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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Review report for “Characterizing the genefic architecture of changes in adiposity during adulthood 

using electronic health records”

Using UK biobank data, this paper addresses several key quesfions about the genefic architecture of 

adiposity changes during adulthood.

1. Quanfified and replicated genefic contrifion to the change of adiposity

2. Novel genefic findings with replicafion

3. Compelling sex-strafified analysis

It is a well-wriften and carefully designed study. I have several quesfions:

1. For both BMI and weight, in the first stage of LME modeling, do you need to also check the normality 

assumpfion? As LME assumpfions are both error and random effects are normally distributed (equafion 

1).

2. LME adiposity changes analysis assumes a linear trend. The non-linear analysis learned several clusters 

that some of which clearly do not have a linear trend. This suggests model misspecificafion in the LME 

two-stage analysis. I am wondering how this impacts the analysis results, i.e., forcing a non-linear trend 

to have a linear trend, then using them for a GWAS analysis. Will this cause an inflated type I error, loss 

of power, or both?

3. Like in the clustering analysis, the uncertainty of slope esfimafion in LME cannot be taken into GWAS 

analysis. Also, Analysis cannot incorporate those who only have 1 measure, and cannot adjust for fime-

varying covariates. So I am curious whether a two-stage model for longitudinal data analysis in this 

GWAS sefting when the sample size is large can overcome all the disadvantages in tradifional 

longitudinal data analysis seftings, i.e., SNPxTime interacfion analysis in LME

4. I wonder whether a polygenic risk score (PRS) of adiposity changes would make sense to be evaluated 

in addifion to the current analysis.

5. All replicafion studies are within the UKB study – whether it is possible to seek an independent study 

to replicate these findings

6. Why adjust for 21 PC, and also use BOLT-LMM?

7. Figure 1A is dominated by published results – very hard to see novel/refined ones.



8. Biomarker phewas were conducted for rs429358, but why not phecode phewas ? whether this SNP is 

related to any cancer phenotypes which can influence BMI dramafically?

Reviewer #2 (Remarks to the Author):

Major comments

The arficle is very clearly wriften, with a logical presentafion of the results. The topic is well-mofivated 

and the results are robust. The methods are sound and solid, a great treatment of longitudinal data for 

GWAS. The follow-up analysis supporfing the APOE associafion is convincing. Overall, I find it a great 

paper using the underexploited HER data for longitudinal analysis with very moderate genefic effects. 

Below, I list a couple of points, addressing them could improve the paper further.

The demonstrated gain in power using mulfiple measurements per individual is very elegant and a strong 

addifion to the main message. It would be interesfing to know how much variance per individual is 

observed in the BMI across fime? How big is it relafive to the BMI variance in the populafion? Does it 

correlate with the follow-up interval?

Comparison of the current findings and past results (hftps://pubmed.ncbi.nlm.nih.gov/26426971, 

hftps://journals.plos.org/plosgenefics/arficle?id=10.1371/journal.pgen.1010303) would be important.

The APOE (rs429358) variant strongly associates with lifespan/LDL/ALZ, which raises suspicion. I 

appreciate that the authors have included follow-up length to avoid survival bias. But this variant is 

correlated with age in the UKBB, due to survival bias. I’d suggest some extra analyses to ensure that the 

finding is not driven by survival bias: 1) Repeat the associafion for this SNP without correcfion for 

age+age^2. 2) Check other lifespan-associated SNPs (e.g. hftps://pubmed.ncbi.nlm.nih.gov/29227965/) 

for their associafion with the slope or the cluster memberships. If they do not show any signal, it is 

reassuring.

It seems to be a variant associated with changes in several traits and not always in the expected 

direcfion, based on its effect on BMI. What could be the biological explanafion for this?

Given that 6 different (and close to independent) analysis were conducted [male/female x 3 

memberships are all independent, on top of the slope analysis and the sex-combined], the mulfiple 



tesfing should be corrected not only for the number of SNPs, but also the number of traits, thus a 

threshold of 1E-8 would be fairer. This would remove 3 SNPs from Table 2… Related to this: why only the 

APOE variant is discussed and the other hits are quite neglected. All the follow-up tests presented in Fig 

3 could have been tested for the 5 other SNPs of Table 2.

According to the UK Biobank approved project database there is no approved applicafion with the 

number 10844 [hftps://www.ukbiobank.ac.uk/enable-your-research/approved-

research?query=10844#arficles]. Could you please double-check?

Minor comments

1. “Moreover, the genefic correlafion between change in BMI and weight is nearly perfect” -> 

“Moreover, the genefic correlafion between change in BMI and change in weight is nearly perfect”

2. In Eq (1) “k = 1, 2” should be “k = 0, 1”.

3. In Eq(2-3) \epsilon_{0,i} should be \epsilon_{i,0}, same for \epsilon_{1,i}.

4. In Eq(2-3) hats are needed for the \gamma s.

Reviewer #3 (Remarks to the Author):

See aftachment. 



This is a nice methodologically sounded paper exploring the genetic architecture of changes 
in BMI vs BMI measured at 1 time point, which is what most of large GWASs have explored 
so far. I think the most important point of the paper is how difficult is to find genetic signals 
for longitudinal changes in BMI (and probably in many other traits). This is likely because the 
environmental influences pay a larger role in this process. I feel this message can be 
highlighted more in the paper.  
 

- Can you clarify which time period the EHR data are covering? I.e. what’s the 
maximum and median follow-up time used when considering BMI measurements? I 
cannot easily find this info.  

 
- With regard with follow-up time and the methods you used. How do you account for 

censoring? In other words, do you consider the beginning of follow-up as the first 
measurement and the end of follow-up the last measurement? Or do you consider 
the entire period covered by the EHR and account for censoring (e.g. death) ? 
 

- How should one interpret the intercept from the LME? Would you get similar GWAS 
results if simply averaging all the BMI measurements and running a GWAS on that? 
 
 

- The article would benefit from being clearer regarding the use of linear mixed 
models vs B-splines. Can the author provide a graphical illustration of which methods 
were used for which analysis? LME intercept was used for the BMI GWAS, while LME 
and B-spline + clustering were both used for the BMI-change GWAS. Correct? The 
LME was not use for clustering at all? 

