Cell Reports, Volume 43

Supplemental information

PIp1-expresssing perineuronal DRG cells

facilitate colonic and somatic chronic mechanical

pain involving Piezo2 upregulation in DRG neurons

Namrata Tiwari, Cristina Smith, Divya Sharma, Shanwei Shen, Parshva Mehta, and Liya Y. Qiao

Figure S1 (related to Figures 1-2): **Experimental design to characterize the role of SGCs in hypersensitivity and pain.** (a): Breeding strategies and genotyping. (b): Tamoxifen treatment schedules. (c): Experimental groups.

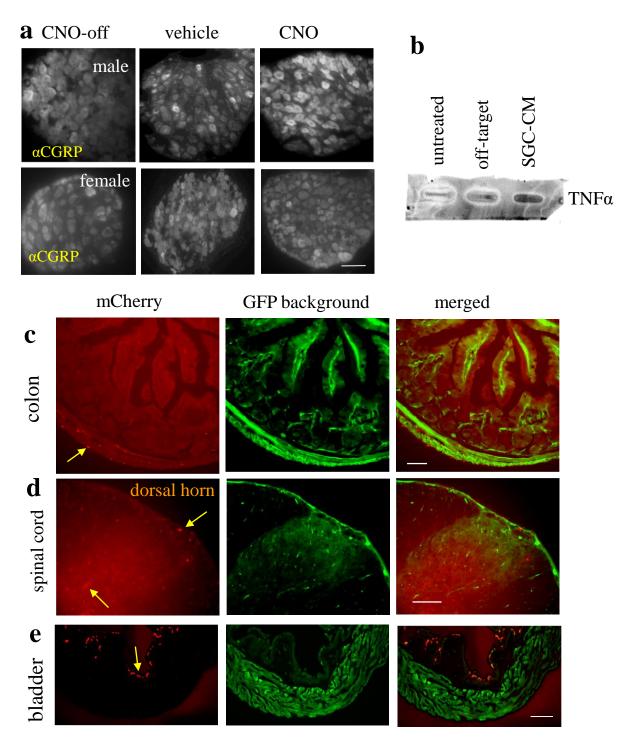


Figure S2 (related to Figures 2-3): **PLP/creERT-driven activation on CGRP expression in DRG, TNFa production in SGCs, and mCherry expression in the colon, spinal cord and urinary bladder.** (a): CNO treatment of Plp1;hM3Dq mice increases CGRP expression in DRG of male mice but not female mice. Bar=30 μ m. (b): CNO-treated SGC culture from Plp1;hM3Dq mice contain a higher level of TNFa. (c): Plp1^{CreERT}- driven mCherry expression is visible in the muscular layer of the distal colon. Bar=100 μ m. (d): Plp1^{CreERT}- driven mCherry expression is evident in the dorsal horn of the spinal cord and deep laminea. Bar = 100 μ m. (e) Plp1^{CreERT}- driven mCherry expression is strongly present in the urinary bladder. Bar=600 μ m.

