabled. 

Explicit masks were used to create ROIs using the same voxel-selection criteria as adopted for 

our voxel-wise modeling analyses. ROIs comprised OTC (as in main manuscript), non-EVC 

OTC, OFC and non-OFC frontal cortex. For each of these ROIs, a single brain RDM was 

estimated using pairwise Pearson’s correlations between the response amplitudes (t-contrast 

values) of all selected ROI voxels for each of the 1440 estimation stimuli (i.e. so the response to 

stimulus one was correlated with that to stimulus two, across voxels and so on). To create a 

group averaged brain RDM, single subject RDM values were Fisher transformed, averaged 

across subjects, and then reverse Fisher transformed for visualization. In addition to conducting 

formal RSA analyses (see below), we divided stimuli as a function of stimulus conditions and 

plotted group-level dissimilarity matrices for the following ROIs: EVC (early visual cortex), 

non-EVC OTC, OFC, non-OFC frontal cortex, and across the whole brain (Figure S18.)  

Each of the nine model RDMs (as described in Table S5 below) was created by estimating a 

distance metric for each of the 1440 estimation images within the model feature spaces outlined 

in Table S5. This was conducted separately for each subject using their individual ratings of 

valence and arousal. RSA was conducted using the CosMoMVPA toolboxS8. We estimated 
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Spearman rank-order correlations between each ROI brain RDM and each model RDM (Fig 

S19). We also conducted partial spearman correlations to control for variance attributable to low-

level visual features (using a Gabor model RDM).  

Single subject RSA results were Fisher transformed, averaged (across subjects), and reverse 

Fisher transformed for visualization of group results. To calculate significance of these group 

RSA results, the subject-specific correlation values were Fisher transformed and subjected to 

one-tailed t-tests across subjects. These results were corrected for multiple comparisons across 

ROIs and models (using Bonferroni correction).  
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Model-based RDMs Distance Metric Values 
Animacy 4 level Euclidean in 1-D 1 unit distance between adjacent cells, ordered as 

follows: Human, non-human Mammal, Invertebrate, 
or Inanimate 

Animacy 2 level Binary  0 distance if in same cell, 1 unit distance if not: 
Animate, Inanimate. 

Semantics  Binary 21 semantic categories from the CSVA model; 0 
distance if in same category, 1 unit distance if not: 

Valence Euclidean in 1-D 1 unit distance between adjacent cells, ordered as 
follows: Negative, Neutral, or Positive. 

Arousal Binary High Arousal or Low Arousal; 0 distance if in same 
cell, 1 unit distance if not. 

Valence by Arousal Euclidean in 2-D  
 

6 points in a 2-D space: high-negative, low-negative, 
high-neutral, low-neutral, high-positive, and low-
positive. Space definition: distance of 1 between each 
adjacent valence cell and distance of 1 between 
arousal levels. 

Animacy by  
Valence by  
Arousal 

Euclidean in 3-D 
 

The 6 points above are replicated for both animate and 
inanimate cells. Giving a 3-D space. Distance of 1 
between matching animate and inanimate cells. 

Animacy by Valence Euclidean in 2-D 6 points 2-D space: animate-negative, animate-neutral, 
animate-positive, inanimate-negative, inanimate-
neutral, and inanimate-positive. Distance of 1 between 
each adjacent valence cell and distance of 1 between 
animate and inanimate cells of the same valence. 

Animacy by Arousal Euclidean in 2-D 4 points 2-D space: animate-high, animate-low, 
inanimate-high, and inanimate-low. Distance of 1 
between arousal levels (same animacy)  and distance 
of 1 between animacy levels (same arousal.) 

Table S5. Description of the model-based representational (dis) similarity matrices. The left-

most column describes the feature space implemented; the middle column describes the distance 

metric used and the right-most column describes matrix cells and distances. We include this table 

here, as opposed to at the end of the Supplements, for the reader’s convenience. Each model-

based RDM was fit at a single subject level using the individual subject’s ratings of valence and 

arousal, as described for the CSVA and Valence by Arousal encoding models.  
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Results. 

