

A composite reference standard is needed for bedaquiline antimicrobial susceptibility testing for *Mycobacterium* tuberculosis complex

Claudio U. Köser $0^{1,20}$, Paolo Miotto $0^{2,20}$, Nabila Ismail 0^3 , Richard M. Anthony 0^4 , Christian Utpatel^{5,6}, Matthias Merker 0^7 , Stefan Niemann $0^{5,6}$, Sabira Tahseen 0^8 , Leen Rigouts^{9,10}, Camilla Rodrigues¹¹, Shaheed V. Omar 0^{12} , Maha R. Farhat $0^{13,14}$, Uladzimir Antonenka¹⁵, Harald Hoffmann $0^{15,16}$, Daniela M. Cirillo 0^2 and Thomas Schön^{17,18,19}

¹Department of Genetics, University of Cambridge, Cambridge, UK. ²Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. ³South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. ⁴National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. ⁵Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. ⁶German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Germany. ⁷Evolution of the Resistome, Research Center Borstel, Borstel, Germany. ⁸National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan. ⁹Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. ¹⁰Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium. ¹¹Department of Microbiology, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, India. ¹²Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa. ¹³Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. ¹⁴Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA. ¹⁵Institute of Microbiology and Laboratory Medicine, Department IML red GmbH, Munich, Germany. ¹⁷Department of Infectious Diseases, Region Östergötland, Sciences, Linköping University Hospital, Linköping, Sweden. ¹⁸Division of Infection and Inflammation, Institute of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. ¹⁹Department of Infectious Diseases, Kalmar County Hospital, Linköping University, Kalmar, Sweden. ²⁰Both authors contributed equally.

Corresponding author: Claudio U. Köser (cuk21@cam.ac.uk)

Shareable abstract (@ERSpublications)
A composite reference standard minimises false-susceptible AST results for bedaquiline https://bit.ly/3wAVvFm

Cite this article as: Köser CU, Miotto P, Ismail N, et al. A composite reference standard is needed for bedaquiline antimicrobial susceptibility testing for *Mycobacterium tuberculosis* complex. *Eur Respir J* 2024; 64: 2400391 [DOI: 10.1183/13993003.00391-2024].

This extracted version can be shared freely online.

Copyright ©The authors 2024.

This version is distributed under the terms of the Creative Commons Attribution Licence 4.0.

Received: 29 Feb 2024 Accepted: 6 May 2024

To the Editor:

We echo the latest calls that have been made to increase the capacity for antimicrobial susceptibility testing (AST) for bedaquiline for the *Mycobacterium tuberculosis* complex [1, 2]. However, we would like to highlight the limitations of using insufficiently standardised or validated phenotypic AST methods and breakpoints as the reference standard for bedaquiline AST. Moreover, we advocate for adoption of a composite reference standard that considers genotypic AST results to minimise false-susceptible results for borderline/low-level resistance mechanisms and avoid confusion during clinical decision-making.