Supplementary Information

The transcriptional co-repressor Runx1t1 is essential for MYCN-driven neuroblastoma tumorigenesis

Jayne E. Murray^{1,13}, Emanuele Valli^{1,13}, Giorgio Milazzo^{2,13}, Chelsea Mayoh^{1,3}, Andrew J. Gifford^{1,3,4}, Jamie I. Fletcher^{1,3}, Chengyuan Xue¹, Nisitha Jayatilleke¹, Firoozeh Salehzadeh¹, Laura D. Gamble¹, Jourdin R. C. Rouaen¹, Daniel R. Carter^{1,3,5}, Helen Forgham¹, Eric O. Sekyere¹, Joanna Keating¹, Georgina Eden¹, Sophie Allan¹, Stephanie Alfred¹, Frances K. Kusuma¹, Ashleigh Clark¹, Hannah Webber¹, Amanda J. Russell^{1,15}, Antoine de Weck¹, Benjamin T. Kile^{6,7}, Martina Santulli², Piergiuseppe De Rosa², Emmy D. G. Fleuren¹, Weiman Gao¹, Lorna Wilkinson-White⁸, Jason K. K. Low⁹, Joel P. Mackay⁹, Glenn M. Marshall^{1,3,10}, Douglas J. Hilton⁷, Federico M. Giorgi², Jan Koster¹¹, Giovanni Perini^{2,14}, Michelle Haber^{1,4,14}, Murray D. Norris^{1,12,14,*}

¹Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia. ²Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy. ³School of Clinical Medicine, UNSW Sydney, NSW, Australia.

⁴Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia.
⁵School of Biomedical Engineering, University of Technology Sydney, Broadway, NSW, Australia.
⁶Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
⁷The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
⁸Sydney Analytical Core Research Facility, The University of Sydney, Sydney, Australia.
⁹School of Life and Environmental Sciences, The University of Sydney, Sydney Australia.
¹⁰Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
¹¹Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
¹²UNSW Centre for Childhood Cancer Research, UNSW Sydney, NSW, Australia.
¹³These authors contributed equally: Jayne E Murray, Emanuele Valli, Giorgio Milazzo.
¹⁴These authors jointly supervised this work: Giovanni Perini, Michelle Haber, Murray D Norris.
¹⁵Present address: Garvan Institute of Medical Research, Darlinghurst, NSW, Australia

*Correspondence Murray Norris, Email: : mnorris@ccia.unsw.edu.au

Inventory of Supporting Information

Supplementary Figures

- 1. Supp Fig. 1 ENU mutagenesis identifies Runx1t1 responsible for loss of tumor formation.
- 2. Supp Fig. 2 Runx1t1 protein translation driven by MYCN...
- 3. Supp Fig. 3 RUNX1T1 loss leads to downregulation of MYCN dimerization partner MAX
- 4. Supp Fig. 4 Colony formation and histopathology staining following ...
- 5. Supp Fig. 5 RUNX1T1 forms part of an LCH repressor complex
- 6. Supp Fig. 6 RUNX1T1 depletion downregulates Hallmark oxidative phosphorylation...
- 7. Supp Fig. 7 RUNX1T1 loss reduces proliferation in alveolar rhabdomyosarcoma ...

Supplementary Tables

- 1. Supp Table 1 Doxycycline-induced knockdown of RUNX1T1 in KELLY xenografts
- 2. Supp Table 2 Primers and probes used in real-time PCR analysis for mouse genotyping
- 3. Supp Table 3 Primers for expression assays
- 4. Supp Table 4 Primers used to create 5'UTR RUNX1T1 constructs
- 5. Supp Table 5 Sequence of oligos used to create RUNX1T1 shRNA constructs
- 6. Supp Table 6 Primers used to create mutant RUNX1T1 con
- 7. Supp Table 7 Primers for Max ChIP-qPCR assays
- 8. Supp Table 8 Antibodies used