 
 

- Line 106 à “All analyses were adjusted for baseline obesity trait and confounders, 
including length of follow-up and number of follow-up measures, to mitigate 
survivor bias”.  What are the “baseline obesity trait” ?  Can you be more explicit 
about the rationale for adjusting for length of follow-up and number of follow-up 
measures? The two are also highly correlated and number of follow-ups correlates 
with BMI. What is the difference if you run a GWAS without using these covariates? 
 

- APOE C allele from rs429358 increase mortality risk I would imagine, so these people 
should have a shorter follow-up and have less measurements, which might explain 
the BMI reduction over time. Can you check the association between rs429358 and 
the number of measurements? I understand you adjust for these effects in the 
model by controlling for length of follow-up and number of follow-up measures, but 
would be good to try to chase what exactly is going on with this APOE allele and how 
much this is explained by survival bias. 

 
- Maybe you have done this analysis, but I missed it. But if you check all the SNPs that 

are GW-significant for BMI, is there an enrichment of signals for BMI-change? Or the 
two are completely independent? 



- Please specify the genetic correlation between the LME slope approach and the 
clustering approach. In other words, how similar are the results between these two 
approaches ? (I guess u1 adj u0 vs prob(k1) adj u0) 

 
 

- The genetic correlations between the BMI-change and the other measures are 
interesting, but can be better explained. Panel B of figure 4 is confusing. What are 
the correlation you are testing? Why the upper label says “genetic correlation with 
u0” ? Then each panel seems to have another label. If I correctly understand the 
BMI-change phenotypes (u1 adj u0 and prob(k1) adj u0) have still a very high 
correlation with BMI at baseline, despite you having adjusted for that. Isn’t then 
surprising that you don’t see any of the GW-significant results for BMI from the 
largest GWAS of BMI popping up?  
 

- I’m a little skeptical about the claim that heritability of weight change is higher in 
women than men. I can imagine many biases and the values are quite low anyway. 
Moreover, the distribution of the underlying phenotype is probably different so this 
might be difficult to make heritability estimates directly comparable. I would tone 
this down or seek for replication. 
 

- Line 327, formula. Why did you use a log2 transformation? 
 

- Formula (9) line 417, there should be and i’ somewhere, right? 
 

 



Reviewer 1

Using UK biobank data, this paper addresses several key questions about the genetic architecture of adiposity
changes during adulthood.
1. Quantified and replicated genetic contrition to the change of adiposity
2. Novel genetic findings with replication
3. Compelling sex-stratified analysis

Authors’ reply: Thank you for your comments – we very much appreciate you spending your valuable time
assessing our research.

Comment 1.1 — For both BMI and weight, in the first stage of LME modeling, do you need to also check
the normality assumption? As LME assumptions are both error and random effects are normally distributed
(equation 1).

Authors’ reply: Many thanks for this comment. We have now included Gaussian quantile-quantile plots of
residuals and BLUPs in Supplementary Figures 10-12. The distributions of residuals and BLUPs can be seen to
be somewhat heavy-tailed and/or skewed relative to a Gaussian. Such model misspecification could potentially
lead to miscalibration of confidence intervals and hypothesis tests based on the standard linear mixed model
(though this miscalibration would be mitigated by the large sample size, due to the central limit theorem).
We therefore do not use or inspect any confidence intervals or hypothesis tests on the basis of the LME
modelling itself. Rather, we take forward covariate-adjusted, inverse-normal transformed summary statistics
to the stage-two GWAS software (BOLT-LMM), which then outputs well calibrated P-values, assuming any
relevant confounding factors (e.g., population stratification) are adjusted for.

This discussion has been added to the manuscript text as below:

The distribution of residuals and BLUPs from the LME models are heavy-tailed relative to a Gaus-
sian (Supp. Figs. 10-12). Such model misspecification could potentially lead to miscalibration
of CIs and hypothesis tests based on the standard linear mixed model, although this is likely to be
mitigated by the large sample size owing to the central limit theorem. We therefore take forward
covariate-adjusted and inverse-normal transformed BLUPs, as described in (4), for genome-wide
association testing. (page 15, lines 452-456)

.

Comment 1.2 — LME adiposity changes analysis assumes a linear trend. The non-linear analysis learned
several clusters that some of which clearly do not have a linear trend. This suggests model misspecification in
the LME two-stage analysis. I am wondering how this impacts the analysis results, i.e., forcing a non-linear
trend to have a linear trend, then using them for a GWAS analysis. Will this cause an inflated type I error,
loss of power, or both?

Authors’ reply: Thanks for this perceptive comment. In the case of model misspecification where the linear
trend model does not capture the true non-linear longitudinal behaviour, this can result in a loss of power
relative to a model that captures the non-linear behaviour. This is because different clusters of non-linear
shapes, should they exist, will be forced ineffectively into a one-dimensional representation (i.e. of slope)
leading to lower signal-to-noise ratio (i.e. decreased information to resolve clusters as defined by non-linear
shapes) and reduced power in that dimension-reduced space. However, such model misspecification will not
lead to an inflated type I error. This is because the stage one-outputted summary statistics are covariate-
adjusted and inverse-normal transformed prior to analysis in the stage-two BOLT-LMM software, meaning that
type I error should be effectively controlled in stage two provided confounders are adjusted for. In summary,
the effect you mention could result in loss of power, but should not result in inflated type I error.
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Comment 1.3 — Like in the clustering analysis, the uncertainty of slope estimation in LME cannot be taken
into GWAS analysis. Also, Analysis cannot incorporate those who only have 1 measure, and cannot adjust
for time-varying covariates. So I am curious whether a two-stage model for longitudinal data analysis in this
GWAS setting when the sample size is large can overcome all the disadvantages in traditional longitudinal
data analysis settings, i.e., SNPxTime interaction analysis in LME

Authors’ reply: Thank you for this interesting and thought-provoking comment. The desirable methodolog-
ical properties that you mention are:

(A) Admits propagation of phenotypic uncertainty (e.g. uncertainty of slope) to GWAS

(B) Can incorporate information from individuals with only one phenotypic measurement

(C) Accommodates adjustment for time-varying covariates

(D) Handles a large sample size effectively

(E) Effective in GWAS setting – large number of SNPs to test, population stratification, cryptic relatedness

The methods we wish to relate according to these desirable aspects are:

(i) One-stage traditional longitudinal LME, i.e., SNPxTime interaction analysis in LME, fitted one SNP
at a time, population stratification adjustment using principal component covariate adjustment

(ii) Two-stage linear-trajectory LME model, taking LME intercept/slope forward to GWAS in BOLT-
LMM

(iii) Two-stage nonlinear-trajectory clustering model, clustering non-linear trajectories and taking forward
soft (probabilistic) cluster assignments to GWAS in BOLT-LMM

We summarise the relationship between methods and properties in Table 3. Our overall assessment is that the
major improvements offered by the two-stage methods over the traditional longitudinal analysis are: greater
computational efficiency in dealing with large sample sizes (D); and the ability to flexibly incorporate the most
cutting-edge approaches (e.g. BOLT-LMM) for efficiently analysing genome-wide SNP data and delivering
high statistical power while adjusting for population stratification and cryptic relatedness (E). In terms of
uncertainty propagation property (A), the non-linear clustering method is able to propagate uncertainty via
the soft clustering assignment, while the two-stage linear trajectory approach is currently unable to propagate
uncertainty forwards to GWAS (but it would be a beneficial future research direction to develop GWAS software
that admits uncertainty propagation).

