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Figure S1: Accuracy boxplots for seven random forest models for each protein type.  
We performed 50 random forest analyses on three protein type indicator variables (dual domain, 
DGC, and PDE) with randomized 50/50 train-test split for seven combinations of network 
features in the order from left to right above: eigenvector centrality, PageRank, degree, 
betweenness, average nearest neighbor degree, eigenvector + PageRank + betweenness, and 
all five features combined. Each boxplot contains accuracy scores of one random forest model 
for one of the indicator variables colored by domain type: red indicates dual domain, green 
indicates DGC, and blue indicates PDE.  
 
 
 



 
 
Figure S2: Heatmap of hierarchical clustering of biofilm formed on all strains and 
environments, normalized by WT batch median. As in Figure 3, hierarchical clustering is 
performed on the distance matrix of the raw data with reordering of rows and columns. Column 
clustering seems to dominate row clustering, grouping phenotypes mostly by strains that have a 
larger influence on the amount of biofilm formed. To control potential skewing of the z-score 
values due to known high-formation strains and detergents that kill all bacteria, we removed the 
detergents (Tween) and the strains lacking the genes Pfl_0460, Pfl_4086, Pfl_264, Pfl_4876, 
Pfl_0192, rapA, Pfl_4552, Pfl_3800 (leftmost columns).  Loss of these genes is known to 
promote robust biofilm formation across every environment tested. The hierarchical clustering of 
the modified dataset with omitted rows and columns is shown in Figure 2. 
 
 



Figure S3: Heatmap of hierarchical clustering of z-scores of transcription levels by 
environment using (columns) in each strain lacking the respective gene (rows). M-tartaric 
acid, D-Galactose and K10 medium induce more variation of transcription levels and tend to 
down-regulate several genes, as evidenced in the left lower corner. The genes Pfl0_958 and 
Pfl0_1252 are down-regulated in several different environments, while the expression of gene 
Pfl0_0190 is significantly reduced in glycogen medium.  
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Figure S4: PCA of gene expression with respect to the lapD gene in 192 environments. 
After we computed the ratio of all genes with respect to lapD in each environment, we 
performed PCA analysis on all environments before and after we calculated the logarithm of the 
ratios. We performed the same PCA analysis of additive log ratios for all reference genes and 
discovered that their biplots looked similar to the ones shown here. We believe this supports the 
lack of variation on the z-score heatmap.  In the left panel we considered transcription level ratio 
of all genes to lapD, which indicate that in almost all environments the genes do not change 
their transcription levels drastically compared to the lapD gene. The logarithm of those ratios 
smooths out any outliers with the first principal component explaining 95.2% of variation (right 
panel). We chose the lapD gene as a reference gene due to its importance in the signaling 
mechanism, however, other reference genes produce similar results with no significant outliers 
in the PCA of log ratios (not shown).  
 



 

Figure S5: Exponential diffusion of gene expression data for parameter alpha. One might 
reasonably wonder if there is a synchronous up- or down-regulation of transcriptional levels in 
different environments for interacting proteins. That is, do proteins that physically interact show 
coordinated changes in gene expression? To investigate this possibility, we processed the 
unscaled expression data as follows: first, accounting for compositional nature of the expression 
data, as it is conventionally normalized per 1000 reads, we converted the values into additive 
log ratios, choosing lapD as a reference gene, given its importance as the key receptor. To 
incorporate expression data into network topology we gradually diffused the processed 
transcription levels on the network with the exponential of the graph Laplacian. Therefore, the 
feature input of gene i in environment j contains information about smoothed transcription levels 
of all nodes in the network in the environment j with respect to node i.  For instance, the 
neighbors of node i would have a larger impact on the value at i as opposed to the genes 
located further away in the network. The diffusion of transcription data on the network was built 
using the standard graph Laplacian L=D-A. The log ratios with respect to lapD were diffused by 
the matrix exponential  𝑒!"# at 𝛼 = 0.025, where the level of diffusion seemed sufficient but 
hasn’t yet reached an equilibrium. This smoothed transcription information propagated through 
the entire network did not show any significance in phenotype prediction models (Table S3).  
Shown here are the transcription level ratios with respect to the lapD gene in each environment 
diffused by the matrix exponential for different values of the diffusion parameter alpha. Each 
gene ratio is indicated by a line. At alpha = 0.00, the gene data is not diffused, giving the original 
values of transcription level ratios on the y-axis, and at alpha = 0.30, the diffusion almost 
reaches equilibrium with most gene data smoothed out across the PPI network. For linear 
regression model we chose the diffused gene data at alpha value of 0.025 for moderate spread 
of information on the network. 