Supplementary Fig. 1: ENU mutagenesis identifies Runx1t1 responsible for loss of tumor formation. (a) Tumor delay in offspring of female Th-MYCN mice crossed with ENU-treated male mice (n=1716). (b) H&E staining of the tumor from mouse #1590 demonstrating different cell types. (c) Backcrossing of the #1590 line to Balb/c mice compared to non-mutated Th-MYCN mice backcrossed in the same fashion. Mice that developed tumors are shown as black circles while those that did not develop tumors are shown as red triangles. MWM are unmutated Th-MYCN mice crossed with Balb/c and then backcrossed to Th-MYCN mice (n=107), and XWM represent #1590 mutated mice crossed in the same way (n=149) (d) Backcrossing of the #1590 line to C57BL/6 mice compared to non-mutated Th-MYCN mice backcrossed in the same fashion. Mice that developed tumors are shown as black circles while those that did not develop tumors are shown as red triangles. MBIM are unmutated Th-MYCN mice crossed with C57BL/6 and then backcrossed to Th-MYCN mice (n=115), and XBIM represent #1590 mutated mice crossed in the same way (n=144) (e) Kaplan-Meier survival analysis of mice hemizygous for the Th-MYCN transgene and with heterozygous knock-out of Runx1t1 (i.e. Th-MYCN (+/-); Runx1t1 (+/-); black line; n=347) demonstrate significantly decreased tumor incidence by comparison with hemizygous Th-MYCN mice with wild-type Runx1t1 (i.e. Th-MYCN (+/-); Runx1t1 (+/+); red line; n=183; p<0.0001 by log-rank test). (f) Kaplan-Meier survival curve of mice hemizygous for the Th-MYCN transgene and either wild-type for Runx1t1 (red; n=40) or harboring the Runx1t1 Y534H mutation (black; n=32, p = 0.0401 by log-rank test).

Supplementary Fig. 2: Runx1t1 protein translation driven by MYCN is required to sustain MYCNmediated hyperplasia. (a) The percentage neuroblast hyperplasia scored from homozygous or wild-type Th-MYCN mice, with either wild-type or mutated (Y534H) Runx1t1. Scoring of n≥3 mice was done for each genotype and timepoint. Th-MYCN (+/+) Runx1t1 (+/+) all time points n=4 except day 0 (n=9), 4 weeks (n=3), 5 weeks (n=8), 7 weeks (n=7); Th-MYCN (+/+) Runx1t1 (+/+Y534H) all time points n=5 except day 0, 1 and 2 weeks (n=6), 7 weeks (n=3); Th-MYCN (-/-) Runx1t1 (+/+) all time points n=4 except day 0 (n=10), 1 and 2 weeks (n=6), 5 weeks (n=5). (b) Western Blot of Runx1t1 on brain tissue samples obtained at Day 0 from mice homozygous for the Th-MYCN transgene and either wild-type (+/+) or mutant (+/+Y534H) for Runx1t1, demonstrating no significant difference in protein levels. Quantitation of western blot, relative to the Actin control. Values represent means of 4 different brain samples for each genotype ± SEM. Each data point shows the mean value of 3 independent Western blots. Mann Whitney 2-tailed test p=0.2 (c) Kaplan-Meier survival analysis of RUNX1T1 expression levels in the publicly available RNAseg dataset of 498 human neuroblastoma samples from the neuroblastoma R2 database. Cohort was cut at the median into high (n=249) and low (n=249) RUNX1T1 expression, p< 0.0001 (log-rank test). (d) Kaplan-Meier survival analysis based on RUNX1T1 protein expression in a TMA of primary neuroblastoma (n=77), ganglioneuroblastoma (n=5) and ganglioneuroma (n=12). Samples were grouped based on the RUNX1T1 score 0-4 (n=38) and 4-9 (n=56); (p=0.034).

