Circulating KRAS G12D but not G12V is associated with survival in

metastatic pancreatic ductal adenocarcinoma

Supplementary Information

Table of Contents

Supplementary Methods	2
Supplementary Table 1	4
Supplementary Figure 1	5
Supplementary Table 2	6
Supplementary Table 3	7
Supplementary Figure 2	8
Supplementary Figure 4	10
Supplementary Figure 5	11
Supplementary Figure 6	12
Supplementary Table 4	13
Supplementary Figure 7	14
Supplementary Figure 8	15
Supplementary Table 5	16
Supplementary Figure 9	17
Supplementary Figure 10	18
Supplementary Figure 11	19
Supplementary Table 6	20
Supplementary Figure 12	21

Supplementary Methods

For the PRINCE trial, peripheral blood was collected into Streck Cell-Free DNA Blood Collection Tubes tubes (Streck #0230470). For the SOC cohort, specimens were collected in K2EDTA Blood Collection Tubes (EMSCO Fisher #0265732) or Streck Cell-Free DNA Blood Collection tubes. K2EDTA collected specimens were processed to plasma within 3 hours of collection while Streck collected specimens were processed within 7 days. Blood processing occurred at room temperature with an initial centrifugation at 1600 g for 10 minutes (centrifuge brake-off). The upper, plasma, layer was transferred to a new tube and centrifuged again (one or two more times) at 3000 g for 10 minutes (EDTA) or 4122 g for 15 minutes (Streck), again with centrifuge brake-off. The final plasma layer was isolated and banked in 1 mL aliquots in 2mL Sarstedt tubes (Sarstedt #72.694.416) at -80 C.

Circulating cell-free DNA (ccfDNA) extraction using the QIAmp Circulating Nucleic Acid Kit (Qiagen #55114) was performed according to the manufacturer's protocol with two modifications: the proteinase K digestion was extended to 1 hour and final elution was performed twice with 30 μ L of Buffer AVE (total 60 μ L). Extraction with the QIAmp MinElute ccfDNA Mini Kit (Qiagen #55204) was also performed according to the manufacturer's instructions with a single modification: final elution in 30 μ L of ultraclean water run through the column twice. Samples were stored at 4 C prior to quantification.

Quantitative PCR for a 115 bp amplicon of human ALU repeat element was used to determine ccfDNA concentration (primers: forward 5'-CCTGAGGTCAGGAGTTCGAG-3' and reverse 5'-CCCGAGTAGCTGGGATTACA-3')¹. Samples were diluted 1:10 with nuclease free water and a standard curve was generated by serial dilution of a commercial DNA standard (Promega G3041). Power SYBR Green PCR Master Mix (Applied Biosystems #4367659) was used according to the manufacturer's instructions on a ViiA 7 Real-Time PCR System (Applied Biosystems). Results were analyzed using QuantStudio Real-Time PCR Software (Applied Biosystems).

Prior to droplet digital PCR (ddPCR), ccfDNA was pre-amplified for the *KRAS* G12 locus (primers: forward 5'- AGGCCTGCTGAAAATGACTGAATAT-3' and reverse 5'-GCTGTATCGTCAAGGCACTCTT-3'). This PCR was performed using the Q5 Hot Start Hi-Fidelity Master Mix (NEB #M0494), and 0.05 μ M primers with either 15 μ l of QIAmp Circulating Nucleic Acid Kit ccfDNA or up to 24 μ l of QIAmp MinElute ccfDNA Mini Kit ccfDNA (with a maximum of 30 ng). PCR was performed in the Veriti 96 Well Thermal Cycler (Applied Biosystems) with the following program: 98 C for 3 minutes, 9 cycles of 98 C for 10 seconds, 63 C 3 minutes, and 72 C 30 seconds, followed by 72 C for 2 minutes². Pre-amplified material was diluted 1:4 with TE buffer and stored at 4 C in the short-term and -20 C in the long-term storage.

For RainDrop ddPCR, initial characterization was carried out with a multiplex reaction (using the same primers as pre-amplification above) and probes for *KRAS* G12WT (VIC-TTGGAGCTGGTGGCGT-MGBNFQ), G12D (FAM-TGGAGCTGATGGCGT-MGBNFQ), G12V (FAM-GAGCTGTTGGCGT-MGBNFQ), and G12R (FAM-TTGGAGCTCGTGGCGT-MGBNFQ). Reactions contained 2x TaqMan Genotyping Master Mix (Applied Biosystems #4371355), 25x Droplet Stabilizer (RainDance #30-07026), 200nM primers, G12WT, G12D, and G12V probes at 100 nM, G12R probe at 50 nM and 10 µl of pre-amplified ccfDNA in a total of 30 µl. Final quantification of variant allele fraction (VAF) was carried out in a duplex reaction with the above conditions but only two probes (G12WT and G12Mutant of interest) at 100 nM each. Droplets were generated from 25 µl of reaction mix on the RainDrop Source instrument (RainDance Technologies, Inc.). Next, PCR was performed in a GeneTouch PCR Thermal Cycler (Bioer Technology Co., Ltd.); 0.6 C per second ramp rate with the following cycling conditions, 95 C for 10 minutes, 45 cycles of 95 C for 15

seconds and 60 C for 1 minute, 10 minutes at 5 C, and held at 4 C. Droplets were read on the RainDrop Sense instrument (RainDance Technologies, Inc.) and data analyzed in RainDrop Analyst software (RainDance Technologies, Inc.). Droplet counts were adjusted to copy counts using the Poison correction and background adjusted based on 20 healthy control samples³.

For QX200 platform (Bio-Rad Laboratories, Inc) ddPCR, initial characterization with *KRAS G12/G13* Screening Kit (Bio-Rad, #1863506) was carried out according to manufacturer's instruction utilizing the maximum amount of pre-amplified material that resulted in less than 100,000 copies measured (to not overload the assay). Subsequent analysis with individual variant assays were carried out similarly (G12A, dHsaMDV2510586; G12C, dHsaMDV2510584; G12D, dHsaMDV2510596; G12R, dHsaMDV2510590; G12S, dHsaMDV2510588; G12V, dHsaMDV2510592; G13D, dHsaMDV2510598).