One of the limitations with RSA is that arbitrary decisions need to be made about the 

distances between features. This is particularly an issue when using 2D or 3D feature spaces to 

examine interactions. The assumptions we have made are spelt out in Table S5. We note that the 

voxel-wise encoding modeling approach benefits from not requiring any assumptions about 

distances between features. With this caveat noted, we report that RSA revealed representation 

of interactions between animacy, valence and arousal in both OTC and OTC with EVC excluded. 

This representation was less evident in frontal regions (Figure S19).  Controlling for similarity in 

low-level image structure did not noticeably alter these results (Figure S19). If we replace our 

OTC ROI with a ventro-temporal cortical ROI used elsewhereS6 , representation of interactions 

between animacy, valence and arousal are still observed (Figure S20). Inspection of the brain 

RDMs with stimuli collapsed by stimulus category (Figure S18) allows for post-hoc detection of 

patterns that might have been missed due to assumptions operationalized when deciding upon 

feature distances for the model RDMs. Across all ROIs, and the whole brain, an animate vs. 

inanimate divide can be seen, although it is much more prominent within non-EVC OTC, as 

would be expected from previous findings. Stimuli are more differentiated by affective 

properties within non-EVC OTC than in other regions but some differentiation by affective 

properties is still discernable within frontal regions (e.g. neutral low arousal inanimate stimuli 

show the highest dissimilarity to positive and negative high arousal animate stimuli). 
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Supplemental Tables 
 
 

Subject # Voxels used in Model Comparison 

1 6777 

2 6450 

3 5483 

4 6596 

5 6580 

6 6618 

Table S1. This table shows the number of voxels used for all model comparison analyses (see 
the main methods section for details of model comparison procedures).Voxel selection was done 
by selecting those voxels where one of the following three models shows a significant fit: CSVA, 
Valence by Arousal, or Semantic Only. 
 
 
Subject Component 1 Component 2 Component 3 

r-value p-value r-value p-value r-value p-value 

 1 
0.899 P=1E-8 0.867 P=1E-8 0.811 P=1E-8 

2 
0.904 P=1E-8 0.707 P=1E-8 0.722 P=1E-8 

3 
0.825 P=1E-8 0.655 P=1E-8 0.780 P=1E-8 

4 
0.901 P=1E-8 0.455 P=1E-8 0.497 P=1E-8 

5 
0.781 P=1E-8 0.772 P=1E-8  0.544 P=1E-8 

6 
0.206 0.0065 0.674 P=1E-8 0.662 P=1E-8 

 
Table S2. Results from a leave-one-out cross validation analysis comparing PC feature loadings 
from subject-wise and group-level PCAs of CSVA feature weights across OTC voxels. For each 
of the top three principal components, the Pearson correlation coefficient (r-value) and associated 
p-value are given for the correlation between single subject PCA feature loadings and the feature 
loadings from a group PCA conducted with data from that given subject excluded. Permutation 
tests were used to determine correlation significance (one-tailed). Note a p-value of 1E-8 is the 
smallest possible value given the permutation test used. 
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ROI Name # Voxels included in group PCA 

OTC 8708 

non-EVC OTC 7208 

OFC 517 

non-OFC Frontal Cortex 2517 

Whole Cortex 26107 

Table  S3. This table gives the number of voxels (concatenated across participants) included in 
the group-level principal component analyses (PCAs). Voxel counts are given for the Occipital 
Temporal Cortical (OTC) ROI used in our primary analyses (see main manuscript) and the 
additional ROIs used for the supplementary PCAs described here. EVC = Early Visual Cortex; 
OFC = Orbital Frontal Cortex  
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Figure Description Source License 
1 Lion  https://stock.adobe.com/ie/images/lion-

en-pleine-
nature/284349908?prev_url=detail 

Abobe stock extended 
licence 

1 Prison  https://stock.adobe.com/ie/images/wide-
angle-view-of-jail-or-prison-bars-being-
lit-up-by-the-
sun/318331805?prev_url=detail  

Abobe stock extended 
licence 

1 Woman on bench Author’s private photo Provided by authors 
1 Candles http://christmasstockimages.com/free/ide

as_concepts/slides/christmas_candles.ht
m 

CC BY 3.0 

1 Father & daughter Author’s private photo Provided by authors 
1 Flood under 

bridge 
https://commons.wikimedia.org/wiki/File
:Flood_under_the_Old_Route_49_bridge
_crossing_over_the_South_Yuba_River_
in_Nevada_City,_California.jpg 