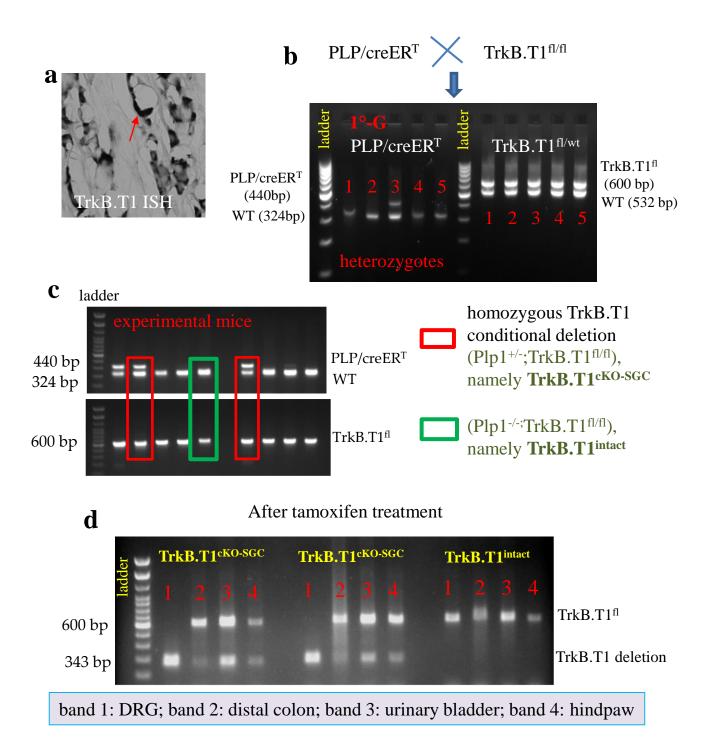


Figure S3 (related to Figure 3): **Generation of inducible TrkB.T1 conditional deletion from SGCs.** (a): TrkB.T1 in situ hybridization of DRG sections showing SGC expression (indicated by arrow). Bar = 40 μ m. (b): First generation from breeders of PLP/creER^T and floxed TrkB.T1 mice are heterozygotes. (c): Experimental mice with homozygous TrkB.T1 deletion. (d): Tissue-specific genotyping after tamoxifen treatment showing TrkB.T1 is largely deleted from DRGs in TrkB.T1^{cKO-SGC} mice (2 distinct animals) but not from TrkB.T1^{intact} mice.

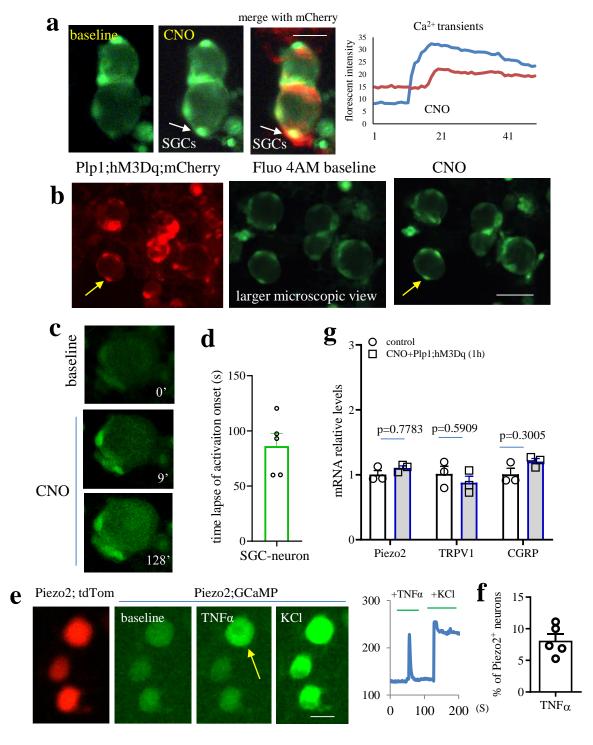


Figure S4 (related to Figures 4 and 5): **DRG SGCs-neuron crosstalk.** (a-b): CNO stimulation of DRG SGC-neuron unit culture from Plp1;hM3Dq mice increases Ca²⁺ transients exclusively in SGCs (1 min recording). Bar = 100 μ m. (c): activation of SGCs by CNO leads to adjacent neuron activation (10 min recording). Bar = 50 μ m. (d): Average time lapses between activation of SGCs and adjacent DRG neurons after CNO treatment. (e): TNF α (1 ng/mL) stimulation evokes the activity of Piezo2⁺ DRG neurons examined by Piezo2 Cre-driven GCaMP intensity. Bar=100 μ m. (f): percentage of Piezo2⁺ neurons activated by TNF α . (g): No changes in the mRNA levels of Piezo2, TRPV1 and CGRP in DRG examined at 1 h after chemogenetic activation of SGCs. Two-way ANONA followed by Šídák's multiple comparisons test. Data are presented as mean ± SEM.