(A) (B) (C) (D) (E)
(i) Yes No Yes, in simple settings* Slow Slow
(ii) Future research* No Yes, in simple settings Yes Yes
(iii) Yes No Yes, in simple settings Yes Yes

Table 3: Assessment of one- and two-stage methods (i)-(iii) according to whether they have certain desirable
properties (A)-(E), defined in the text of our response to Comment 1.3.

Comment 1.4 — I wonder whether a polygenic risk score (PRS) of adiposity changes would make sense to
be evaluated in addition to the current analysis.

Authors’ reply: Thank you for the suggestion to construct polygenic risk scores (PRSs) for adiposity-change,
which may help predict an individual’s genetic propensity to gain or lose weight. However, the predictive power
of a PRS has a theoretical upper bound of the SNP-based heritability of the trait; in practice, uncertainty in
GWAS effect-size estimates and differences between the base and target populations means that the predictive
power of PRSs are typically much lower than heritability. Given that all of the adiposity-change traits we study

*In simple settings such as for exogenous time-varying covariates.
*It as an interesting avenue for future research to extend existing GWAS software to incorporate phenotypic inputs with

accompanying measures of uncertainty.
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here have very low SNP-based heritability (< 3%), we believe that a PRS would be of limited additional value.

Comment 1.5 — All replication studies are within the UKB study – whether it is possible to seek an
independent study to replicate these findings

Authors’ reply: Thank you for this valuable suggestion that has greatly strengthened our results. We sought
replication in two external cohorts: the Million Veterans Program based in the United States, and the Estonian
Biobank. We were successful in replicating 9 of the 14 novel variants for baseline adiposity and 1 variant,
rs429358, for adiposity change. We note that we were only sufficiently powered to seek replication for 4 of
the 6 variants for adiposity change in the MVP cohort, and 1 variant in EstBB (see Supp. Table 25). That
the remaining variants do not replicate may be because they are false positives, but we would also like to
note the heterogeneity in population characteristics among these cohorts: participants in the MVP are on
average 3.5 units of BMI heavier than those in the UKBB, predominantly male, and over-represent patients
with cardiovascular disease and obesity44; and participants in EstBB are on average 6 to 8 years younger than
those in UKBB and are followed up for a mean of 4.7 years (as compared to 10-12 years in the UKBB). So
while it is remarkable that the rs429358 effect reliably replicates across these cohorts, we would caution against
the interpretation of null results for the other variants as false positives.

These results have been incorporated throughout the manuscript, but please particularly note the following
sections of text in the Results:

Nine of the 14 novel SNPs replicate at P < 3.6× 10−3 (FWER controlled at 5% across 14 tests
using the Bonferroni method) in at least one of: (1) baseline obesity estimated with LME model
intercepts in up to 437,703 individuals the MVP cohort, (2) baseline obesity estimated with LME
model intercepts in up to 125,209 individuals the EstBB cohort, or (3) UKBB assessment centre
measurements of cross-sectional obesity in up to 230,861 individuals not included in the discovery
GWAS (Supp. Table 3) (page 4, lines 82-86)

and

The association of rs429358 with adiposity-change phenotypes was replicated at P < 1.39× 10−3

(FWER controlled at 5% across six variants and six traits tested) in: (1) up to 437,703 individuals
in the MVP cohort, and (2) up to 125,209 individuals in the Estonian Biobank, and (3) up to
17,035 individuals in UKBB with multiple measurements of weight and BMI at repeat assessment
centre visits who were excluded from the discovery analyses (Figure 4 and Supp. Table 5).
(page 6, lines 132-136)

We have also added relevant sections to the Methods and Discussion.

Comment 1.6 — Why adjust for 21 PC, and also use BOLT-LMM?

Authors’ reply: As the reviewer indicates, BOLT-LMM runs a mixed model that accounts for population
structure in the model, whereas standard linear regression requires adjustment for principal components (PCs)
to account for population stratification. However, when heritability estimate approaches zero, linear mixed
models degenerate to simple linear regression and hence BOLT-LMM requires the additional adjustment for
PCs87.

Comment 1.7 — Figure 1A is dominated by published results – very hard to see novel/refined ones.

Authors’ reply: Thank you for this comment; we assume you are referring to Figure 2A, which is the
Manhattan plot for baseline adiposity associations that shows reported, refined, and novel SNPs, as Figure
1A displays model fits for a selection of individuals with adiposity data and has no published/novel/refined
classification. We have adjusted the point-size of the novel/refined variants in the Manhattan plot to make
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them more visible, which we hope addresses the issue. We have also added Supp. Fig. 13, which only shows
the novel/refined variants for further clarity.

Comment 1.8 — Biomarker phewas were conducted for rs429358, but why not phecode phewas ? whether
this SNP is related to any cancer phenotypes which can influence BMI dramatically?