а

Supplementary Fig. 3: RUNX1T1 loss leads to downregulation of MYCN dimerization partner MAX. (a) Following RUNX1T1 shRNA downregulation in KELLY cells, RUNX1T1 and MYCN protein levels were monitored at 24, 48 and 72 hr timepoints. Despite a significant decrease in RUNX1T1 (p< 0.05), MYCN protein was significantly increased. Values are mean ± SEM from 3 independent experiments. Two-tailed unpaired ttest (RUNX1T1 shEV 24hr p=0.3973, 48hr p=0.9152, 72hr p=0.8254; sh#1 24hr p=0.0026, 48hr p=0.0004, 72hr p=0.0001; MYCN shEV 24hr p=0.5479, 48hr p=0.7921, 72hr p=0.4004; sh#1 24hr p=0.0499, 48hr p=0.0462,72hr p=0.0363) (b) Doxycycline-induced knockdown of RUNX1T1 (72 hrs; 1 µg/mL) in KELLY cells significantly reduced MAX protein levels. Values represent means from 3 independent experiments ± SEM. Two-tailed unpaired t-test shEV p=0.0083, sh#1 p=0.0021. (c) Western blots show no significant changes in expression of seven Max binding partners following knockdown of RUNX1T1 with shRNA in KELLY cells. Each experiment has been repeated three times with similar results. (d) Co-IP with MYCN antibodies following shRNA knockdown of RUNX1T1 in KELLY cells led to a significant reduction in the ratio MAX:MYCN binding by comparison with control cells (ns p=0.1436, *p=0.0196) and (e) significantly decreased binding of MYCN to the promoter of target genes GSPT1, CLNS1A and NAP1L1, as determined by ChIP-qPCR. Two-tailed unpaired t-test GSTP1 ns p=0.3199, **p=0.0054; CLNS1A ** p=0.002, **** p<0.0001; NAP1L1 ns p=0.0715, *** p=0.0007. Values represent means from 3 independent experiments ± SEM.

Supplementary Fig. 4

Supplementary Fig. 4: Colony formation and histopathology staining following shRNA knockdown of **RUNX1T1.** (a) RUNX1T1 knock down after 72hrs of doxycycline (1 µg/mL) treatment in SH-SY5Y cells, with two independent shRNA constructs (left panel). Quantitation from four independent experiments (right panel) demonstrated significantly decreased RUNX1T1 with shRNA#1 (*** p=0.0001) and shRNA#2 (* p=0.0327). shEV ns p=0.1298. Two-tailed unpaired t-test. Values represent means from 4 independent experiments ± SD. (b) Colony formation following doxycycline-induced knockdown of RUNX1T1 in SH-SY5Y cells, with two independent shRNA constructs. Colonies are represented as a percentage relative to the untreated control from three independent experiments. Quantitation demonstrated a significant in shRNA#1 (*** p=0.0001) and shRNA#2 (*p=0.0327). shEV ns decreases colony number in p=0.1298.Two-tailed unpaired t-test. (c) Representative images of xenografted KELLY cells at 7 days post-doxycycline and end-point. Tumors are stained with H&E and MYCN. Scale bar 20µm. (d) Representative images of xenografted BE(2)-C tumor cells at end-point post-doxycycline treatment compared to vehicle control. Tissue samples were stained either with H&E or immunohistochemically for MYCN and RUNX1T1. Immunostaining for MYCN protein demonstrated similar strong nuclear staining in both cohorts. Reduced RUNX1T1 staining was observed in tumor cells.

Supplementary Fig. 5

Supplementary Fig. 5: RUNX1T1 forms part of an LCH repressor complex. (a) String analysis performed following LC-MS/MS of FLAG-IP samples from BE(2)-C cells transiently (48 hrs) transfected with 3xFLAGtagged wild type RUNX1T1. Clusters, identified by different colors are putative protein complexes based on published data. DNA binding transcription factors including HAND2 and epigenetic modifiers (HDAC2, KDM1A and RCOR3) are highlighted in the green circles. (b) graphical representation of the RUNX1T1 deletion mutants used. (c) (d) Individual deletion of each of the four RUNX1T1 NHR regions followed by Co-IP with either CoREST3/RCOR3 (c) or LSD1 (d). n=1 experiment. (e) HAND2 Knock-Down with shHAND2 after 72 hrs of doxycycline (1µg/mL) treatment in KELLY cells. (f) normalized quantification (relative to GAPDH) from three independent experiments demonstrated significantly decreased HAND2 levels and no significant change in RUNX1T1 following shRNA-mediated HAND2 knockdown. Data are mean ± SD (n = 3 biological replicates; twotailed unpaired t-test). * p < 0.05; ** p < 0.01; *** p < 0.001. (g) RUNX1T1 and HAND2 ChIP-qPCR assays in KELLY cells with HAND2 Tet-inducible KD) cells following doxycyline treatment (1 µg/ml for 48 hrs). Input (white bars), HAND2 IP (light gray bars) and RUNX1T1 IP (dark grey bars) samples were analyzed by g-PCR using specific primers for Peak 1, 2, 3, 4 and ABCA10 TSS as negative control (Supplementary Table 7); dotted bars refers to HAND2 KD condition (+ doxycycline). Data are mean ± SD (n = 3 biological replicates; two-tailed unpaired t-test). * p < 0.05; ** p < 0.01; *** p < 0.001.