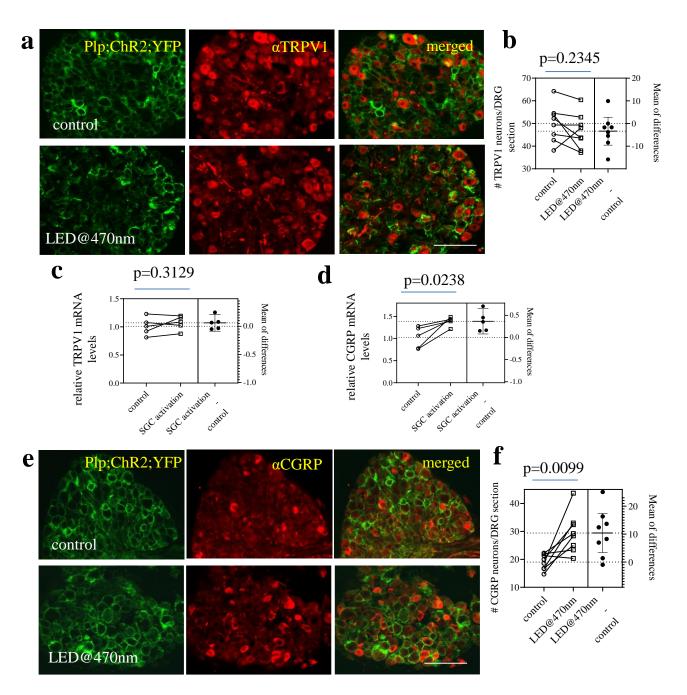


Figure S5 (related to Figure 4): Alterations in the expression of neurochemical coding in DRG neurons after optogenetic activation of SGCs from DRG explant culture. (a-b): TRPV1 expression in DRG neurons with or without LED stimulation of DRG explants of Plp1;ChR2-YFP mice. Bar = 100 μ m. n=8 pairs of DRG explants. Paired two-tailed *t* test. Data are presented as mean \pm SEM. (c): TRPV1 mRNA levels in DRG with or without LED stimulation of DRG explants of Plp1;ChR2-YFP mice. n=5, paired two-tailed *t* test. (d): CGRP mRNA levels in DRG with or without LED stimulation of DRG explants of Plp1;ChR2-YFP mice. n=5, paired two-tailed *t* test. (d): CGRP mRNA levels in DRG with or without LED stimulation of DRG explants of Plp1;ChR2-YFP mice. n=5, paired two-tailed *t* test. (e-f): CGRP expression in DRG neurons with or without LED stimulation of DRG explants of Plp1;ChR2-YFP mice. Bar = 100 μ m. n=8 pairs of DRG explants. Data are presented as mean \pm SEM. Paired two-tailed *t* test.