Authors’ reply: Thank you for this suggestion. As the association of rs429358 with various phenotypes has
been widely studied, including phenome-wide association analyses at sample sizes larger than those available
in UK Biobank64, we did not attempt to duplicate these efforts and instead focussed on the longitudinal
biomarker associations (i.e. association of rs429358 with change in biomarker levels over time), which has
never been reported previously. However, at the reviewer’s request, we have now included a supplementary
figure with the PheWAS conducted in UKBB and added descriptive text (Supp. Fig. 14). This SNP is not
associated with any of the 38 cancer phenotypes at phenome-wide significance (P < 0.05/290 phenotypes
tested), so we did not perform any additional sensitivity analyses that exclude individuals with cancer diagnoses
from our results. The following text has been updated in the manuscript:

The APOE locus is a highly pleiotropic region that is associated with lipid levels58,59, Alzheimer’s
disease60,61, and lifespan62,63, among other traits64, both in the UKBB (Supp. Fig. 14) and
elsewhere. (page 6, lines 161-162)
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Reviewer 2

Reviewer’s major comments

Comment 2.1 — The article is very clearly written, with a logical presentation of the results. The topic is
well-motivated and the results are robust. The methods are sound and solid, a great treatment of longitudinal
data for GWAS. The follow-up analysis supporting the APOE association is convincing. Overall, I find it a
great paper using the underexploited HER data for longitudinal analysis with very moderate genetic effects.
Below, I list a couple of points, addressing them could improve the paper further.

Authors’ reply: Thank you for your kind words and positive assessment our work – we very much appreciate
you dedicating your valuable time to review our research.

Comment 2.2 — The demonstrated gain in power using multiple measurements per individual is very elegant
and a strong addition to the main message. It would be interesting to know how much variance per individual
is observed in the BMI across time? How big is it relative to the BMI variance in the population? Does it
correlate with the follow-up interval?

Authors’ reply: Thanks for this interesting comment! The intra-individual variance in BMI (mean = 3.02)
is about ten times lower than the inter-individual variance (30.3), a difference that is consistent across men
and women (see tables/RR-2-2.xlsx). The same holds for intra-individual vs population variance in weight,
with the former being about 10x lower. There is a large spread in the values of intra-individual variance
(figs/RR-2-2-distributions.png), and the value of this variance is mildly positively correlated with follow-up
metrics (R2 between intra-individual variance in BMI and length of follow-up = 0.111, R2 with number of
follow-up measures = 0.0581) (tables/RR-2-2.xlsx). However, the considerable heteroskedasticity prevents
inference on the exact nature of these relationships (figs/RR-2-2-correlations.png). We also performed joint
modelling using using the TrajGWAS software to test for genetic variants associated with the longitudinal
mean and within-individual variance in weight, but confirm previous findings of no genetic associations with
intra-individual variance in weight (Supp. Fig. 15). Results for these analyses have been added as follows:

Intra-individual variance is another longitudinal metric of interest, however we (Supp. Fig. 15)
and others53 find no genetic variants associated with intra-individual variance in weight over time.
(page 4, lines 93-94)

and methods:

Analyses were performed using the TrajGWAS package53 in Julia 136, for 177,472 unrelated indi-
viduals of white British ancestry with multiple measurements of weight included in the discovery
analyses. Briefly, TrajGWAS analysis is conducted in two stages to test for genetic effects on lon-
gitudinal trajectory mean, intra-individual variance, and a joint effect on either mean or variance
in a LME model framework53. In the first stage, we fit a null model for weight with fixed effects
for the intercept, age, age2, sex, and 21 genetic PCs; we included random effects for the intercept
and linear slope of age. In the second stage, we performed score testing with the saddle-point
approximation under the full model, i.e. including genome-wide effects for all variants with MAF
> 1% in the genotyped and imputed UKBB data that passed QC. (page 25, lines 713-720)

Comment 2.3 — Comparison of the current findings and past results (https://pubmed.ncbi.nlm.nih.gov/26426971,
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010303) would be important.

Authors’ reply:

Thank you for the suggestion. We now include the following text in our Discussion:
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Previous studies have estimated continuity in the genetic correlation of BMI measured at different
ages81, which is theorised to emerge by two possible mechanisms82: (1) common genetic (or
environmental) factors are associated with the rates of change in BMI over time, which we test in
this study, and (2) that these correlations are induced by time-specific genetic (or environmental)
factors in an autoregressive manner, i.e. BMI genetics at time-point t − 1 causally affect BMI
at time t. Studies testing the latter hypothesis have arrived at opposing conclusions: Gillespie et
al. (2022)83 find that on a genome-wide scale, age-specific genetic effects in an autoregressive
framework do not explain differences in BMI heritability across ages 40-73 years, while Winkler et
al. (2015) did identify 15 genetic loci with differential effects on BMI in younger adults (age < 50
years) and older adults (age > 50 years). Both studies were ”pseudo-longitudinal”, i.e. the same
individuals were not monitored over a period of time, but rather cross-sectional individual data
was grouped into age-bins. Our work tests a distinct hypothesis and is also, to our knowledge,
the first to perform a truly longitudinal genetic study with repeated measures in this age group.
(page 9, lines 245-256)

Comment 2.4 — The APOE (rs429358) variant strongly associates with lifespan/LDL/ALZ, which raises
suspicion. I appreciate that the authors have included follow-up length to avoid survival bias. But this variant
is correlated with age in the UKBB, due to survival bias. I’d suggest some extra analyses to ensure that
the finding is not driven by survival bias: 1) Repeat the association for this SNP without correction for
age+age2. 2) Check other lifespan-associated SNPs (e.g. https://pubmed.ncbi.nlm.nih.gov/29227965/) for
their association with the slope or the cluster memberships. If they do not show any signal, it is reassuring.

Authors’ reply:

Thank you for this insightful comment. We have strengthened the analyses against survival bias even further
by following your suggestions. The following text has been added to the Results:

Despite the association of rs429358 with lifespan, we found no association between this variant
and follow-up metrics in our study (Supp. Table 22); we also found no significant difference
in the effect of this variant on adiposity change from two sets of models: (1) without including
age and related covariates, i.e. follow-up metrics and year of birth, and (2) with these covariates
(heterogeneity P-value Phet < 0.05) (Supp. Fig. 16). Finally, we observe no associations between
135 of 138 published lifespan-associated genetic variants and our adiposity-change phenotypes at
P < 3.6×10−4 (FWER controlled at 5% across 138 tests via the Bonferroni method). Of the three
SNPs associated with both weight change and lifespan, two (rs429358 and rs7412) are variants in
the APOE gene, and rs1085251 is a known obesity association in the FTO locus (Supp. Table
16). (page 7, lines 165-173)

and the accompanying sections in the Methods:

We curated a list of 138 independent variants associated with longevity in the GWAS Catalog55,
accessed on 27 March 2023 (Supp. Table 16). We identified independent SNPs that passed
genotyping and imputation QC filters in UKBB by pairwise pruning variants in LD (r2 > 0.1)
within a 1 Mb window. One of the lead variants identified in this study, i.e. rs429358 in the
APOE locus, was pruned out in favour of rs4420638, which is 11 kb away from the lead variant
and in LD with rs429358 with r2 = 0.69. We looked up the effects of these variants in the various
adiposity-change GWAS summary statistics and established significance at P = 3.60 × 10−4

(Bonferroni-corrected at 5% across 138 tests). (page 25, lines 699-705)

and Discussion:

As longevity may confound the APOE-weight loss association62,63, we adjusted analyses for the
length of follow-up in EHR to mitigate against survivor bias; however, we also present age-
unadjusted analyses and demonstrate that other lifespan-associated variants are not associated
with adiposity change in our GWASs. (page 11, lines 322-325)

have also been updated.
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Comment 2.5 — It seems to be a variant associated with changes in several traits and not always in the
expected direction, based on its effect on BMI. What could be the biological explanation for this?