CC0 1.0 

8 Baby’s face https://stock.adobe.com/images/cute-
baby-ginger-hair-close-up-crawling-on-
bed-smiling-adorable-kid-portrait-
family-lifestyle-3-month-old-
child/302722731?prev_url=detail 

Abobe stock extended 
licence 

8 Couple embracing https://stock.adobe.com/images/content-
young-african-couple-embracing-each-
other-at-the-
beach/183353446?prev_url=detail 

Abobe stock extended 
licence 

8 Villa https://pxhere.com/en/photo/1196675 CC0 1.0 
8 Beef fillet on plate https://en.wikipedia.org/wiki/File:Beef_f

illet_steak_with_mushrooms.jpg 
CC BY-SA 3.0 

8 Tools on wall https://www.pexels.com/photo/set-of-
tool-wrench-162553/ 

CC0 1.0 

8 Tsunami https://stock.adobe.com/images/raz-de-
maree-sur-la-
ville/2073696?prev_url=detail 

Abobe stock standard 
licence 

8 Man in hospital 
bed 

https://stock.adobe.com/images/paramedi
c-checking-up-and-using-flashlight-on-
injured-young-
man/419848982?prev_url=detail 

Abobe stock extended 
licence 

8 Snarling dog https://stock.adobe.com/images/an-
angry-dog-barks-near-the-
house/202435947?prev_url=detail 

Abobe stock standard 
licence 

8 Man vomiting in 
toilet 

https://stock.adobe.com/ie/images/man-
vomiting-in-the-
toilet/109253754?prev_url=detail 

Abobe stock extended 
licence 

Table S4. This table provides the source URL and license type for all images shown within figures 
of this paper. 
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Supplemental Figures 
 

 
Figure S1 – Percentage of animate images (blue bars) and inanimate images (orange bars) 
classified as negative, neutral or positive and as high or low arousal for each subject. 
Ratings from each subject were used to create subject-specific labels for each image for valence 
(negative, neutral or positive) and arousal (high or low), see Methods. Image arousal level (high, 
low) was determined using a within-subject median split on the post-scan 9-point ratings of 
image arousal conducted across all images regardless of semantic category. Images rated below 
the median were categorized as low-arousal, and those equal to or above the median were 
categorized as high-arousal.  
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Figure S2. Cortical maps for each subject showing voxel-wise prediction accuracies for the 
Combined Semantic, Valence and Arousal (CSVA) model and the Gabor model. Voxel-wise 
prediction accuracy values for each model were z-transformed and coded using a two-
dimensional color key with blue representing Gabor model prediction accuracy and red 
representing CSVA model prediction accuracy.  For each channel, minimum color intensity 
corresponds to a z-transformed prediction accuracy of 0 and maximum color intensity 
corresponds to a z-transformed prediction accuracy of 14. In all subjects, the CSVA model 
shows superior performance to the Gabor Model in OTC regions outside of early visual cortex 
(V1-V4). As expected from prior work, the Gabor model performs well in V1-V4. White voxels 
are those where both models fit extremely well. Note: Regions of interest (ROIs) are labeled in 
white, sulci in black. RSC: Retrosplenial Complex, OPA: Occipital Place Area, LO: Lateral 
Occipital cortex, pSTS: Posterior Superior Temporal Sulcus, EBA: Extrastriate Body Area, 
OPA: Occipital Place Area, OFA: Occipital Face Area, FFA: Fusiform Face Area, PPA: 
Parahippocampal Place Area, ATFP: Anterior Temporal Face Patch. IPS: Intraparietal Sulcus, 
STS: Superior Temporal Sulcus, ITS: Inferior Temporal Sulcus, CoS: Collateral Sulcus, CS: 
Cental Sulcus, Post-CS: Postcentral Sulcus, SF: Sylvian Fissure, POS: Parieto-Occipital Sulcus  
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Figure S3. Similarity in Prediction Accuracy after Controlling for Physiological Noise. 
Respiration and pulse-oximetry measurements were obtained during fMRI data acquisition The 
PhLEM Matlab Toolbox was used to create nuisance regressors that capture low-frequency phase 
information contained in these measurements (see Supplementary Methods). Variance in the 
BOLD data explained by these nuisance regressors was estimated using linear regression. This 
variance was partialled out and the CSVA model refit to the residual BOLD timeseries. Scatter 
plots comparing the voxel-wise prediction accuracy values from the CSVA model and the CSVA 
Physio-Controlled model are shown here. Points on the x=y line show equal performance for both 
models; points above the line indicate voxels where the model on the y-axis (CSVA Physio 
Controlled) performed better, and points below the line indicate voxels where the model on the x-
axis (CSVA) performed better. It can be seen that controlling for contributions of physiological 
noise to the BOLD signal has little systematic impact on CSVA model fit. We note that when PCA 
was performed on CSVA feature weights obtained using the physio-controlled data, feature 
loadings on the top three PCs were highly correlated with those obtained without physiological 
noise correction, rs >0.99. 