Supplementary Methods References

- 1. Fawzy, A., Sweify, K.M., El-Fayoumy, H.M. & Nofal, N. Quantitative analysis of plasma cell-free DNA and its DNA integrity in patients with metastatic prostate cancer using ALU sequence. *J Egypt Natl Canc Inst* **28**, 235-242 (2016).
- Jackson, J.B., *et al.* Multiplex Preamplification of Serum DNA to Facilitate Reliable Detection of Extremely Rare Cancer Mutations in Circulating DNA by Digital PCR. *J Mol Diagn* 18, 235-243 (2016).
- 3. Milbury, C.A., *et al.* Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. *Biomol Detect Quantif* **1**, 8-22 (2014).

Patient#	Prior	Tissue KRAS	Baseline Plasma	Patient#	Prior	Tissue KRAS	Baseline Plasma
	Treatment	Variant	ctKRAS Variant		Treatment	Variant	ctKRAS Variant
PRINCE001	Yes	No Sample	No Sample	PRINCE066	No	G12V	Inconclusive
PRINCE002	Yes	061H	No Sample	PRINCE067	Yes	No Sample	G12D
PRINCE003	Ves	G12D	G12D	PRINCE068	No	G12V	G12V
PRINCE004	No	G12D	No Samplo		Voc	G12V	G12V
	No	G12N	Inconclusivo		No	No Samplo	G120
PRINCEOUS	NO	G12V		PRINCE070	No	Not Detected	No Sampla
PRINCEOUD	res			PRINCEU/1	res	NOT Detected	
PRINCE007	NO	No Sample	Inconclusive	PRINCE072	NO	G12D	G12D
PRINCE008	Yes	G12V	G12V	PRINCE073	No	G12R	G12R
PRINCE009	Yes	G12V	G12V	PRINCE074	Yes	No Sample	Inconclusive
PRINCE010	No	G12V	G12V	PRINCE075	No	Q61H	G12S
PRINCE011	Yes	Not Detected	Inconclusive	PRINCE076	Yes	Not Detected	Inconclusive
PRINCE012	Yes	G12V	G12V	PRINCE077	Yes	No Sample	G12D
PRINCE013	No	No Sample	G12D	PRINCE078	No	No Sample	G12D
PRINCE014	Yes	G12V	G12V	PRINCE079	Yes	G12D	G12D
PRINCE015	No	G12D	G12D	PRINCE080	Yes	G12D	G12D
PRINCE016	No	G12D	G12D	PRINCE081	No	Not Detected	G12D
PRINCE017	No	No Sample	G12D	PRINCE082	No	G12D	G12D
PRINCE018	No	G12D	G12D	PRINCE083	No	Not Detected	Conclusive Negative
PRINCE010	Voc	No Samplo	G12D	DRINCE084	No	Not Detected	No Samplo
DRINCE019	No		6120	DRINCE004	No	Not Dotoctod	
PRINCE020	NO	6120	GIZD	PRINCE085	No	Not Detected	G12D
PRINCEU21	res	G12U		PRINCEU86		No Sample	Conclusive Negative
PRINCE022	INO 	GIZV	G12V	PRINCE087	INO	NO Sample	G12V
PRINCE023	No	Not Detected	No Sample	PRINCE088	No	G12R	G12R
PRINCE024	Yes	No Sample	Inconclusive	PRINCE089	No	Not Detected	Inconclusive
PRINCE025	No	G12V	G12V	PRINCE090	No	Q61H	Inconclusive
PRINCE026	No	G12D	Inconclusive	PRINCE091	No	G12V	G12V
PRINCE027	No	G12V	G12V	PRINCE092	No	G12D	G12D
PRINCE028	Yes	Not Detected	Conclusive Negative	PRINCE093	No	No Sample	No Sample
PRINCE029	Yes	G12D	Inconclusive	PRINCE094	No	No Sample	G12D
PRINCE030	No	Not Detected	Inconclusive	PRINCE095	No	Not Detected	No Sample
PRINCE031	No	No Sample	G12V	PRINCE096	No	No Sample	Inconclusive
PRINCE032	No	G12D	G12D	PRINCE097	No	No Sample	G12D
PRINCE033	Ves	G12R	Inconclusive	PRINCE098	No	G12V	No Sample
PRINCE034	No	Not Detected	Inconclusive	PRINCEOOO	No	G120	G12D
PPINCE025	No	G12P	G12P		No	No Samplo	G120
	No	G12N	G12K	PRINCE100	No	C12V	Inconclucivo
PRINCE030	NO	GIZV	G12V	PRINCE101	No	GIZV	C12D
PRINCE037	NO	NO Sample	GIZD	PRINCE102		Not Detected	GIZR
PRINCE038	NO	G12V	G12V	PRINCE103	NO	No Sample	No Sample
PRINCE039	No	G12D	G12D	PRINCE104	No	G12D	G12D
PRINCE040	No	G12R	G12R	PRINCE105	No	No Sample	No Sample
PRINCE041	Yes	G12D	G12D	PRINCE106	No	G12D	G12D+G12V
PRINCE042	No	G12D	G12D	PRINCE107	Yes	No Sample	G12D+G12V
PRINCE043	No	G12D	No Sample	PRINCE108	No	No Sample	G12V
PRINCE044	No	G12D	G12D	PRINCE109	No	G12V	G12V
PRINCE045	No	Not Detected	G12V	PRINCE110	No	G12D	G12D
PRINCE046	No	Not Detected	No Sample	PRINCE111	No	No Sample	G12D
PRINCE047	No	G12R	G12R	PRINCE112	No	No Sample	G12V
PRINCE048	No	G12V	G12V	PRINCE113	No	No Sample	G12D+G12V
PRINCE049	No	Not Detected	Inconclusive	PRINCE114	No	Not Detected	G12D
PRINCE050	No	No Sample	G12D	PRINCE115	No	No Sample	G12V
PRINCE051	No	G12D	G12D	PRINCE116	No	G12V	G12V
PRINCE052	No	G12U	G12D G12V	DRINCE117	No	Not Dotoctod	G12V
PRINCE052	No	Na Samala	G12V	PRINCE117	No	Not Detected	
PRINCEU53			G12D	PRINCE118		No Sample	G12D+G12V
PRINCE054	INO NI	6120	G12D	PRINCE119		INO Sample	
PRINCE055	NO	G12V	GIZV	PRINCE120	Yes	G12R	inconclusive
PRINCE056	No	G12V	G12V	PRINCE121	Yes	Not Detected	G12V
PRINCE057	No	No Sample	G12D	PRINCE122	No	No Sample	Inconclusive
PRINCE058	No	G12V	G12V	PRINCE123	Yes	Q61H	Inconclusive
PRINCE059	Yes	No Sample	G12D	PRINCE124	No	No Sample	Inconclusive
PRINCE060	No	No Sample	No Sample	PRINCE125	Yes	Q61R	Inconclusive
PRINCE061	No	G12D	G12D	PRINCE126	No	G12D	G12D
PRINCE062	No	No Sample	G12R	PRINCE127	Yes	G12D	G12D
PRINCE063	Yes	Not Detected	Inconclusive	PRINCF128	Yes	G12V	G12V
PRINCE064	Yes	G12D	G12D	PRINCE120	Yes	Not Detected	Inconclusive
PRINCEORE	No	Not Detected	Inconclusive			. Tot Detected	
			IIII CUICIUSIVE				