Authors’ reply: Thank you for this comment, as you say, the APOE rs429358 variant is highly pleiotropic64.
While some of the longitudinal effects we report here, particularly the lipid markers, are likely to be tightly linked
to weight-change, others may be independent of this association. For example, in our longitudinal analysis,
the BMI-lowering ’C’ allele of rs429358 is associated with a reduction in triglyceride levels and increase in
HDL-cholesterol levels over time. These are expected directions of effect given the literature on changes in
lipid levels with weight change95. On the other hand, the ’C’ allele of rs429358 is associated with higher
cross-sectional triglyceride levels96 and lower HDL-cholesterol levels95, which are the opposite of what one
would expect given its BMI association. We have summarised the longitudinal and cross-sectional associations
of rs429358, along with the observed phenotypic effects of BMI on each trait, in Table RR-2-5.xlsx. In all,
we believe it is not straightforward to hypothesise the effect of a single (pleiotropic) variant on polygenic
traits, such as BMI and cholesterol, based on the correlations between phenotypes alone. Teasing apart the
precise causal pathways (or lack of causal pathways) between these various effects is beyond the scope of this
manuscript. We have added a sentence to the Discussion to reflect these unexpected associations:

Some of the effects of rs429358 are discordant with previously reported phenotypic correlations
between obesity and these biomarkers, however, the causal longitudinal and pleiotropic nature of
these associations remain to be established. (page 11, lines 318-320)

Comment 2.6 — Given that 6 different (and close to independent) analysis were conducted [male/female
x 3 memberships are all independent, on top of the slope analysis and the sex-combined], the multiple testing
should be corrected not only for the number of SNPs, but also the number of traits, thus a threshold of 1E-8
would be fairer. This would remove 3 SNPs from Table 2. . . Related to this: why only the APOE variant is
discussed and the other hits are quite neglected. All the follow-up tests presented in Fig 3 could have been
tested for the 5 other SNPs of Table 2.

Authors’ reply: Thank you for this suggestion. As the adiposity-change metrics we study are all highly
correlated, the tests we perform are not fully independent of each other; however, we acknowledge this multiple
testing burden and have marked the three lead SNPs in Table 2 that would not pass a Bonferroni-adjusted
threshold of P < 1E-8 as suggested. We also conducted the follow-up analyses presented for rs429358 in
the APOE locus, i.e. association with abdominal adiposity change, and association with change in 45 other
biomarkers over time, for all 6 lead SNPs reported in Table 2.

Brief results:
1. Other than rs429358, no other lead SNP is associated with self-reported weight change in the past year
(all P > 0.01).
2. At P < 0.002 (accounting for 4 adiposity-change metrics and 6 lead SNPs), the reported rs429358 associ-
ations with WC-loss and WHR-loss remain significant; in addition, we find that the weight-increasing allele of
rs9467663 is also associated with gain in WCadjBMI over time (β = 0.0214).
3. At P < 2×10−4 (accounting for 45 biomarkers and 6 lead SNPs), 6/7 of the reported rs429358 associations
(with change over time in cholesterol, CRP, HDL cholesterol, lymphocytes, potassium, and triglyceride) remain
significant, with the exception of haemoglobin concentration, which we have now removed from the main fig-
ure. In addition, we find that the weight-increasing allele of rs9467663 is associated with gain over time in iron
(β = 0.176), haematocrit packed cell volume % (β = 0.00652), and mean corpuscular volume (β = 0.0145),
and loss over time in haemoglobin concentration (β = −0.0233). Similarly, the BMI-increasing allele of
chr6:26076446 is associated with gain over time in iron (β = 0.133) and loss over time in haemoglobin con-
centration (β = 0.0144). Both of these SNPs have been previously reported to associate with cross-sectional
values of haematological traits.

A brief discussion of these results has been added to the main text and presented in supplementary tables
(Supp. Tables 17-19):

Other than rs429358, none of the lead variants for adiposity change replicated in either MVP
or EstBB at P > 1.39 × 10−3 (FWER controlled at 5% across 6 variants via the Bonferroni
method) (Supp. Table 5). However, we were only sufficiently powered to replicate the effects of
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three of these in MVP (rs9467663, chr6:26076446, and the male-specific variant rs12953815), and
none in EstBB, as replication at 80% power required sample sizes of between 116,000 to 234,000
individuals with repeat measurements of BMI (Supp. Table 25). (page 7, lines 187-192)

Comment 2.7 — According to the UK Biobank approved project database there is no approved application
with the number 10844 https://www.ukbiobank.ac.uk/enable-your-research/approved-research?
query=10844#articles]. Could you please double-check?

Authors’ reply: Thanks for spotting this, it appears to be an unintentional mistake on our part. This should
read application number 11867.

Reviewer’s minor comments

Comment 2.8 — “Moreover, the genetic correlation between change in BMI and weight is nearly perfect”
-> “Moreover, the genetic correlation between change in BMI and change in weight is nearly perfect”

Authors’ reply: Thank you for the clarification, we have edited this now:

Moreover, the genetic correlation between change in BMI and weight is nearly perfect (page 8,
lines 219-220)

Comment 2.9 — In Eq (1) “k = 1, 2” should be “k = 0, 1”.

Authors’ reply: Many thanks for spotting this, now corrected at (1).

Comment 2.10 — In Eq(2-3) ϵ0,i should be ϵi,0, same for ϵ1,i.

Authors’ reply: Thank you, now corrected in (2).

Comment 2.11 — In Eq(2-3) hats are needed for the γ s.

