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Figure S1. The property distributions of these three clusters. Quantitative analysis of 

properties is in Supplementary Tables 4-9. 

 

 

Figure S2. Chemical structures and identification numbers (IDN) of peptides selected from 

the candidate library. 

 



 

 

 

Figure S3. (A) Analytical HPLC and (B) MS spectra of molecule 16. 

 



 

 

 

Figure S4. (A) Analytical HPLC and (B) MS spectra of molecule 17. 



 

 

 

Figure S5. (A) Analytical HPLC and (B) MS spectra of molecule 24. 

 



 

 

 

Figure S6. (A) Analytical HPLC and (B) MS spectra of molecule 62. 

 



 

 

 

Figure S7. (A) Analytical HPLC and (B) MS spectra of molecule 63. 

 



 

 

 

Figure S8. (A) Analytical HPLC and (B) MS spectra of molecule 95. 

 



 

 

 

Figure S9. (A) Analytical HPLC and (B) MS spectra of molecule 114. 



 

 

 

Figure S10. (A) Analytical HPLC and (B) MS spectra of molecule 115. 

 



 

 

 

Figure S11. (A) Analytical HPLC and (B) MS spectra of molecule 125. 

 



 

 

 

Figure S12. (A) Analytical HPLC and (B) MS spectra of molecule 133. 

 



 

 

 

Figure S13. (A) Analytical HPLC and (B) MS spectra of molecule 166. 



 

 

 

Figure S14. (A) Analytical HPLC and (B) MS spectra of molecule 322. 

 



 

 

 

Figure S15. (A) Analytical HPLC and (B) MS spectra of molecule 368. 

 



 

 

 

Figure S16. (A) Analytical HPLC and (B) MS spectra of molecule 407. 



 

 

 

Figure S17. (A) Analytical HPLC and (B) MS spectra of molecule 476. 

 



 

 

 

Figure S18. (A) Analytical HPLC and (B) MS spectra of molecule 560. 

 



 

 

 

Figure S19. (A) Analytical HPLC and (B) MS spectra of molecule 720. 

 

Figure S20. Cytotoxicity of peptides 16 (A) and 62 (B) towards NHDF and SHED 

cells at concentrations ranging from 0.1-500μM. 



 

 

 

Figure S21. Live/dead assays of SHED cells seeded on standard tissue-culture 

plates. 

Figure S22. UMAP visualization of chemical space distribution of small molecules 

and peptides in the training set. 

 

 



 

 

 

Table S1. Chemical properties of selected molecules. 

IDN Sequences Molecular 

Weight 

Theoretical pI 

17 KVAIRL-NH2 697.49 11.48 

24 CH3(CH2)12-

GKKPEAGSLF-NH2 

1241.77 12.41 

63 Ac-YPYVDV 843.27 3.12 

114 CH3(CH2)12-KSV 555.42 10.09 

115 FSHIF-NH2 648.33 7.88 

125 Fmoc-HY 540.20 7.88 

407 TYAGD 525.20 3.12 

720 FVFV 524.29 7.00 

Table S2. HydrogelFinder-predict Model training data.  

Datasets Training set Testing set 

HYDROGEL-POSITIVE 2,402 267 

HYDROGEL-NEGATIVE 15,497 1,722 

 

 



 

 

Table S3. Number of modifiers in datasets. 

Datasets Ac Fmoc Nap Lipidation S-S 

HYDROGEL-POSITIVE 67 22 7 16 47 

Peptides-based Candidates 16 5 2 5 0 

 

 

Table S4. Quantifying the area of overlap of logp properties.  

Datasets   HYDROGEL-

POSITIVE 

  HYDROGEL-

NEGATIVE 

Candidates 

HYDROGEL-POSITIVE 1 0.37 0.89 

HYDROGEL-NEGATIVE 0.37 1 0.29 

Candidates 0.89 0.29 1 

 

Table S5. Quantifying the area of overlap of Hba properties.  

Datasets   HYDROGEL-

POSITIVE 

  HYDROGEL-

NEGATIVE 

Candidates 

HYDROGEL-POSITIVE 1 0.55 0.89 

HYDROGEL-NEGATIVE 0.55 1 0.45 

Candidates 0.89 0.45 1 

 



 

 

Table S6. Quantifying the area of overlap of Hbd properties.  

Datasets   HYDROGEL-

POSITIVE 

  HYDROGEL-

NEGATIVE 

Candidates 

HYDROGEL-POSITIVE 1 0.44 0.88 

HYDROGEL-NEGATIVE 0.44 1 0.36 

Candidates 0.88 0.36 1 

 

Table S7. Quantifying the area of overlap of Nbase properties.  

Datasets   HYDROGEL-

POSITIVE 

  HYDROGEL-

NEGATIVE 

Candidates 

HYDROGEL-POSITIVE 1 0.65 0.89 

HYDROGEL-NEGATIVE 0.65 1 0.56 

Candidates 0.89 0.56 1 

 

Table S8. Quantifying the area of overlap of Tpsa properties.  