Supplementary Table 1. Individual PRINCE trial cohort patient data regarding prior treatment history and KRAS variant detection in tissue and baseline plasma.

Supplementary Figure 1. Prior Treatment and ctKRAS VAF Levels for PRINCE patients. Among 86 PRINCE trial patients with a baseline plasma ctKRAS mutation detected, VAF levels were significantly higher for patients without prior treatment (n=67) than for those with prior treatment (n=19; Mann-Whitney test, (two-sided). Source data are provided as a Source Data file.

	PRINCE	SOC	P-value
Δαρ	(11-05)	(10-05)	
Median (Pange)	62 (35-79)	67 (38-87)	0 0318*
	02 (55-75)	20 (AE%)	0.0510
	40(33/0)	30 (4370) 17 (EE0/)	0.2169†
202	57 (45%)	47 (55%)	
Sex	25 (420/)	27 (110/)	
Female	35 (42%)	37 (44%)	0.8773†
Male	48 (58%)	48 (56%)	
Race			
Asian	6 (7%)	1 (1%)	
Black or	3 (4%)	5 (6%)	
African American	- (-)	- ()	0.1089‡
Caucasian	72 (87%)	73 (86%)	
Other	2 (2%)	6 (7%)	
Ethnicity			
Hispanic or	1 (1%)	0 (0%)	
Latino	1 (170)	0 (070)	0 5520+
Not Hispanic	82 (00%)	85 (100%)	0.55251
or Latino	82 (9978)	00/00/00/00	
ECOG PS			
0	36 (43%)	29 (34%)	
1	47 (57%)	41 (48%)	0.0011+
2	0 (0%)	13 (15%)	0.0011+
3	0 (0%)	2 (2%)	
ctKRAS Variant			
G12D	33 (40%)	34 (40%)	
G12V	23 (28%)	20 (24%)	
G12R	7 (8%)	13 (15%)	0.6149‡
Other	4 (5%)	2 (2%)	
Negative	16 (19%)	16 (19%)	
*Mann-Whitney Test	t (two-sideo	d), †Fisher's	Exact Test
(two-sided), ‡(Chi-square ⁻	Test (two-sid	led)

Supplementary Table 2. Characteristics of patients with baseline plasma analyzed in the PRINCE and standard of care (SOC) cohorts. ECOG PS refers to Eastern Cooperative Oncology Group Performance Status scale. All PRINCE patients received chemoimmunotherapy as part of a clinical trial. Among the 85 SOC patients, 36 received gemcitabine-based therapy (including gemcitabine alone, gemcitabine/nab-paclitaxel, and gemcitabine/cisplatin) and 49 patients received folfirinox-based therapy (including folfirinox, FOLFOX, mFolfirinox, mFOLFOX, and mFOLFOX 6). Source data are provided as a Source Data file.

PRINCE patients

	G12D Bearing tumor	G12V Bearing tumor	P-value		G12D Bearing tumor	G12V Bearing tumor	P-value
	(N=33)	(N=23)			(N=34)	(N=20)	
Age				Age			
Median (Range)	62 (44-77)	63 (43-79)	0.8395*	Median (Range)	65 (38-87)	64 (46-80)	0.5051*
<65	20 (61%)	12 (52%)	0 5002+	<65	17 (50%)	10 (50%)	>0 0000+
>65	13 (39%)	11 (48%)	0.59051	>65	17 (50%)	10 (50%)	20.99991
Sex				Sex			
Female	18 (55%)	10 (43%)	0 5 9 7 5 +	Female	13 (38%)	10 (50%)	0 5 6 0 4 +
Male	15 (45%)	13 (57%)	0.58751	Male	21 (62%)	10 (50%)	0.50941
Race				Race			
Asian	2 (6%)	3 (13%)		Asian	0 (0%)	0 (0%)	
Black or African American	2 (6%)	1 (4%)	0.6511‡	Black or African American	2 (6%)	2 (10%)	0.6426‡
Caucasian	29 (88%)	19 (83%)		Caucasian	29 (85%)	15 (75%)	
Other	0 (0%)	0 (0%)		Other	3 (9%)	3 (15%)	
Ethnicity				Ethnicity			
Hispanic or Latino	0 (0%)	1 (4%)	0.4107†	Hispanic or Latino	0 (0%)	0 (0%)	<u>>0 0000+</u>
Not Hispanic or Latino	33 (100%)	22 (96%)	0.4107	Not Hispanic or Latino	34 (100%)	20 (100%)	20.5555
ECOG PS				ECOG PS			
0	15 (45%)	10 (43%)		0	9 (26%)	2 (10%)	
1	18 (55%)	13 (57%)	<u>>0 0000</u> +	1	18 (53%)	15 (75%)	0 2448+
2	0 (0%)	0 (0%)	20.5555	2	6 (18%)	3 (15%)	0.3440+
3	0 (0%)	0 (0%)		3	1 (3%)	0 (0%)	
*Mann-Whitney T	est (two-sid	led), †Fishe	r's Exact	*Mann-Whitney T	est (two-sid	ded), †Fishe	r's Exact
Test (two-sided),	‡Chi-squar	<u>e Test (two</u>	-sided)	Test (two-sided),	‡Chi-squar	re Test (two	-sided)

