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Supplementary Figures 

 

 

 

 

 

 

Figure S1: Amino acid compositions of sequences generated by different AMP 

sequence generation methods. For each AMP sequence generation method 

(Nagarajan et al. 2018; Van Oort et al. 2021; Szymczak et al. 2022), the average 

proportions of different amino acid residues per peptide sequence were calculated. 

The amino acid compositions of the AMPd-Up training sequences were also analyzed 

for comparison. 
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Figure S2: Sequence similarity distribution of the AMPd-Up-generated 

sequences to known AMPs. The known AMP sequence set comprises 4,538 distinct 

sequences downloaded from Antimicrobial Peptide Database (APD3) (Wang et al. 

2016) and Database of Anuran Defense Peptides (DADP) (Novković et al. 2012). 

The sequence similarity distribution, with a mean of 51.03% and a standard deviation 

of 9.38%, was calculated based on the 2,000 sequences generated by AMPd-Up. The 

sequence similarity of each generated sequence to known AMPs was considered as 

the similarity of that sequence to its most similar known AMP sequence, based on 

which the distribution was plotted.  
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Figure S3: Distributions of pairwise sequence similarities between different 

sequence sets of AMPd-Up. The pairwise sequence similarities between two 

different sets of sequences were calculated as the similarities of all sequence pairs 

between the two sets (e.g., Generated vs. Training), while the pairwise sequence 

similarities of the same set of sequences (i.e., sequence diversity measurements) were 

defined as the similarities of sequences to each other in the set (e.g., Generated vs. 

Generated). The intra-model sequence similarities were calculated as the similarities 

of sequences generated by the same model instance to each other, while inter-model 

sequence similarities were calculated as pairwise sequence similarities between sets 

of sequences generated by different model instances. A set of 2,000 random 

sequences matching the length distribution of the 2,000 generated sequences were 

added for comparison, in addition to the training and generated sequence sets. Mean 

(μ) and standard deviation (σ) values of each distribution are as follows: Random vs. 

Random (μ = 13.71%, σ = 5.09%), Random vs. Generated (μ = 10.34%, σ = 5.28%), 

Random vs. Training (μ = 13.76%, σ = 4.91%), Training vs. Training (μ = 18.06%, σ 

= 7.92%), Generated vs. Training (μ = 18.80%, σ = 8.94%), Generated vs. Generated 

(μ = 33.61%, σ = 16.18%), Intra-model (μ = 39.14%, σ = 19.79%), and Inter-model 

(μ = 33.56%, σ = 16.14%). Two-sided Kolmogorov-Smirnov tests reveal that the 

difference between any two of the distributions is significant (p < 0.0018), except 

that between Generated vs. Generated and Inter-model (p = 0.0519). We note that 

0.0018 is an adjusted alpha level calculated with Šidák correction (Šidák 1967) from 

a family-wise alpha level of 0.05 for the multiple comparisons. 
 

 

 



 S4 

Supplementary Tables 

Table S1: Antimicrobial susceptibility testing and hemolysis experiment results of the 58 selected peptides in vitro. Peptides were tested for 

their antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 for their minimum inhibitory 

concentration (MIC) and minimum bactericidal concentration (MBC) values. Porcine red blood cells (RBCs) were used to test the hemolytic 

activity of the selected peptides for their hemolytic concentration (HC50) values. Data are presented as the lowest effective peptide concentration 

range (μg/mL) observed in three independent experiments performed in duplicate, with one maximum data point and one minimum data point 

dropped for each measurement. Ranateurin-4 (Goraya et al. 1998) and OT15 were used as the positive and negative control peptides, respectively. 