Authors’ reply: Thanks for pointing this out, we have now improved the notation in that section and clarified
that the γ0 and γ1 in (2) and (3) are distinct from the previously defined γ (and hence do not require hats in
(2) and (3)):

The coefficient vectors γ0 and γ1 in (2) and (3) are estimated by least squares and are distinct
from the previously estimated γ in (1). (page 15, lines 446-447)
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Reviewer 3

Reviewer’s comments

Comment 3.1 — This is a nice methodologically sounded paper exploring the genetic architecture of changes
in BMI vs BMI measured at 1 time point, which is what most of large GWASs have explored so far. I think
the most important point of the paper is how difficult is to find genetic signals for longitudinal changes in
BMI (and probably in many other traits). This is likely because the environmental influences pay a larger role
in this process. I feel this message can be highlighted more in the paper.

Authors’ reply: Thank you for your positive assessment of our work, and for dedicating your valuable time
to reviewing our paper. Our results suggest that it is relatively difficult to identify genetic associations with
longitudinal changes in obesity traits, compared with identifying loci associated with cross-sectional BMI (e.g.,
a single or averaged measurement). Intuitively, SNPs exhibiting association with cross-sectional BMI must
have had a causal impact on expected longitudinal BMI at some periods in individuals’ lifespans; for example,
the typical BMI SNP risk allele might have a life-long, constant, and weak effect on BMI, whereas some SNPs
might act strongly, but only in early life.

In performing genetic association with cross-sectional BMI across a population, the phenotype captures the
cumulative longitudinal effects of each particular BMI SNP genotype up to the age at which each individual is
measured. In contrast, our derived measures of longitudinal change essentially estimate the rate of change of
BMI over a relatively short time period after the date of first measurement of an individual. The magnitude
of genetic signal thus tends to be smaller in the longitudinal analysis compared to the cross-sectional one. In
contrast, some of the environmental processes are of the same magnitude in both cases, particularly short-
term high-frequency environmental variation occurring over the space of a few years. This can lead to smaller
signal-to-noise ratio, and therefore relatively low power to detect genetic effects in longitudinal analyses.

More broadly, there are several factors that might affect the relative power to detect longitudinal effects such
as: sample size, typically being smaller in longitudinal studies; the longer and more frequent the typical follow-
up is in a longitudinal study, the greater the power; and the particular statistical methods used to estimate
cross-sectional or longitudinal traits can affect the accuracy and precision of estimates, and hence the strength
of genetic signal detected.

We have added the following text to the Discussion:

However, our results indicate the relative difficulty of identifying genetic associations with longi-
tudinal changes in obesity traits, compared with identifying loci associated with cross-sectional
BMI. Variants associated with cross-sectional BMI must have had a causal impact on expected
longitudinal BMI at some periods in individuals’ lifespans; i.e. a cross-sectional BMI phenotype
captures the cumulative longitudinal effects of each BMI-associated genotype up to the age at
which the individual is measured. In contrast, our derived measures of longitudinal change target
the rate of change of BMI over a shorter average time period, and the magnitude of genetic signal
thus tends to be smaller in the longitudinal analysis compared to the cross-sectional one. This
means that the weaker longitudinal genetic signal can be obscured by the non-genetic contribu-
tion from individuals’ short-and long-term environment, whilst the stronger cross-sectional genetic
signal may be detected with higher power as the signal-to-noise ratio is larger. More broadly,
there are several factors that might affect the relative power to detect longitudinal effects such
as: sample size, typically being smaller in longitudinal studies; the longer and more frequent the
typical follow-up is in a longitudinal study, the greater the power; and the particular statistical
methods used to estimate cross-sectional versus longitudinal traits can affect the accuracy and
precision of estimates, and hence the strength of genetic signal detected. (page 10, lines 295-309)

Comment 3.2 — Can you clarify which time period the EHR data are covering? I.e. what’s the maximum
and median follow-up time used when considering BMI measurements? I cannot easily find this info.
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Authors’ reply: Thank you for the comment - the median follow-up time is presented in Table 1; we have
included minimum and maximum values for your reference in tables/RR-3-2.xlsx.

Comment 3.3 — With regard with follow-up time and the methods you used. How do you account for
censoring? In other words, do you consider the beginning of follow-up as the first measurement and the end
of follow-up the last measurement? Or do you consider the entire period covered by the EHR and account for
censoring (e.g. death)?

Authors’ reply: Thanks for your perceptive comment. In short, we do consider the beginning of follow-up
to be the first measurement and the end of follow-up to be the last measurement, and we linearly adjust for
some observed covariates that may affect when, and how often, an individual get measured (referred to as
their measurement process below) and/or whether an individual is included in the study (referred to as their
study selection process below).

To address your comment in more detail, in this dataset there are many factors that affect the timing and
availability of observations for any particular individual, including your example of censoring by death; an
additional example of censoring would be the process by which an individual is cured of a disease, leading to
discontinuation of measurement in primary care. There are several additional factors that affect measurement,
for example: (self)-selection to participate in UKBB may be causally driven by an individual’s characteristics;
similarly, the presence of BMI measurements in primary care records may be causally driven by an individual’s
medical conditions.

For our genetic association studies, we can think of the treatment (SNP genotype) as having been randomly
allocated to individuals. Further, any particular common SNP will have negligible causal effect on any complex
trait, in particular on any traits linked to the study selection/measurement/censoring processes.* Therefore,
since the study selection/measurement/censoring processes are independent of the treatment (SNP genotype),
they do not act as confounders, and we should obtain unbiased estimates of average treatment (genetic) effects
(intuitively, the study selection/measurement/censoring processes are the same in all genotypic classes).

While these genetic effects are estimated in the measured subpopulation (the UKBB), they should apply to the
wider UK population, unless there is a gene-environment interaction. In the case of gene-environment interac-
tion, if the phenotypic “environment” is causally linked to censoring/study inclusion/measurement processes,
then the genetic effects estimated (under a model without an explicit interaction term) may differ from those
of the wider UK population; e.g., if a SNP acts more strongly in 45-65 year-olds than in other age groups,
then our model would have an upwardly biased estimate of the magnitude of genetic effect compared to the
general UK population (as UKBB is enriched with 45-65 year-olds relative to the general population).

Comment 3.4 — How should one interpret the intercept from the LME? Would you get similar GWAS
results if simply averaging all the BMI measurements and running a GWAS on that?