Supplementary Table 3. Of 67 therapy-naïve PRINCE patients (left) who had a *KRAS* variant detected in tissue or plasma, 33 had a *KRAS* G12D and 23 had G12V. Of 54 therapy-naïve SOC patients (right) who had a baseline *KRAS* variant, 34 had *KRAS* G12D and 20 had G12V. All patients shown in these tables are therapy-naïve. ECOG PS refers to Eastern Cooperative Oncology Group Performance Status scale. Source data are provided as a Source Data file.

Supplementary Figure 2. Comparison of clinical variable values for G12D- vs G12V-bearing tumors for therapy-naïve patients in PRINCE cohort. Shown is analysis of 33 patients with a G12D-bearing tumor and 23 patients with G12V for all variables except CA19-9, for which there were 26 patients with G12D and 21 patients with G12V. A red asterisk * indicates significance at 0.05. Mann-Whitney test (two-sided) used for all variables other than location of primary tumor, Chi-square test (two-sided). Dotted horizontal lines for clinical laboratory values shown in C indicate upper and lower limits of normal clinical values. Green denotes ctKRAS G12D and dark grey is G12V. Abbreviation ALT (Alanine Transaminase), AST (Aspartate Transaminase), and BUN (Blood Urea Nitrogen) are used. Source data are provided as a Source Data file.

C. Clinical laboratory values

0.0555

0.8520

0.0214

0.0393

0.6103

-1,11

G12V

Creatinine 6 Males)

0.1266

G12D G12V

0

0

0.8469 -

G12D G12V

ŵ

<u>ين</u>:

B. Count of Lesions 0.7951

D. Location of primary tumor

of Lesions 10 all lesions 5 Count o -G12D G12V 0.8512 Count of Lesions all metastases 5 -•• 0 G12D G12V of Lesions pancreas lesions 0.4659 2 1 Count

n G12D G12V

C. Clinical laboratory values

Supplementary Figure 3. Comparison of clinical variable values for G12D- vs G12V-bearing tumors for

patients in SOC cohort. Not all variables could be collected for all patients. For imaging analysis shown in A and B, measures of pancreatic lesions are shown for 33 patients with a G12D-bearing tumor and for 18 with G12V, all other imaging variables were analyzed for 30 patients with a G12D-bearing tumor and for 12 with G12V. Shown in C, D, and E is analysis of CA19-9 is shown for 31 G12D patients and 19 G12V patients, the remaining variables are shown for 34 patients with a G12D-bearing tumor and for 20 patients with G12V. Mann-Whitney test (two-sided) used for all variables other than location of primary tumor, for which Chi-square test (two-sided) was used. Dotted horizontal lines for clinical laboratory values shown in C indicate upper and lower limits of normal clinical values. Abbreviation ALT (Alanine Transaminase), AST (Aspartate Transaminase), and BUN (Blood Urea Nitrogen) are used. Green denotes ctKRAS G12D and dark grey is G12V. Source data are provided as a Source Data file.

Supplementary Figure 4. Association of tumor *KRAS* mutation status (G12D- vs G12V-bearing tumors) with overall survival (A-C) and progression-free survival (D-F) for therapy-naive patients enrolled in PRINCE trial or who received standard of care (SOC) therapy, or the pooled therapy-naïve PRINCE + SOC cohorts. Cox regression hazard ratios (HR) and 95% confidence intervals (CI) are shown with log-rank p-values. Source data are provided as a Source Data file.

Supplementary Figure 5. Baseline plasma ctKRAS variant allele fraction (VAF) dichotomized at the median and associated with survival for therapy-naïve PRINCE patients (A and D, n=67), SOC patients (B and E, n=69) or combined therapy naïve PRINCE and SOC patients (C and F, N =136) with any ctKRAS variant. Overall survival shown in A, B and C, progression-free survival shown in D, E, and F. Cox regression hazard ratios (HR) and 95% confidence intervals (CI) are shown with log-rank p-values. Source data are provided as a Source Data file.

C. Combined PRINCE and SOC Patients

Supplementary Figure 6. VAF levels do not differ significantly in therapy-naïve patients between ctKRAS G12D and ctKRAS G12V (Mann-Whitney test, two-sided) in the A) PRINCE (n=33, and 23, respectively) or B) standard of care (SOC, n=34, and 20, respectively) cohorts. Shown in C) is the pooled therapy-naïve PRINCE and SOC cohort. (n=67, and 43, respectively). Green denotes ctKRAS G12D and dark gray is G12V. Source data are provided as a Source Data file.