Datasets   HYDROGEL-

POSITIVE 

  HYDROGEL-

NEGATIVE 

Candidates 

HYDROGEL-POSITIVE 1 0.45 0.89 



 

 

HYDROGEL-NEGATIVE 0.45 1 0.36 

Candidates 0.89 0.36 1 

 

Table S9. Quantifying the area of overlap of Mol.wt properties.  

Datasets   HYDROGEL-

POSITIVE 

  HYDROGEL-

NEGATIVE 

Candidates 

HYDROGEL-POSITIVE 1 0.49 0.91 

HYDROGEL-NEGATIVE 0.49 1 0.41 

Candidates 0.91 0.41 1 

 

 

Random Sampling Method 

 

The random sampling mentioned in this article is implemented using the “shuffle” function 

provided by the “random” module of the python standard library. Specifically, random. 

shuffle() uses a random number generator to shuffle the elements in the sequence, so 

each call to it produces a different result. However, we have set random seed here to 

ensure the repeatability of the random extraction of the experiment. 

 

RDKit Data Filtering 

 

Filtering molecular data and checking whether a molecule can be converted to a graph 

using RDKit is divided into the following 3 steps:  

Step 1: Importing RDKit Library. We began by importing the RDKit library, a powerful tool 

for cheminformatics and molecular informatics.  

Step 2: Loading Molecular Data. We loaded molecular data into RDKit. The molecular data 

can be represented using SMILES (Simplified Molecular Input Line Entry System) notation 

or other supported molecular file formats. 

Step 3: Checking Molecular Validity. After loading the molecule using 

Chem.MolFromSmiles() or similar RDKit functions, we checked whether the molecule was 

valid and could be converted into a graph. 

 



 

 

 

High-throughput Prediction HydrogelFinder-predict Model 

 

Support vector machine (SVM) belongs to supervised learning methods. It is a widely used 

machine learning algorithm for binary classification tasks. In our experiments, we are using 

the radial basis function (RBF). For the SVM models, the parameter optimization was 

performed using grid search. The model with C = 10 and γ = 0.01 was considered to have 

the highest AUROC (0.9862) towards the testing set of the HYDROGEL dataset.  

We carefully selected relevant molecular features and descriptors for input to the SVM 

model. The model was trained to discriminate active compounds that could self-assemble 

to form hydrogels from inactive ones according to their 2,048-bit-radius extended 

connectivity fingerprint (ECFP) representations. We split the dataset into training and test 

sets in the number 9:1 to train the model (Supplementary Table 2). 

The evaluation metrics used Receiver Operating Characteristic (ROC) Curve. We plotted 

the ROC curve and calculated the area under the ROC curve (AUROC) to assess the 

model's discriminatory power, where the AUROC is calculated as follows: 

𝐴𝑈𝑅𝑂𝐶 =
∑(𝑝𝑖,𝑛𝑖)𝑝𝑖>𝑛𝑖

𝑃∗𝑁
 , 

where 𝑃 is the number of positive samples, 𝑁 is the number of negative samples, 𝑝𝑖 is 

the positive sample prediction score, and 𝑛𝑖 is the negative sample prediction score. 

We set the threshold to 0.5, which is the default threshold for binary classification tasks in 

machine learning. At this threshold, the accuracy of the model is 99.56%. The formula for 

calculating the accuracy rate is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 , 

where 𝑇𝑃 is predicted to be a positive sample and is actually a positive sample, 𝑇𝑁 is 

predicted to be a negative sample and is actually a negative sample, 𝐹𝑁 is predicted to 

be a negative sample and is actually a positive sample, 𝐹𝑃 is predicted to be a positive 

sample and actually a negative sample. 

 

Calculate the area of overlap of kernel density maps 

We used Simpson's law (simps function) to calculate the overlap area of the kernel density 

maps. Specifically, for two kernel density estimation curves, 𝑓(𝑥) and 𝑔(𝑥), we aim to 

determine their overlap area using the formula: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑎𝑟𝑒𝑎 =  ∫[𝑎, 𝑏] 𝑚𝑖𝑛(𝑓(𝑥), 𝑔(𝑥)) 𝑑𝑥 , 

where [𝑎, 𝑏] represents the region of intersection of the two curves, and 𝑚𝑖𝑛(𝑓(𝑥), 𝑔(𝑥)) 

signifies selecting the smaller value of the two curves at each 𝑥 point. 

Simpson's law estimates this overlap area by discretizing this integral. First, the interval 

[𝑎, 𝑏]  is divided into small intervals, 𝑚𝑖𝑛(𝑓(𝑥), 𝑔(𝑥))  is then computed within each of 

these intervals, and finally, the area over these small intervals is accumulated. 

 

 

 



 

 

Up-sampling strategy 

In addressing the imbalance between positive and negative samples in a dataset, an 

upsampling strategy is employed. This method is crucial for improving the performance of 

machine learning models by balancing the class distribution. The Python pandas library is 

utilized for data manipulation, and sklearn.utils libraries is leveraged for performing the 

upsampling. Specifically, the resample function in the sklearn.utils libraries allow us to 

adjust the number of samples in a class by repeating instances. Thus, the final ratio of 

positive and negative samples used in train HydrogelFinder-predict was 15728:15497. 