 
 
 
 
 



 
 

 
Figure S6: Histogram of adjusted R-squared values for 1000 permuted models.  To ensure 
our linear model does not overfit to the available data, we undertook a sequence of permutation 
tests varying different parts of the data. We randomly permuted the 9408 values of the 
dependent variable (49 strains tested across 192 environments) 1000 times and fitted the same 
linear regression model to each permutation, recording the adjusted R-squared of each model. 
The exceptionally narrow distribution around zero on the left shows that permuted values could 
not be explained by our dependent variables. The red line indicates the adjusted R-squared of 
the original model (i.e., fit to the correctly ordered dependent variable values).  None of the 
resulting models showing any fit to the data.  
 
 
 
 
 



 
 
Figure S7: Controlled protein permutation testing.  We performed additional permutation 
testing of the protein information by keeping the environments in the correct order but 
individually permuting the set of strain/protein values within each environment. All of the 
resulting strain/protein-permuted models returned adjusted R-squared values of 0.376 (to three 
significant figures), indicating consistent loss of significance for network features, as intended 
(that is, when the wrong strain/protein information is provided). Thus, the protein information is 
indeed statistically significant in explaining around 6% of the amount of biofilm formed for 
phenotypes. We achieved a larger adjusted R-squared with nonlinear network terms, but some 
of them do not meet any reasonable p-value threshold; for simplicity we thus restrict our 
attention to linear models. Keeping the environments correctly ordered, we applied the same 
random permutation of proteins to all environments per run; that is, the protein information was 
not completely random, but it was incorrectly ordered in the same way in each environment. The 
red line indicates the adjusted R-squared of the true model. Notably, the fit to the permuted data 
provided higher adjusted R-squared than for the true model in 10.3% of these constrained 
permutations. Whereas such results might at first glance indicate possible overfit, we suspect 
that the small size of the model allowed for many permutations where the protein types (cf. 
specific proteins) were mapped closely enough that such results should not be surprising. That 
is, good results might reasonably occur if high-degree duals were largely mapped onto high-
degree duals (about a fourth of the whole network), and low-degree PilZ-binding proteins were 
mapped onto low-degree PDEs or DGCs, which, at least in terms of their PPI network 
centralities are practically indistinguishable as groups. Hence, while the network features are 
statistically significant and are not vulnerable to completely random effects, they do not possess 
finer resolution that would allow them to differentiate between proteins that behave quite 
similarly in the PPI network. We interpret the results in here as indicating that the main 
contribution from the PPI network protein features may be mostly tied to the protein type (dual, 
PDE, DGC, PilZ) as opposed to the specific protein identities within those types.  We also 
advise carefully permutation testing any nonlinear larger-scale models, as the chase for finely 
tuned protein information might make a model even more vulnerable to random effects.  



 
Figure S8: Subgraph of the PPI network as a “Hub Model’ visualization.  The eight highest 
degree dual-domain proteins (with degree 17 and above, yellow) and all DGCs (green) that 
interact with them are included as nodes in the induced subgraph of the PPI network. Only three 
DGCs were excluded from the subgraph, since they do not interact with these dual-domain 
proteins: Pfl_0190, GcbB, Pfl_2176. The large graph layout in the igraph package was used for 
the subgraph visualization. These core dual-domain and DGC interactors play crucial role in the 
localized signaling of the “Hub Model”. 