Authors’ reply: Thank you for this insightful comment. The intercept for an individual should be interpreted
as a (scaled) estimate of that individual’s obesity traits at the age of first measurement in our UKBB and
primary care combined dataset. The scaling is performed across the entire subpopulation represented in dataset
via a rank-based inverse normal transformation, so it is useful to consider it approximately as representing SDs
from the subpopulation mean.

As expected, average BMI and weight are highly correlated with the intercepts from the LME (R2 = 0.95),
see tables/RR-3-4.xlsx. As suggested, we ran a GWAS on the rank-based inverse normal transformed average
adiposity trait (BMI or weight) within each sex strata (female-specific, male-specific, or sex-combined), with the
same adjustment for covariates as in the LMM intercept GWAS. We find that between 80-90% of associations
discovered in the average-trait GWAS are also genome-wide significant (GWS, P < 5E-08) in the LMM
intercept GWAS (tables/RR-3-4.xlsx), and the effect sizes of GWS SNPs are practically identical in both
studies (R2 = 0.998) (see figs/RR-3-4.png). It is worth noting that the LMM intercept GWAS appears better
powered to identify associations, despite identical sample sizes, as we discover up to 1.2x more GWS SNPs
associated with LMM intercept than with average trait in the same strata (tables/RR-3-4.xlsx).

We have added a brief comment on these to the Results:
*There is potentially the confounding effect of population stratification, with spatial location as a confounding variable, but

we deal with this within the methodological framework of BOLT-LMM.
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While the within-individual mean and baseline trait modelled from LME are phenotypically (R2 >
0.95) and genetically highly correlated (R2 > 0.99) (Supp. Fig. 17), the LME intercept appears
better powered for genetic association testing than the average trait, as we discover up to 1.2x
more GWS variants associated with the former (Supp. Table 20). (page 5, lines 94-98)

Comment 3.5 — The article would benefit from being clearer regarding the use of linear mixed models
vs B-splines. Can the author provide a graphical illustration of which methods were used for which analysis?
LME intercept was used for the BMI GWAS, while LME and B-spline + clustering were both used for the
BMI-change GWAS. Correct? The LME was not use for clustering at all?

Authors’ reply: Thank you for this suggestion. Your interpretation is correct and we have now included in
the Supplementary Information a workflow for carrying forward model estimates to GWAS (Supp. Fig. 18).

Comment 3.6 — Line 106: “All analyses were adjusted for baseline obesity trait and confounders, including
length of follow-up and number of follow-up measures, to mitigate survivor bias”. What are the “baseline
obesity trait” ? Can you be more explicit about the rationale for adjusting for length of follow-up and number
of follow-up measures? The two are also highly correlated and number of follow-ups correlates with BMI.
What is the difference if you run a GWAS without using these covariates?

Authors’ reply: Thanks for the clarification; the "baseline obesity trait" refers to the first measure of the
trait (BMI or weight) for each individual in our data. As you say, this is indeed modestly positively correlated
with follow-up metrics (length and number), which we note in lines:

On average, women with ten or more weight measurements are 8.3 kg (3.7 units of BMI) heavier
than their counterparts with 1-3 measurements; for men, this is an 8.2 kg (3.1 units of BMI)
difference. (page 5, lines 100-102)

Length and number of follow-up metrics may also indicate survivor bias, although the direction of association
is not straightforward - unhealthier individuals visit the GP more, and are weighed more frequently; however,
healthier individuals who survive longer may also have longer follow-up in our records. Moreover, the length
and number of follow-ups also affects the uncertainty of estimates generated by our models for adiposity-
change. We attempted to imperfectly account for these effects via the adjustment for length and number of
follow-ups.

To see how the adjustment influences genetic associations, we conducted GWAS for linear slope change in
adiposity without adjusting for length and number of follow-up metrics as suggested. rs429358 still emerges
as the only lead SNP across all strata, and no additional loci reach genome-wide significance in the GWAS
unadjusted for length of follow-up and number of follow-up measures. As seen in figs/RR-3-6.png, there is
also no difference in effect size of rs429358 on slope-change in adiposity between the follow-up-adjusted and
unadjusted studies.

Further, we compared the GWASs for probabilities of belonging to various adiposity change clusters adjusted
for follow-up metrics vs unadjusted for these metrics (tables/RR-3-6.xlsx). All lead SNPs discovered in the
original GWASs (adjusted for follow-up metrics) were near GWS (P < 5E-07) in the unadjusted analyses.
Similarly, any lead SNPs newly identified in the unadjusted GWASs also achieved P < 5E-07 in the original
GWASs. The only exception to this are lead SNPs in the FTO locus, which are identified in the male-specific
and sex-combined GWASs for probabilities of belonging to any of the top three adiposity clusters (high-gain,
moderate-gain, and stable) only in the unadjusted analysis. FTO is among the strongest known associations
with obesity137, and is also among the strongest associations with baseline adiposity in our analyses, suggesting
that this association is likely driven by baseline adiposity rather than adiposity-change. The adjustment for
length of follow-up and number of follow-up metrics in the original analyses likely accounted for this effect
due to correlation with baseline adiposity.

A brief report of these results has been added:

While all lead variants in the discovery GWASs remain significant at P < 5 × 10−7 in GWASs
that are not adjusted for follow-up metrics, we discover three variants in the FTO locus that are
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associated with BMI or weight gain only in analyses that are unadjusted for follow-up metrics
(Supp. Table 21). These associations may reflect genetic contributions to baseline weight rather
than weight-change, as FTO is among the strongest known loci for obesity and follow-up metrics
are strongly positively correlated with baseline obesity (Supp. Table 4). (page 7, lines 192-197)

Comment 3.7 — APOE C allele from rs429358 increase mortality risk I would imagine, so these people
should have a shorter follow-up and have less measurements, which might explain the BMI reduction over
time. Can you check the association between rs429358 and the number of measurements? I understand you
adjust for these effects in the model by controlling for length of follow-up and number of follow-up measures,
but would be good to try to chase what exactly is going on with this APOE allele and how much this is
explained by survival bias.