			PRINCE Patients										
			G12D (n=33)	G12V (n=23)								
		Univariate	9	Multivaria	te	Univariate	9	Multivariate					
		HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value				
	logVAF	1.59 [1.01-2.51]	0.046	1.98 [1.10-3.56]	0.022	0.92 [0.54-1.57]	0.765	1.10 [0.57-2.11]	0.781				
	Age	0.97 [0.92-1.01]	0.145	0.98 [0.94-1.03]	0.534	1.05 [1.00-1.11]	0.072	1.03 [0.96-1.10]	0.404				
OS	Sex	1.95 [0.89-4.27]	0.093	2.42 [0.99-5.93]	0.053	0.38 [0.14-1.02]	0.056	0.51 [0.14-1.78]	0.290				
	ECOG PS ¹	1.33 [0.61-2.90]	0.481	1.21 [0.55-2.68]	0.631	1.71 [0.66-4.41]	0.270	1.67 [0.57-4.95]	0.352				
	logSOD ²	1.43 [0.27-7.70]	0.676	0.23 [0.03-1.94]	0.176	1.12 [0.03-41.68]	0.952	0.74 [0.01-56.54]	0.891				
	logVAF	1.74 [1.11-2.73]	0.017	2.14 [1.22-3.76]	0.008	1.00 [0.61-1.64]	0.991	1.24 [0.68-2.26]	0.489				
	Age	0.95 [0.91-1.00]	0.058	0.97 [0.92-1.02]	0.245	1.05 [0.99-1.12]	0.081	1.03 [0.95-1.10]	0.492				
PFS	Sex	2.01 [0.95-4.26]	0.069	2.40 [1.02-5.62]	0.045	0.46 [0.18-1.13]	0.090	0.52 [0.16-1.62]	0.258				
	ECOG PS ¹	1.14 [0.55-2.39]	0.723	1.08 [0.51-2.30]	0.842	1.75 [0.70-4.37]	0.232	1.80 [0.60-5.36]	0.294				
	logSOD ²	1.66 [0.31-8.80]	0.552	0.21 [0.03-1.63]	0.135	1.39 [0.04-49.62]	0.858	0.76 [0.02-30.28]	0.884				

		SOC Patients											
			G12D ((n=31)		G12V	(n=19)						
		Univariate	5	Multivaria	te	Univariate	ē	Multivariate					
		HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value				
	logVAF	2.03 [1.31-3.15]	0.001	2.43 [1.42-4.16]	0.001	1.41 [0.70-2.86]	0.336	2.08 [0.92-4.71]	0.078				
	Age	1.02 [0.98-1.06]	0.243	1.06 [1.01-1.11]	0.011	1.00 [0.95-1.06]	0.855	1.01 [0.94-1.08]	0.876				
OS	Sex	1.62 [0.75-3.50]	0.220	3.09 [1.28-7.45]	0.012	0.60 [0.23-1.58]	0.299	0.33 [0.08-1.41]	0.134				
	ECOG PS ¹	2.11 [1.30-3.43]	0.003	2.43 [1.33-4.44]	0.004	3.16 [1.12-8.87]	0.029	4.26 [1.12-16.18]	0.033				
	logCA19-9	1.27 [0.94-1.72]	0.114	0.88 [0.63-1.23]	0.458	0.86 [0.44-1.68]	0.656	1.36 [0.52-3.54]	0.532				
	logVAF	1.58 [1.08-2.32]	0.020	1.73 [1.14-2.63]	0.010	1.90 [0.99-3.64]	0.054	1.64 [0.80-3.38]	0.179				
	Age	1.03 [0.99-1.07]	0.154	1.05 [1.01-1.10]	0.025	0.97 [0.92-1.03]	0.336	0.97 [0.90-1.05]	0.414				
PFS	Sex	2.00 [0.86-4.65]	0.106	3.18 [1.22-8.28]	0.018	1.30 [0.51-3.34]	0.581	1.71 [0.46-6.42]	0.427				
	ECOG PS ¹	1.46 [0.93-2.30]	0.097	1.28 [0.78-2.11]	0.327	2.48 [0.57-10.79]	0.226	2.51 [0.50-12.55]	0.261				
	logCA19-9	1.13 [0.82-1.56]	0.439	0.89 [0.63-1.28]	0.534	1.01 [0.53-1.93]	0.981	0.78 [0.33-1.83]	0.570				

							Cor	nbine	d PRINC	E and	SOC	Patient	<u>:s</u>				
		G12D (n=53)								G12V (n=32)							
		Univariate			j	Multivariate			Univariate			Multivariate		e			
		HR [9	95% CI]		p-value	HR [9	95% C]	p-value	HR [9	95% C	I]	p-value	HR [9	5% CI]	p-value
	logVAF	1.77	[1.27-2	2.48]	0.001	2.27	[1.44-	·3.60]	0.0002	1.06	[0.66-	·1.69]	0.810	1.41	[0.79-2	2.53]	0.245
	Age	1.00	[0.97-1	.03]	0.998	1.03	[0.99-	1.07]	0.116	1.05	[1.00-	·1.09]	0.053	1.03	[0.97-:	1.09]	0.323
05	Sex	1.97	[1.08-3	3.57]	0.026	3.31	[1.53-	7.17]	0.002	0.42	[0.20	-0.92]	0.029	0.50	[0.20-2	1.24]	0.135
US	ECOG PS ¹	1.92	[1.23-2	2.97]	0.004	1.70	[1.05-	2.74]	0.030	1.89	[1.00	-3.54]	0.049	2.28	[0.98-!	5.30]	0.055
	logSOD ²	3.44	[1.07-1	1.04]	0.038	0.43	[0.09-	2.13]	0.303	2.95	[0.23	-37.35]	0.404	0.23	[0.01-!	5.30]	0.355
	logCA19-9	1.21	[0.97-1	52]	0.092	1.04	[0.84-	1.29]	0.717	0.80	[0.57	-1.13]	0.206	0.92	[0.61-1	1.39]	0.690
	logVAF	1.65	[1.18-2	2.30]	0.003	2.05	[1.35-	3.10]	0.001	0.96	[0.64	-1.45]	0.854	1.25	[0.77-2	2.03]	0.357
	Age	1.00	[0.97-1	.03]	0.920	1.02	[0.99-	1.06]	0.253	1.05	[1.00-	·1.10]	0.069	1.03	[0.98-:	1.09]	0.274
ргс	Sex	2.30	[1.26-4	.19]	0.006	3.27	[1.58-	6.78]	0.001	0.59	[0.28-	·1.24]	0.165	1.10	[0.42-2	2.88]	0.847
PFS	ECOG PS ¹	1.40	[0.92-2	2.14]	0.120	1.25	[0.78-	2.00]	0.346	2.17	[1.05	4.49]	0.037	1.98	[0.89-4	4.41]	0.096
	logSOD ²	2.50	[0.81-7	'.77]	0.112	0.45	[0.10-	1.95]	0.285	2.42	[0.18-	·32.77]	0.506	1.02	[0.06-:	17.89]	0.992
	logCA19-9	1.15	[0.92-1	42]	0.218	1.00	[0.81-	1.24]	0.972	0.70	[0.50	-0.98]	0.038	0.66	[0.42-2	1.04]	0.071
	¹ ECOG PS = Eastern Cooperative Oncology Group Performance Status																
					$^{2}SOD = S$	Sum o	of dian	neters	for all t	arget	lesior	าร					