Subject 1 Subject 2Subject 1

Subject 3 Subject 4

Subject 5 Subject 6
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Figure S4. Improvement in voxel-wise prediction accuracies for the CSVA model relative 
to the Valence by Arousal Model. 
Cortical maps for each subject show voxels where prediction accuracy was greater for the CSVA 
model than the Valence by Arousal model. Voxel-wise prediction accuracy values for each 
model were z-transformed and subtracted (see the Statistical Analysis section of the Methods for 
full details). Only voxels whose activity was significantly predicted by any one of the following 
three models were included in these comparisons: CSVA, Valence by Arousal and Semantic Only. 
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Figure S5. Improvement in voxel-wise prediction accuracies for the CSVA model relative 
to the Semantic Only Model. 
Cortical maps for each subject show voxels where prediction accuracy was greater for the CSVA 
model than the Semantic Only model. Voxel-wise prediction accuracy values for each model 
were z-transformed and subtracted (see the Statistical Analysis section for full details). Only 
voxels whose activity was significantly predicted by any one of the following three models were 
included in these comparisons: CSVA, Valence by Arousal and Semantic Only. 
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Figure S6. Variance partitioning results: individual maps showing voxel-wise responses 
uniquely attributable to semantic category by affective feature interactions and semantic-
emotion (SE) compound features. Variance partitioning was used to remove variance reflecting 
responses to semantic category features alone or affective features alone while leaving variance 
uniquely attributable to semantic category by affective feature interactions and SE compound 
features. (To explain this through an example, variance in a voxel time-series attributable to the 
semantic category feature ‘land-mammals’ and to the affective feature ‘high-arousal negative 
images’ were effectively removed whereas variance unique to the semantic category x affective 
feature interaction ‘high arousal negative land-mammals’ and to the SE compound feature 
‘mutilated land-mammals’ was retained; for actual partitioning methods see Supplementary 
Methods.) Voxel-wise residual prediction accuracies are shown for each subject. Many of the 
OTC voxels fit by the full CSVA model (see Figure 2 in the main manuscript) continue to show 
significant prediction accuracy scores. Note: Regions of interest (ROIs) are labeled in white, 
sulci in black. RSC: Retrosplenial Complex, OPA: Occipital Place Area, LO: Lateral Occipital 
cortex, pSTS: Posterior Superior Temporal Sulcus, EBA: Extrastriate Body Area, OFA: 
Occipital Face Area, FFA: Fusiform Face Area, PPA: Parahippocampal Place Area, ATFP: 
Anterior Temporal Face Patch. IPS: Intraparietal Sulcus, STS: Superior Temporal Sulcus, ITS: 
Inferior Temporal Sulcus, CoS: Collateral Sulcus CS: Cental Sulcus, Post-CS: Postcentral 
Sulcus, SF: Sylvian Fissure, POS: Parieto-Occipital Sulcus  
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Figure S7. Cortical tuning to stimulus affective features is greater for animate than 
inanimate stimuli.   
This figure shows the relative prediction accuracies for the Semantic with Valence by Arousal 
for Animate Stimuli (SVAA) model versus the Semantic with Valence by Arousal for Inanimate 
Stimuli model projected onto cortical maps for each subject.  The SVAA model includes features 
for each semantic category, but only stimuli belonging to animate semantic categories are also 
labeled for valence and arousal. The SVAI model includes features for each semantic category, 
but here only stimuli belonging to inanimate semantic categories are labeled for valence and 
arousal. These subtraction maps effectively reveal the extent to which baseline prediction 
accuracies achieved by modeling image semantic category are improved to a greater extent by 
including valence and arousal features for animate stimuli than for inanimate stimuli. 
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Figure S8. Results of group-level PCA on CSVA model feature weights when voxel 
selection is expanded to include all cortical voxels where the CSVA model showed a 
significant fit.  
(a) The top three PCs from this analysis explained significantly more variance than the top three 
stimulus PCs (one-tailed jackknife test, * = p = .03, the smallest possible value given the 