Supplementary Fig. 6: RUNX1T1 depletion downregulates Hallmark oxidative phosphorylation genes and upregulates PRC2 component target genes. (a) GSEA demonstrated significant downregulation in expression of Hallmark oxidative phosphorylation genes following *RUNX1T1* shRNA downregulation. (b) GSEA showed significant enrichment in expression of PRC2 subunit (*EED, SUZ12* and *H3K27me3*) target genes. (c) Kaplan-Meier analysis of GSEA enriched MYC and PRC2 target gene signatures in a publicly available RNAseq data set (SEQC) of tumor samples from the neuroblastoma R2 database showed high expression of MYC and low expression of the PRC2 signatures were highly prognostic of poor outcome.

Supplementary Fig. 7

Supplementary Fig. 7: RUNX1T1 loss reduces proliferation in alveolar rhabdomyosarcoma and clonogenic capacity in small cell lung cancer cells. (a) Highest level of RUNX1T1 expression in neuroblastoma cell lines followed by SCLC and sarcoma lines in all tumor types in publicly available data from the Cancer Cell Line Encyclopedia (https://depmap.org/portal/download/all/). Box limits indicate 25th and 75th percentile with the central line marking the median value. The whiskers are minimum to maximum, and all points are shown.(b) Cell proliferation following knockdown of RUNX1T1 in RH41 rhabdomyosarcoma cells using two independent siRNA sequences. Values represent mean ± SEM from three independent runs. Two-way ANOVA with Dunnett's multiple comparison test 24 hour control versus siRNA #6 **p=0.0039 and versus siRNA #8 p=0.0038, 48-96 hours ****p<0.0001. (c) Five SCLC cell lines (DMS- 53, DMS-273, DMS-454, H69, H889) demonstrated high level RUNX1T1 protein expression by comparison with the non- small cell lung cancer (A549) and neuroblastoma (SH-SY5Y) cells. We have run the Western blot of RUNX1T1 on these cell lines two times with similar results. (d) (e) Protein quantitation (left panels) and colony formation (right panels) following doxycycline-induced knockdown of RUNX1T1 in DMS-273 and DMS-53 SCLC cells, with two independent shRNA constructs. Quantitation of RUNX1T1 protein is expressed as mean ±SD (n=3). Two-tailed unpaired t-test (for DMS-273, shEV *p=0.0284, sh#1 **p=0.0037, sh#2 **p=0.0014; for DMA-53, shEV ns=0.1879, sh#1 **p=0.0005, sh#2 ***p=0.0002.

Supplementary Table 1 Doxycycline-induced knockdown of RUNX1T1 in KELLY xenografts

Sample ID*	Treatment	Timepoint	Differentiation	Morphology	Ki67 (%)**	Fibrotic stroma***
C1#1	Control	Day 7	Poorly differentiated	Prominent nucleoli	88	++
C1#2	Control	Day 7	Undifferentiated	Prominent nucleoli	70	+
C1#3	Control	Day 7	Poorly differentiated	Prominent nucleoli	87	++
C1#4	Control	Day 7	Poorly differentiated	Prominent nucleoli	77	+++
C2#1	Doxycycline	Day 7	Poorly differentiated	Prominent nucleoli	43	+
C2#2	Doxycycline	Day 7	Poorly differentiated	Prominent nucleoli	47	++
C2#3	Doxycycline	Day 7	Poorly differentiated	Prominent nucleoli	40	++
C2#4	Doxycycline	Day 7	Undifferentiated	Prominent nucleoli	60	++
C1#1	Control	Endpoint	Undifferentiated	Prominent nucleoli	73	+
C1#2	Control	Endpoint	Poorly differentiated	Prominent nucleoli	70	+
C1#3	Control	Endpoint	Undifferentiated	Prominent nucleoli	73	+
C1#4	Control	Endpoint	Poorly differentiated	Prominent nucleoli	75	++
C1#5	Control	Endpoint	Poorly differentiated	Prominent nucleoli	73	+
C2#1	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	63	+
C2#2	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	70	+
C2#3	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	50	+
C2#4	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	67	+
C2#5	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	67	+
C3#1	Control	Endpoint	Poorly differentiated	Prominent nucleoli	70	++
C3#2	Control	Endpoint	Poorly differentiated	Prominent nucleoli	67	+
C3#3	Control	Endpoint	Poorly differentiated	Prominent nucleoli	83	+
C3#4	Control	Endpoint	Undifferentiated	Prominent nucleoli	70	+
C3#5	Control	Endpoint	Undifferentiated	Prominent nucleoli	63	+
C4#1	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	73	+
C4#2	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	67	+
C4#3	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	57	+
C4#4	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	70	+
C4#5	Doxycycline	Endpoint	Poorly differentiated	Prominent nucleoli	67	+

* C1#1, C1#2 etc, refers to cage number and individual mouse within that cage.