Supplementary Table 4. Cox analysis for baseline plasma log ctKRAS variant allele fraction (VAF) as a continuous variable for therapy-naïve PRINCE (top table), standard of care (SOC, middle table), and combined therapy-naïve PRINCE and SOC (bottom table), with results for ctKRAS G12D on left and for G12V on right. CA19-9 excluded from PRINCE and sum of diameters (SOD) excluded from SOC cohort due to incomplete data. Of the 33 and 31 patients analyzed in the PRINCE and SOC tables respectively for G12D, only the 53 patients with both CA19-9 and SOD values available were included in combined cohort (bottom table). Significant values (without adjustment for multiple testing) indicated by bolded red text. Source data are provided as a Source Data file.

Combined PRINCE and SOC patients

Supplementary Figure 7. Survival association for baseline ctKRAS variant allele fraction (VAF) by variant for therapy-naïve combined PRINCE and standard of care(SOC) patients. Shown are the Kaplan-Meier curves for baseline VAF dichotomized at the median for overall survival (top, A and B) and progression-free survival (bottom, C and D) for patients with G12D- (left, A and C) or G12V-bearing tumors (right, B and D). Cox regression hazard ratios (HR) and 95% confidence intervals (CI) are shown with log-rank p-values. Source data are provided as a Source Data file.

Supplementary Figure 8. Estimated cubic spline functions relating log ctKRAS variant allele fraction (VAF) to results of the Cox models. Results for overall survival (OS) and progression-free survival (PFS) shown for PRINCE (top two rows), standard of care (SOC, middle two rows), and combined PRINCE and SOC patients (bottom two rows). The left column shows results for ctKRAS G12D only, and the right column for ctKRAS G12V only. Red box indicates y-axis maximum for G12V is different than for G12D for the SOC Overall Survival functions. Source data are provided as a Source Data file.

Survival	LoD	G12D	G12V
	0.04%	HR 2.95 (95% CI 1.67-5.20) p=0.0001	HR 1.38 (95% CI 0.74-2.59) p=0.3083
OS	0.10%	HR 2.62 (95% CI 1.47-4.66) p=0.0007	HR 1.38 (95% CI 0.74-2.59) p=0.3083
	0.25%	HR 1.98 (95% CI 1.08-3.62) p=0.0244	HR 1.31 (95% CI 0.68-2.53) p=0.4203
	0.04%	HR 2.91 (95% CI 1.63-5.17) p=0.0002	HR 0.82 (95% CI 0.45-1.53) p=0.5355
PFS	0.10%	HR 2.86 (95% CI 1.58-5.20) p=0.0003	HR 0.82 (95% CI 0.45-1.53) p=0.5355
	0.25%	HR 1.80 (95% CI 0.97-3.34) p=0.058	HR 0.66 (95% CI 0.34-1.28) p=0.209

100 = 0.04%			G12D	N=53	G12V N=32				
	D – 0.04%	Univariate	9	Multivariat	e	Univariate	5	Multivariate	
	Variable	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value
	logVAF	1.77 [1.27-2.48]	0.001	2.27 [1.44-3.60]	0.000	1.06 [0.66-1.69]	0.810	1.41 [0.79-2.53]	0.245
	Age	1.00 [0.97-1.03]	0.998	1.03 [0.99-1.07]	0.116	1.05 [1.00-1.09]	0.053	1.03 [0.97-1.09]	0.323
0	Sex	1.97 [1.08-3.57]	0.026	3.31 [1.53-7.17]	0.002	0.42 [0.20-0.92]	0.029	0.50 [0.20-1.24]	0.135
03	ECOGPS ¹	1.92 [1.23-2.97]	0.004	1.70 [1.05-2.74]	0.030	1.89 [1.00-3.54]	0.049	2.28 [0.98-5.30]	0.055
	logSOD ²	3.44 [1.07-11.04]	0.038	0.43 [0.09-2.13]	0.303	2.95 [0.23-37.35]	0.404	0.23 [0.01-5.30]	0.355
	logCA19-9	1.21 [0.97-1.52]	0.092	1.04 [0.84-1.29]	0.717	0.80 [0.57-1.13]	0.206	0.92 [0.61-1.39]	0.690
	logVAF	1.65 [1.18-2.30]	0.003	2.05 [1.35-3.10]	0.001	0.96 [0.64-1.45]	0.854	1.25 [0.77-2.03]	0.357
	Age	1.00 [0.97-1.03]	0.920	1.02 [0.99-1.06]	0.253	1.05 [1.00-1.10]	0.069	1.03 [0.98-1.09]	0.274
DEC	Sex	2.30 [1.26-4.19]	0.006	3.27 [1.58-6.78]	0.001	0.59 [0.28-1.24]	0.165	1.10 [0.42-2.88]	0.847
1953	ECOGPS ¹	1.40 [0.92-2.14]	0.120	1.25 [0.78-2.00]	0.346	2.17 [1.05-4.49]	0.037	1.98 [0.89-4.41]	0.096
	logSOD ²	2.50 [0.81-7.77]	0.112	0.45 [0.10-1.95]	0.285	2.42 [0.18-32.77]	0.506	1.02 [0.06-17.89]	0.992
	logCA19-9	1.15 [0.92-1.42]	0.218	1.00 [0.81-1.24]	0.972	0.70 [0.50-0.98]	0.038	0.66 [0.42-1.04]	0.071