jackknife test used). This parallels the finding from the PCA reported in the main text where two 
additional voxel selection criteria were used (voxels within OTC only; CSVA model fit > 
Semantic Only model fit), see Fig. 4. (b) Correlation matrix shows feature loading correlations 
between the top three Group PCs from this ‘expanded’ voxel-selection PCA and the ‘restricted’ 
voxel selection PCA reported in the main text. Feature loadings for corresponding PCs are 
correlated as follows: PC1 r(142)=.96, PC2 r(142)=.96, PC3 r(142)=.95.  
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Figure S9. Results of group-level PCA on CSVA model feature weights when voxel 
selection is further restricted by exclusion of early visual cortex (EVC). 
We used retinotopic localizers to specify early visual cortex (EVC) for each participant and to 
create an OTC ROI with EVC excluded (see Supplementary Methods). We re-conducted PCA on 
CSVA model weights for voxels within this ROI. As in the CSVA PCA analysis reported in the 
main text we also excluded voxels where the CSVA model did not outperform the Semantic 
Only model. (a) The top three PCs from this analysis explained significantly more variance than 
the top three stimulus PCs (one-tailed jackknife test, * = p = .03, the smallest possible value 
given the jackknife test used). This parallels the finding reported in the main text for OTC with 
EVC included, see Fig. 4. (b) Correlation matrix shows feature loading correlations between the 
top three Group PCs from this analysis (labeled restricted voxel selection: non-EVC OTC) and 
the PCA reported in the main text (here labelled restricted voxel selection: OTC). Feature 
loadings for corresponding PCs are correlated at rs>=0.99.  
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Figure S10. PC scores from the CSVA model projected onto OTC flat maps for each 
subject. 
A principal components analysis (PCA) was conducted on CSVA model feature weights for all 
OTC voxels where CSVA model fit was significant and superior to that of the Semantic Only 
model. PC scores were calculated as the product of CSVA feature weights for a given voxel by 
feature loadings for each PC. Here, a RGB color space is used to map PC scores onto cortex (red 
= scores on PC1, green = scores on PC2, blue = scores on PC3). PC scores are thresholded at 6 
standard deviations above and below 0 with values beyond the threshold given the maximal (or 
minimal) color channel value. Consistent spatial structure of voxel-wise tuning to the top three 
group PCs is observed across subjects. Note. Areas where MRI data was not acquired are shown 
in black. Both voxels where the CSVA model did not fit significantly and those where the CSVA 
model fit significantly but did not outperform the semantic only model were excluded from the 
PCA (these voxels are shown in grey). PCA maps using CSVA model feature weights from all 
voxels where the CSVA model fit significantly are given in Fig. S11. 
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Figure S11. PC scores from PCA on CSVA model weights, across all cortical voxels where 
the CSVA model fits, projected onto cortical flat maps for each subject. 
Here, we map PC scores onto cortex using the top three PCs from PCA on CSVA model weights 
across all cortical voxels where the CSVA model fit was significant. As illustrated in fig. S8, 
when voxel selection is expanded in this manner, the top three PCs are highly correlated with 
those from the OTC analysis reported in the main text (rs>.95). As in fig. 6a and fig. S10, a RGB 
color space is used to map PC scores onto cortex (red = scores on PC1, green = scores on PC2, 
blue = scores on PC3). PC scores are thresholded at 6 standard deviations above and below 0.  
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Figure S12. PCA results for Orbital frontal cortex (OFC) and non-OFC frontal cortical 
ROIs. The orbital frontal cortex (OFC) has been especially implicated in the representation of 
stimulus affective value. Hence, we divided frontal cortex into two regions of interest: OFC and  
non-OFC frontal cortex (see Supplementary Methods for frontal ROI definition). We then 
conducted PCA on CSVA model weights across all voxels within each of these ROIs where the 
CSVA model fit significantly. (a,b) In both OFC (a) and non-OFC frontal cortex (b), only the top 
group PC explained significantly more variance than the corresponding PC from PCA conducted 
directly on the stimulus features themselves (one-tailed jackknife test, * = p =0.03, the smallest 
possible value given the jackknife test used) (c,d) Results of a leave-one-out cross validation 