List Peptide name 

Antimicrobial susceptibility testing 
Hemolysis 

testing 

E. coli 

ATCC 25922 

S. aureus 

ATCC 29213 

Porcine 

RBCs 

MIC 

(μg/mL) 

MBC 

(μg/mL) 

MIC 

(μg/mL) 

MBC 

(μg/mL) 

HC50 

(μg/mL) 

A 

DeNo1001 2 – 4 2 – 4 32 – 128 64 – >128 >128 

DeNo1002 2 – 4 2 – 4 64 – 128 64 – >128 128 

DeNo1003 2 – 4 2 – 4 ≥128 ≥128 >128 

DeNo1004 64 64 >128 >128 >128 

DeNo1005 >128 >128 >128 >128 >128 

DeNo1006 8 – 16 16 – >32 >128 >128 >128 

DeNo1007 4 4 – 8 4 4 – 8 >128 

DeNo1008 >128 >128 >128 >128 16 – 32 

DeNo1009 8 – 16 8 – >128 >128 >128 >128 

DeNo1010 4 4 – 8 32 – 64 32 – 128 64 – 128 

DeNo1011 32 32 >128 >128 32 

DeNo1012 32 64 >128 >128 >128 



 S5 

DeNo1013 16 16 – 32 >128 >128 64 

DeNo1014 64 64 >128 >128 ≥128 

DeNo1015 128 128 >128 >128 >128 

DeNo1016 4 4 2 – 4 2 – 8 4 – 8 

DeNo1017 4 4 2 – 4 2 – 4 16 

DeNo1018 1 – 2 2 – 4 8 8 128 

DeNo1019 16 16 >128 >128 >128 

DeNo1020 64 – 128 64 – 128 >128 >128 >128 

DeNo1021 8 8 – 16 32 – 64 32 – 128 >128 

DeNo1022 4 16 – >128 4 4 – 16 ≥128 

DeNo1023 128 128 >128 >128 >128 

DeNo1024 ≥128 ≥128 >128 >128 >128 

DeNo1025 >128 >128 >128 >128 >128 

DeNo1026 16 – 32 32 – 64 ≥128 ≥128 ≥128 

DeNo1027 32 32 – 64 >128 >128 >128 

DeNo1028 >128 >128 >128 >128 >128 

DeNo1029 >128 >128 >128 >128 >128 

DeNo1030 128 ≥128 >128 >128 >128 

DeNo1031 8 – 16 16 16 32 – >64 128 

DeNo1032 >128 >128 >128 >128 >128 

DeNo1033 >128 >128 >128 >128 >128 

DeNo1034 16 – 32 16 – 64 >128 >128 >128 

DeNo1035 >128 >128 >128 >128 >128 

DeNo1036 >128 >128 >128 >128 >128 

DeNo1037 >128 >128 >128 >128 >128 
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DeNo1038 64 64 – 128 >128 >128 >128 

B 

DeNo1039 >128 >128 >128 >128 32 – 64 

DeNo1040 64 – 128 ≥128 64 64 – 128 >128 

DeNo1041 >128 >128 >128 >128 >128 

DeNo1042 >128 >128 >128 >128 >128 

C 

DeNo1043 >128 >128 >128 >128 >128 

DeNo1044 ≥128 ≥128 >128 >128 >128 

DeNo1045 64 64 – 128 >128 >128 >128 

DeNo1046 16 – 64 16 – 64 128 128 >128 

DeNo1047 ≥128 ≥128 >128 >128 >128 

DeNo1048 128 128 >128 >128 >128 

DeNo1049 4 – 8 4 – 16 >128 >128 >128 

DeNo1050 >128 >128 >128 >128 >128 

DeNo1051 16 – 32 16 – 64 >128 >128 >128 

DeNo1052 ≥128 ≥128 >128 >128 >128 

DeNo1053 >128 >128 >128 >128 >128 

DeNo1054 >128 >128 >128 >128 >128 

DeNo1055 ≥128 ≥128 >128 >128 >128 

DeNo1056 32 – >128 32 – >128 >128 >128 >128 

DeNo1057 8 – 16 8 – 32 32 32 – 128 >128 

DeNo1058 >128 >128 >128 >128 >128 

Controls 
Ranateurin-4 8 – 16 8 – 16 2 – 4 4 64 – 128 

OT15a >128 >128 >128 >128 >128 
a OT15 (TKPKGTKPKGTKPKG) is a truncated form of a negative control peptide OT20 (Horváti et al. 2017) used in previous 

studies. 
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