10D = 0.10%			G12D	N=50	G12V N=32				
LOI	D = 0.10%	Univariate	ē	Multivariat	e	Univariate	9	Multivariate	
	Variable	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value	HR [95% CI]	p-value
	logVAF	1.71 [1.18-2.47]	0.004	2.22 [1.38-3.58]	0.001	1.06 [0.66-1.69]	0.810	1.41 [0.79-2.53]	0.245
	Age	1.00 [0.97-1.03]	0.939	1.03 [0.99-1.07]	0.135	1.05 [1.00-1.09]	0.053	1.03 [0.97-1.09]	0.323
05	Sex	1.99 [1.08-3.67]	0.028	3.31 [1.50-7.30]	0.003	0.42 [0.20-0.92]	0.029	0.50 [0.20-1.24]	0.135
US	ECOGPS ¹	1.77 [1.11-2.81]	0.016	1.70 [1.03-2.79]	0.037	1.89 [1.00-3.54]	0.049	2.28 [0.98-5.30]	0.055
	logSOD ²	2.67 [0.77-9.20]	0.121	0.48 [0.10-2.40]	0.375	2.95 [0.23-37.35]	0.404	0.23 [0.01-5.30]	0.355
	logCA19-9	1.15 [0.92-1.44]	0.231	1.03 [0.82-1.28]	0.825	0.80 [0.57-1.13]	0.206	0.92 [0.61-1.39]	0.690
	logVAF	1.68 [1.16-2.42]	0.006	2.15 [1.38-3.34]	0.001	0.96 [0.64-1.45]	0.854	1.25 [0.77-2.03]	0.357
	Age	1.00 [0.97-1.03]	0.790	1.02 [0.98-1.05]	0.360	1.05 [1.00-1.10]	0.069	1.03 [0.98-1.09]	0.274
DEC	Sex	2.10 [1.14-3.87]	0.017	3.12 [1.49-6.57]	0.003	0.59 [0.28-1.24]	0.165	1.10 [0.42-2.88]	0.847
PFJ	ECOGPS ¹	1.34 [0.86-2.09]	0.198	1.33 [0.81-2.17]	0.259	2.17 [1.05-4.49]	0.037	1.98 [0.89-4.41]	0.096
	logSOD ²	1.99 [0.58-6.82]	0.273	0.46 [0.10-2.07]	0.313	2.42 [0.18-32.77]	0.506	1.02 [0.06-17.89]	0.992
	logCA19-9	1.11 [0.89-1.38]	0.374	1.00 [0.81-1.25]	0.973	0.70 [0.50-0.98]	0.038	0.66 [0.42-1.04]	0.071

100 = 0.25%			G12D	N=43	G12V N=30					
	D = 0.25%	Univariate	5	Multivaria	te	Univariate	5	Multivariate		
	logVAF	1.68 [1.02-2.79]	0.042	2.08 [1.18-3.66]	0.011	0.93 [0.53-1.64]	0.806	1.47 [0.71-3.03]	0.303	
	Age	1.00 [0.97-1.03]	0.987	1.03 [0.99-1.07]	0.149	1.04 [0.99-1.09]	0.118	1.03 [0.97-1.09]	0.316	
0	Sex	2.21 [1.14-4.29]	0.020	3.25 [1.40-7.51]	0.006	0.47 [0.22-1.04]	0.061	0.50 [0.20-1.27]	0.146	
05	ECOGPS ¹	1.54 [0.82-2.89]	0.182	1.59 [0.84-3.01]	0.158	1.68 [0.88-3.20]	0.115	2.28 [0.93-5.58]	0.071	
	logSOD ²	1.45 [0.35-6.00]	0.605	0.38 [0.07-2.07]	0.262	2.69 [0.23-31.97]	0.433	0.19 [0.01-5.19]	0.328	
	logCA19-9	1.08 [0.86-1.36]	0.493	1.02 [0.81-1.28]	0.882	0.80 [0.57-1.12]	0.201	0.96 [0.63-1.45]	0.840	
	logVAF	1.76 [1.05-2.95]	0.031	1.98 [1.15-3.43]	0.014	0.81 [0.50-1.32]	0.390	0.95 [0.48-1.88]	0.888	
	Age	1.00 [0.96-1.03]	0.805	1.02 [0.98-1.06]	0.298	1.03 [0.98-1.09]	0.214	1.01 [0.95-1.08]	0.689	
DEC	Sex	2.45 [1.26-4.76]	0.008	3.21 [1.42-7.27]	0.005	0.70 [0.33-1.51]	0.366	1.45 [0.48-4.34]	0.511	
PFJ	ECOGPS ¹	1.32 [0.71-2.44]	0.380	1.42 [0.75-2.67]	0.283	1.78 [0.85-3.71]	0.126	1.48 [0.59-3.70]	0.399	
	logSOD ²	1.58 [0.36-6.93]	0.543	0.48 [0.09-2.73]	0.410	2.12 [0.17-27.14]	0.564	1.53 [0.07-32.84]	0.787	
	logCA19-9	1.06 [0.85-1.33]	0.597	0.99 [0.79-1.25]	0.957	0.68 [0.48-0.96]	0.027	0.62 [0.38-1.02]	0.060	
		¹ ECOG F	S = East	ern Cooperative C	ncology	Group Performar	nce Statu	IS		
			2501) = Sum of diamet	ers for a	Il target lesions				

²SOD = Sum of diameters for all target lesion

Supplementary Table 5. Sensitivity analysis for LoDs (Limits of Detection) of 0.04% (as used for our assay, see Methods), 0.10%, and 0.25% for combined PRINCE and standard of care (SOC) cohorts. Shown in the top table are survival associations (hazard ratios, HR, with 95% confidence intervals (CI), and log-rank p-values) for baseline ctKRAS variant allele fraction (VAF) by variant (G12D on left and G12V on right) at the three LoDs. In the bottom table, Cox analysis is shown for baseline ctKRAS log of variant allele fraction (VAF) as a continuous variable for overall survival (OS) and progression-free survival (PFS), in each table. Significant values (without adjustment for multiple testing) indicated by bolded red text. Source data are provided as a Source Data file.