analysis of the similarity in feature loadings between individual subject PCs and group PCs. The 
correlation matrices presented give the correlation of feature loadings for the top three PCs 
extracted from PCA conducted on each individual subject’s data and the top 3 PCs from the group-
level PCA conducted on the data from all remaining subjects. In both OFC (c) and the non-OFC 
frontal ROI (d), the top two group PCs show similarity to individual level PCs across participants. 
This is less true for the third PC, here correlations between the group and single subject PC 
loadings are not significant for several subjects. Note. R values above the dotted line on the heat 
bar to the far right are significant at p=0.05. Significance was calculated by permutation test (see 
Methods). 
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Figure S13. Top 3 OFC group PCs: flat-map projections and hypothetical dimension 
correlations. (a) Scores for the top three PCs from the group-level PCA conducted across voxels 
within OFC are projected onto frontal flat-maps for each subject. The OFC ROI is outlined in 
white and labeled. As in Fig. S10, a RGB color space is used to map PC scores onto cortex (red 
= scores on PC1, green = scores on PC2, blue = scores on PC3), and PC scores are thresholded at 
6 standard deviations above and below 0. Only voxels where the CSVA model fits significantly 
are shown, these are relatively scarce within OFC. In contrast to OTC, these OFC PC score maps 
reveal little consistent spatial structure in tuning to affective or semantic image information as 
captured by the CSVA model.  A small number of voxels (<3 per subject) falling outside of the 
OFC ROI due to interpolation error were greyed out for visualization purposes. (b) To aid in PC 
interpretation, we present Pearson’s r correlations for feature loadings (n=144) on the top three 
PCs with feature loadings on the theoretical dimensions of interest described in the main text 
(see Figure 5). Bootstraping was used with 5000 resamples to perform one-tailed significance 
tests of correlation coefficients. Bars show pearson correlation coefficients (r) +/- sd calculated 
from bootstrap samples for each of the top three PCs (left to right) against each theoretical 
dimension (y axis). Saturated color and * indicates correlations signifcant at p < 0.05, transparent 
colors indicate correlations that are not significant.  
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Figure S14. Top 3 non-OFC frontal group PCs: flat-map projections and hypothetical 
dimension correlations. (a) Scores for the top three PCs from the group-level PCA conducted 
across voxels within the non-OFC frontal ROI are projected onto frontal flat-maps for each 
subject. The non-OFC frontal ROI is outlined in white and labeled. As in Fig. S10, a RGB color 
space is used to map PC scores onto cortex (red = scores on PC1, green = scores on PC2, blue = 
scores on PC3), and PC scores are thresholded at 6 standard deviations above and below 0. Only 
voxels where the CSVA model fit significantly are shown. A small number of voxels (<3 per 
subject) falling outside of the non-OFC Frontal ROI due to interpolation error were greyed out 
for visualization purposes. Within the non-OFC frontal ROI, tuning to affective or semantic 
image information as captured by the CSVA model shows little consistency in spatial 
organization across subjects. (b) To aid in PC interpretation, we present Pearson’s r correlations 
for feature loadings (n=144) on the top three PCs with feature loadings on the theoretical 
dimensions of interest described in the main text (see Figure 5). Bootstraping was used with 
5000 resamples to perform one-tailed significance tests of correlation coefficients. Bars show 
pearson correlation coefficients (r) +/- sd calculated from bootstrap samples for each of the top 
three PCs (left to right) against each theoretical dimension (y axis). Saturated color and * 
indicates correlations signifcant at p < 0.05, transparent colors indicate correlations that are not 
significant. 
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Figure S15. OTC tuning ability to predict the approach behavior(s) (panels a and b) and 
avoidance behavior(s) (panels c and d) that best matches a given image. This figure 
complements Figure 9. Left: The extent to which OTC tuning to emotional images, as captured 
by CSVA model group-level PC scores (red line) predicts behavioral responses selected, across 
images (n=1440), was examined separately for approach behaviors (a) and avoidance behaviors 