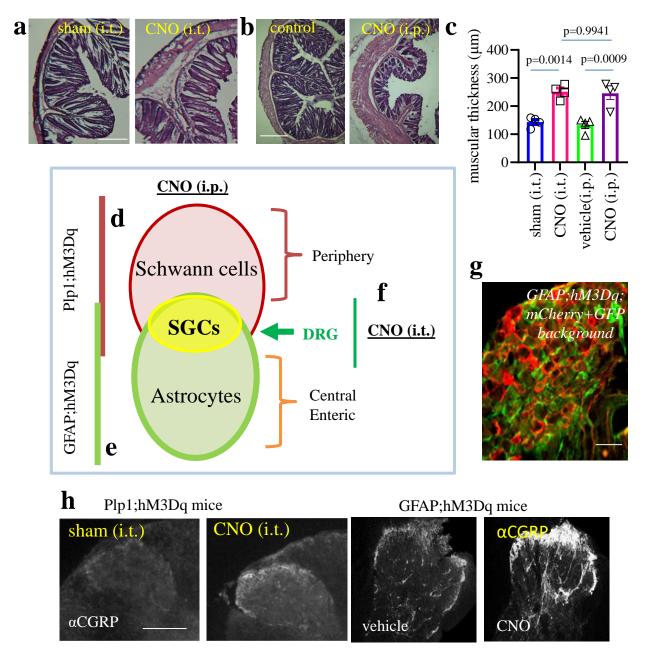


Figure S6 (related to Figures 6 and 7): Effects of SGC activation on colonic inflammation and CGRP spinal cord release. (a): Intrathecal (i.t., 1 dose) injection of CNO to tamoxifentreated Plp1;hM3Dq mice changes colonic morphology. (b): Intraperitoneal (i.p. 1 dose) injection of CNO to tamoxifen-treated Plp1;hM3Dq mice changes colonic morphology. Bar = 1 mm. (c): The thickness of colonic muscular walls. n=4. Data are presented as mean \pm SEM. One-way ANOVA with Tukey's multiple comparisons test. (d-f): Three unique strategies to activate SGCs. Intraperitoneal (i.p.) injection of clozapine N-oxide (CNO) to Plp1;hM3Dq mice to activate SGCs and Schwann cells (d); (2) injection of CNO (i.p.) to GFAP;hM3Dq mice to activate SGCs and astrocytes (e); and (3) intrathecal (i.t.) injection of CNO to Plp1;hM3Dq mice to more specifically target glial cells in DRG including SGCs (f). (g): GFAP;hM3Dq mice show mCherry expression in SGCs of DRG. Bar= 60 μ m. (h): CNO (i.t.) treatment of Plp1;hM3Dq mice or CNO (i.p.) treatment of GFAP;hM3Dq mice induces CGRP spinal release. Bar = 200 μ m.

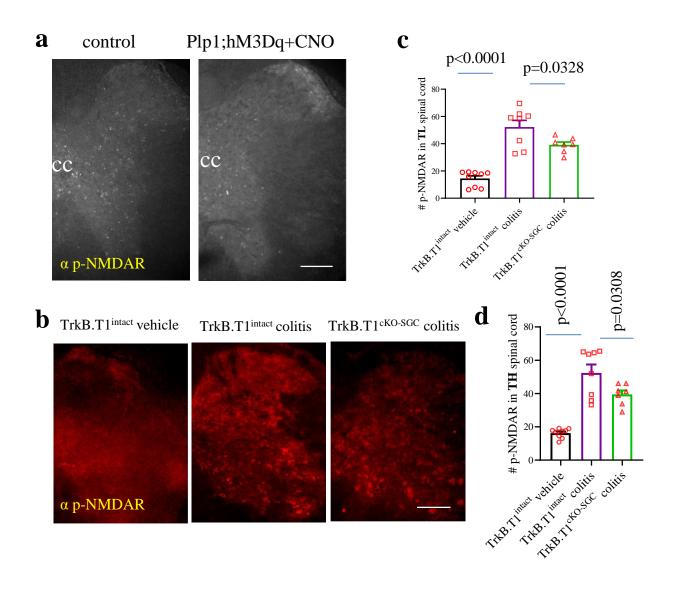


Figure S7 (related to 7): Effects of SGC activation on p-NMDAR expression in the spinal cord. (a): CNO treatment of Plp1;hM3Dq mice increases p-NMDAR expression in the dorsal horn of the spinal cord. (b-d): Increases in p-NMDAR expression in the spinal cord of TrkB.T1^{intact} mice after colonic inflammation (n=9 for control and n=8 for colitis) and the effects of TrkB.T1^{cKO-SGC} (n=7 mice) on inflammation-induced p-NMDAR expression in thoracolumbar (c: TL) and thoracic (d: TH) segments. Data are presented as mean \pm SEM. One-way ANOVA with Tukey's multiple comparisons test. Bar = 200 µm.