Supplementary Figure 9. ctKRAS clearance and association with survival for all therapy-naïve PRINCE and standard of care (SOC) patients with any ctKRAS variant detected. Includes (A, C, and E) all PRINCE patients, and (B, D, and F) SOC patients. Shown at top (A and B) is ctKRAS clearance at week 8 on therapy for all patients with oneyear survival data (alive or dead at one year) (Fisher's Exact Test, two-sided), in the middle (C and D) is Kaplan-Meyer analysis for overall survival and on bottom (E and F) is progression-free survival. Cox regression hazard ratios (HR) and 95% confidence intervals (CI) are shown with log-rank p-values. Source data are provided as a Source Data file.

All Combined PRINCE and SOC Patients

Supplementary Figure 10. ctKRAS clearance and association with survival for combined therapy-naïve PRINCE and standard of care (SOC) patients with any ctKRAS variant detected. Shown at top (A) is ctKRAS clearance at week 8 on therapy for all patients with one-year survival data (alive or dead at one year) (Fisher's Exact Test, two-sided), in the middle (B) is Kaplan-Meyer analysis for overall survival and on bottom (C) is progression-free survival. Cox regression hazard ratios (HR) and 95% confidence intervals (CI) are shown with log-rank p-values. Source data are provided as a Source Data file.

Combined PRINCE and SOC Patients

Supplementary Figure 11. Survival association with early, on-therapy ctKRAS dynamics by variant for combined therapy-naïve PRINCE and standard of care (SOC) cohort. Shown is the association with one-year survival (alive or dead at one year) for the combined PRINCE and SOC cohorts with any detected baseline ctKRAS mutation as measured by (A) changes in ctKRAS variant allele fraction (VAF) from baseline to week 8 on therapy (n=37), or (B) ctKRAS clearance at week 8 on therapy for G12D only (left) and G12V only (right). Shown in (C) is Kaplan-Meyer analysis dichotomized by ctKRAS clearance vs no clearance and association with overall survival for G12D only (left), and G12V only (right). Results for progression-free survival shown in D. Among the 39 PRINCE patients included in the combined cohort with both a baseline and week 8 plasma obtained, 2 had insufficient follow-up to determine 1-year survival and were thus excluded from the results shown in A and B. Mann-Whitney test used for comparisons in A. Fishers exact test (two-sided) used in B. Cox regression hazard ratios (HR) and 95% confidence intervals (CI) are shown with log-rank p-values for C and D. Source data are provided as a Source Data file.

	PRINCE						SOC					
	G12D			G12V			G12D			G12V		
	ρ	р	n	ρ	р	n	ρ	р	n	ρ	р	n
SOD-All lesions	0.4160	0.0160	33	0.0633	0.7743	23	0.6182	0.0003	30	0.3497	0.2662	12
SOD-Metastases	0.3830	0.0278	33	0.3386	0.1140	23	0.6384	0.0001	30	0.1831	0.5693	12
SOD-Pancreas lesions	0.2096	0.2417	33	-0.1672	0.4458	23	0.0798	0.6588	33	0.1652	0.5124	18
COL-All lesions	0.4878	0.0040	33	0.3459	0.1060	23	0.4927	0.0057	30	0.3929	0.2062	12
COL-Metastases	0.5011	0.0030	33	0.3459	0.1060	23	0.4927	0.0057	30	0.4008	0.1964	12
COL-Pancreas lesions	-0.0886	0.6241	33	NA	NA	23	-0.2229	0.2125	33	-0.2572	0.3028	18
CA19-9	0.2246	0.2700	26	-0.0675	0.7712	21	0.4171	0.0196	31	0.1272	0.6037	19
Albumin	-0.2911	0.1003	33	-0.3967	0.0609	23	-0.3831	0.0253	34	-0.3826	0.0959	20
ALT	0.1500	0.4048	33	0.4839	0.0193	23	0.2655	0.1291	34	0.3237	0.1639	20
AST	0.3641	0.0372	33	0.6695	0.0005	23	0.3142	0.0703	34	0.391	0.0883	20
BUN	0.0099	0.9564	33	-0.1281	0.5603	23	0.0748	0.6743	34	0.2166	0.359	20
Creatinine	-0.1637	0.3626	33	-0.2936	0.1739	23	0.2225	0.2060	34	0.1204	0.6131	20
Bilirubin	0.1221	0.4983	33	0.2762	0.2021	23	0.0507	0.7757	34	0.3851	0.0936	20
Age	-0.1038	0.5655	33	-0.1706	0.4365	23	-0.0940	0.5970	34	-0.2918	0.2118	20

Supplementary Table 6. Spearman correlation analysis (two-sided) of clinical variables and ctKRAS VAF levels for therapy-naïve PRINCE and SOC patients. SOD=Sum of diameters, COL=Count of lesions. Significant values indicated by bolded red text. NA indicates variable without variation in the cohort. Abbreviation ALT (Alanine Transaminase), AST (Aspartate Transaminase), and BUN (Blood Urea Nitrogen) are used. Source data are provided as a Source Data file.

Supplementary Figure 12. Association of primary tumor location and sex with baseline ctKRAS VAF levels for therapy-naïve PRINCE and standard of care (SOC) patients. Plots demonstrating association between baseline ctKRAS VAF levels and (A) primary tumor location (Dunn's multiple comparisons test) or (B) sex (Mann-Whitney test, two-sided). Asterisk indicates significance at 0.05. Green denotes ctKRAS G12D and dark grey is G12V. Source data are provided as a Source Data file.