(c). The percentage of out-of-sample variance in behavioral responses explained (y axis) is 
plotted against the number of PCs included as predictors in an ordinary least squares regression 
analysis. The out-of-sample variance in behavioral responses explained using PCs derived 
directly from PCA on CSVA image features, across images is given by the yellow line. Across 
all levels of dimensionality considered (nu. of PCs=1 to 21), OTC tuning to CSVA features 
predicted approach responses significantly better than components from PCA conducted directly 
on the features themselves. This superiority was less evident but present at low numbers of PCs 
(<10) for avoidance behaviors. Right: Using the analyses including only approach behaviors (b) 
or only avoidance behaviors (d), these two panels present a comparison of the out-of-sample 
variance in behavioral responses explained by PCs obtained from PCA on OTC voxel-wise 
feature weights for the CSVA model (red) versus (i) the Gabor model (pink) (ii) the Semantic 
Only model (dark blue) and (iii) the Valence by Arousal model (light blue). Note that the 
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Valence by Arousal model only includes six features, so that is also the maximum number of 
PCs that can be extracted for this model. The Gabor model performed poorly in the prediction of 
both approach and avoidance behavioral responses. In differentiating within approach behaviors 
(b), the CSVA model showed generally superior performance, followed by the Semantic Only 
model. Interestingly, the Valence by Arousal model performed best in predicting within 
avoidance behaviors (d). Note. Variance in behavioral responses explained (y axes) is calculated 
using leave one out cross validation and scaled by explainable variance (see methods). Error 
bands around each dotted line represent 95% confidence intervals. 
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Figure S16. OTC tuning prediction of behavioral responses to emotional natural stimuli: 
response categories that do not entail overt behavior removed. Here, we repeated the analysis 
reported in the main manuscript with the exception that we removed the three categories that did 
not entail an overt behavioral response, namely: be supported by, empathy for joy, empathy for 
suffering. The results parallel those shown in Figure 9. Both panels show percentage of out-of-
sample variance in behavioral responses explained across images (n=1440) plotted (y axis) 
against the number of PCs included as predictors in an ordinary least squares regression analysis 
(n=1 to 21, x axis). The error bands around each dotted line represents the 95% confidence 
interval. (a) OTC tuning to CSVA features (as captured by CSVA model group-level PC scores) 
predicted out of sample variance in behavioral responses significantly better than components 
from PCA conducted directly on the features themselves. (b) Both PCs from PCA on the 
Semantic Only (dark blue) and Valence by Arousal (light blue) model feature weights, across 
OTC voxels, outperform PCs from PCA on Gabor (pink) model weights, across OTC voxels, in 
predicting behavior. However, their maximal prediction of behavior (at n=21 and n=6 PCs 
respectively) is significantly less than that achieved by PCs from PCA on CSVA model feature 
weights across OTC using an equivalent number of components. Note. Variance in behavioral 
responses explained (y axes) is calculated using leave one out cross validation and scaled by 
explainable variance (see methods). 
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Figure S17. Prediction of behavioral responses to emotional natural stimuli: upper bounds 
and chance performance. 
This figure aims to contextualize the extent to which OTC tuning to emotional natural images, as 
captured by CSVA group-level PC scores, is able to predict the behavioral responses selected for 
each image by a novel group of participants, across images (n=1440).The percentage of out-of-
sample variance in behavioral responses explained (y axis) is plotted against the number of PCs 
included as predictors in an ordinary least squares regression analysis (dotted red line). Dotted 
lines of other color represent the performance of PCs derived in alternate fashions. As in Fig 9a, 
the performance of PCs derived directly from PCA on CSVA image features is shown by the 
yellow line and that of PCs obtained from PCA on OTC feature weights for a Gabor model is 
given by the pink line. In each case, the error band around the dotted line represents the 95% 