Authors’ reply: Thank you for the insightful comment, as there could plausibly be an association between
rs429358, which is associated with survival, and follow-up metrics in our data. We conducted a linear regression
to test the effect of each additional copy of the minor ’C’ allele of rs429358 on number of adiposity metrics
and length of follow-up (in years) in our data (tables/RR-3-7.xlsx). At P < 0.05, there is no effect of rs429358
’C’ allele dosage on the length of follow-up; however, each additional copy of this allele is associated with an
average reduction of 0.108 (SE = 0.048, P = 0.026) measures of BMI in women, and 0.122 (SE = 0.052,
P = 0.019) measures of weight in women. Although the direction of effect is consistent in men, there is
no significant association between rs429358 allele dosage and number of follow-up metrics in men (all P >
0.5). It is therefore plausible, but unlikely, that survival bias substantially modifies the association between
rs429358 and adiposity-change. Indeed, as we show in figs/RR-3-6.png, the associations between rs429358
and all adiposity-change metrics are virtually unchanged upon adjustment for follow-up metrics.

We summarise the results from this and other analyses to examine possible survival bias effects of rs429358
on adiposity-change:

Despite the association of rs429358 with lifespan, we found no association between this variant
and follow-up metrics in our study (Supp. Table 22); we also found no significant difference
in the effect of this variant on adiposity change from two sets of models: (1) without including
age and related covariates, i.e. follow-up metrics and year of birth, and (2) with these covariates
(heterogeneity P-value Phet < 0.05) (Supp. Fig. 16). Finally, we observe no associations between
135 of 138 published lifespan-associated genetic variants and our adiposity-change phenotypes at
P < 3.6×10−4 (FWER controlled at 5% across 138 tests via the Bonferroni method). Of the three
SNPs associated with both weight change and lifespan, two (rs429358 and rs7412) are variants in
the APOE gene, and rs1085251 is a known obesity association in the FTO locus (Supp. Table
16). (page 7, lines 165-173)

Comment 3.8 — Maybe you have done this analysis, but I missed it. But if you check all the SNPs that
are GW-significant for BMI, is there an enrichment of signals for BMI-change? Or the two are completely
independent?

Authors’ reply: Thank you for this comment. Variants that are associated with BMI do indeed have higher
χ2 statistics for association with BMI-change than would be expected by chance, which we observe in QQ-plots
across all strata (Supp. Figure 19). As you suggest, this is because the traits are not independent. We have
added the following text to the Results to reflect this:

As expected given their positive correlation, we observe inflation of the χ2 statistics for adiposity-
change slope associations amongst lead variants for baseline adiposity (Supp. Figure 19). (page
8, lines 210-211)

Comment 3.9 — Please specify the genetic correlation between the LME slope approach and the clustering
approach. In other words, how similar are the results between these two approaches ? (I guess u1 adj u0 vs
prob(k1) adj u0)
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Authors’ reply: Thanks for the suggestion: as expected, and reassuringly, the genetic correlation between
u1-adj-u0 (linear slope from LME) and p(k1)-adj-u0 (probability of belonging to the high-gain cluster from
non-linear modelling approach) is nearly perfect in all strata (tables/RR-3-9.xlsx).

Comment 3.10 — The genetic correlations between the BMI-change and the other measures are interesting,
but can be better explained. Panel B of figure 4 is confusing. What are the correlation you are testing? Why
the upper label says “genetic correlation with u0” ? Then each panel seems to have another label. If I correctly
understand the BMI-change phenotypes (u1 adj u0 and prob(k1) adj u0) have still a very high correlation
with BMI at baseline, despite you having adjusted for that. Isn’t then surprising that you don’t see any of the
GW-significant results for BMI from the largest GWAS of BMI popping up?

Authors’ reply: Thank you for this note. In this figure (old: Figure 4, revised: Figure 5) we wanted to
demonstrate that the baseline adiposity traits (u0) are correlated with the adiposity-change traits (linear slope:
u1, and probability of belonging to the high-gain cluster (p(k1)). We have modified the figure labels and legend
to clarify. You also correctly note that the baseline BMI and BMI-change traits are highly correlated, and as
we now show in Supp. Figure 19 (also in response to Comment 3.8), the BMI-change GWASs are enriched
for baseline BMI variants. None of these attain genome-wide significance, but this may be a limitation of the
sample size and it is likely that some BMI variants may be associated with BMI-change with effect sizes that
were too small to detect in our study.

Comment 3.11 — I’m a little skeptical about the claim that heritability of weight change is higher in women
than men. I can imagine many biases and the values are quite low anyway. Moreover, the distribution of the
underlying phenotype is probably different so this might be difficult to make heritability estimates directly
comparable. I would tone this down or seek for replication.

Authors’ reply: Thank you very much for the comment. In the Estonian Biobank, where we sought
replication, we estimate heritability of BMI-change in females to be 0.0215 (SE = 0.0056), and of males to
be 0.018 (SE = 0.0098). These values are low, but they are similar to those we estimate in the UK Biobank
discovery analyses (female h2 = 0.0289 (SE = 0.0056), and male h2 = 0.0105 (SE = 0.0059)). However,
as you mention, it is difficult to directly compare these due to differences in the underlying phenotype, so we
have clarified this in the text, removed the "sex-specific" label from the relevant Results section header, and
removed the phrase in the Abstract referencing higher heritability of adiposity-change in women:

Furthermore, we observe that the heritability of BMI and weight trajectories are higher in women
than in men (2.89% (0.56) vs 1.05% (0.59) for BMI slopes, Psexhet = 0.012; and 3.42% (0.53)
vs 1.69% (0.52) for weight slopes, Psexhet = 9.9 × 10−3). Similarly, we estimate the heritability
of BMI slopes in the Estonian Biobank to be higher in women (2.15% (0.56) in women vs 1.80%
(0.98) in men); however, these values are low and must be interpreted with caution. (page 8,
lines 202-207)

Comment 3.12 — Line 327, formula. Why did you use a log2 transformation?

Authors’ reply: Thank you for the note. We used a log transformation to reduce skewness in the distribution
of our defined jump Pi,j . We used base 2 in particular so that we could readily interpret changes of one unit
on the log scale as a two-fold change, which was useful for our internal discussions around choice of our quality
control jump threshold (i.e., where we used ±3 population SD on centred Pi,j). The scale of Pi,j is thus log2
of proportional change in BMI per unit time. The SD of the Pi,j is 2.22. So, the interpretation of our upper
3SD threshold is as a multiplicative increase of 23×2.22 ≈ 101 from the geometric mean of the proportional
change in BMI per unit time.

Comment 3.13 — Formula (9) line 417, there should be and i’ somewhere, right?

Authors’ reply: Thank you for spotting this typo, which we have now corrected.
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