confidence interval. Two new lines are included. The black dotted line represents chance 
performance obtained by permutation of the behavioral responses across images. Specifically, 
the behavioral responses linked to each image were shuffled across images (i.e. the rows of the 
behavioral response matrix shown in Fig 8 were shuffled, with the images held constant). This 
was repeated 100 times. OTC CSVA PC scores for each image were calculated as normal (using 
the inner product of each image’s feature vector with each of the PC loading vectors from the 
group-level PCA of CSVA model feature weights, across OTC voxels). These PC scores were 
used to predict the permuted behavioral responses. As in the main analysis, we used leave-
one(image)-out cross-validation (LOOCV) and scaled LOOCV R2 values by the total explainable 
variance in behavioral responses. The blue dotted line gives an upper bound to prediction 
performance with increasing PCs. Here, the PCs used are from PCA on the behavioral ratings 
themselves. It can be seen that the top component explains about 20% of variance in responses, 
the top 3 about 50% and over 15 components are needed to explain close to 100% of the variance 
in behavioral responses across images.  
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Figure S18. Dissimilarity of Stimulus Representation within ROIs as revealed by Group-
Averaged Brain RDMs. The matrices shown here give group-averaged dissimilarity of stimulus 
representation by stimulus condition for the following ROIs: whole brain, early visual cortex 
(EVC), OTC, Non-EVC OTC, OFC, non-OFC Frontal. Higher dissimilarity values are 
represented by hotter (yellow-red) colors and lower dissimilarity values are represented by colder 
(blue-green) colors. A higher dissimilarity value is the result of lower Pearson’s correlation 
between the multivoxel pattern of activity of two stimulus conditions, across the given region, 
and vice versa for lower dissimilarity values. As has been reported previously (Kriegeskorte et 
al., 2008), across all ROIs, and the whole brain, an animate vs. inanimate divide can be seen, 
although it is much more prominent within the non-EVC OTC, as would be expected from 
previous findings. Stimuli are more differentiated by affective properties within the non-EVC 
OTC than in other regions but some differentiation by affective properties is still discernable 
within frontal regions (e.g. neutral low arousal inanimate stimuli show the highest dissimilarity 
to positive and negative high arousal animate stimuli) 
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Figure S19. Correlation matrixes showing full (left) and partial (right) Spearman rank 
correlations between brain RDMs (columns) and model RDMs (rows). See Table S5 for 
model RDM details. The matrix on the left gives full Spearman rank correlations, across stimuli 
(n=1440). The matrix on the right gives partial Spearman rank correlations, controlling for 
correlations between both the brain and model RDM in question with a Gabor model RDM. The 
color of each matrix cell gives the average strength of brain RDM – model RDM correlation 
across subjects (see heat map to far right).  A one-tailed t-test of Fisher transformed correlations, 
across subjects, was used to determine the significance of each brain RDM – model RDM 
correlation (an asterisk signifies p<.05, bonferroni corrected).   
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Figure S20. Correlation matrixes showing full (left) and partial (right) Spearman rank 
correlations between ventro-temporal cortical RDMs (columns) and model RDMs (rows). 
To allow more direct comparability with prior workS6, in the analyses reported here we replaced 
our OTC and non-EVC OTC ROIs with a ventro-temporal cortical (VTC) ROI defined following 
S6 as well as a corresponding ROI excluding early visual cortex (non-EVC VTC). As in Figure 
S19, the matrix on the left gives full Spearman rank correlations (across estimation images). The 
matrix on the right gives partial Spearman rank correlations, controlling for correlations between 
both the brain and model RDM in question with a Gabor model RDM. The color of each matrix 
cell gives the average strength of brain RDM – model RDM correlation across subjects (see heat 
map to far right).  A one-tailed t-test of Fisher transformed correlations, across subjects, was 
used to determine the significance of each brain RDM – model RDM correlation (an asterisk 
signifies p<.05, bonferroni corrected).  
 
 
 
 
 
 