** The Ki67 proliferative index (%) was determined by visually estimating the % of viable tumour cells with Ki67 nuclear staining, to the nearest 10%, in tissue microarray cores. Two or three cores were available for assessment for all tumors except C2#4 Day 7 for which only a single core was available. When multiple cores were assessed from the same tumor sample, the values were averaged.

*** Semi-quantitative assessment of extent of fibrocollagenous connective tissue in xenografts where: + <10%; ++ 11-50%; +++ >50%

Supplementary Table 2 Primers and probes used in real-time PCR analysis for mouse genotyping

Cana	Primer/	Seguence			
Gene	Probe	Sequence			
Th-MYCN	r				
	MYCN F	5'-CGACCACAAGGCCCTCAGTA			
MYCN	MYCN R	5'-CAGCCTTGGTGTTGGAGGAG			
	Probe	6FAM-CGCTTCTCCACAGTGACCACGTCG TAMRA			
	Chr 18 F	5'- CCACAAAAATATGACTTCCTAAAAGATTT			
Chr 18*	Chr 18 R	5'- CATGGGACTTCCTCCTTATATGCT			
	Probe	VIC-5'-AACAATTATAACACCATTAGATATG TAMRA			
Runx1t1	Knock-out ge	enotyping			
	Runx1t1 F	5'-TGAAGACGCAGTCTAGGCTGACT			
Runx1t1	Runx1t1 R	5'-TACTTACATGTCGTTGGCGTAAATG			
	Probe	6FAM 5'-CAATGCCACCTCCTC MGB-NFQ†			
	<i>lacZ</i> F	5'-CAGAAACAGCACCTCGAACTGA			
lacZ	lacZ R	5'-GCCATACAGCGCGTTGAAA			
	Probe	VIC-5'-CCGCGATATTGCC MGB-NFQ			
Runx1t1 ‡	‡1590 SNV				
#1590 Forward	5'-GACG	IGCAGCGGCTGTAA			
#1590 Reverse	5'-CCCAC	5'-CCCAGTCTTTATGCTGGCAAA			
WT Probe	VIC-5'-A	CGGCCCGA <u>T</u> ACT MGB-NFQ [†]			
Variant Probe	6FAM-5'-	ACGGCCCGA <u>C</u> ACT MGB-NFQ			

* Chr indicates Chromosome

† MGB-NFQ refers to minor groove binder–non fluorescent quencher

Primer Name	Sequence 5'-3'
Mm gusb F	TGGCTGGGTGTGGTATGAAC
Mm gusb R	TCCCATTCACCCACACAACT
mRUNX1t1 all F	AGGCGAACTCCAGACAGAAC
mRUNX1t1 all R	AATAGTGCATGGTCGCTTGC
h MYCN qPCR F	CACAAGGCCCTCAGTACCTC
h MYCn qPCR R	ACCACGTCGATTTCTTCCTC
h GUSB Fw	TGGTGCGTAGGGACAAGAAC
h GUSB RV	CCAAGGATTTGGTGTGAGCG
Hs_Runx1t1_All_F	AGTTGCACTAGACGCGCA
Hs_Runx1t1_All_R	TGGCGCTTCACCTCATTGAC

Supplementary Table 3 Primers for expression assays

Supplementary Table 4 Primers used to create 5'UTR RUNX1T1 constructs

Primer Name	Sequence 5'-3'
m5UTR_iso1 F H3	AAAAGCTTCCTGATGCACGTTGGCTCCTCTCC
m5UTR_iso1 R H3	AAAAGCTTtctccagcaagcgctgtgctaatc
m5UTR_iso2 F H3	AAAAGCTTGAGGGCGGGGCGAGGCGGAC
m5UTR_iso2 R H3	AAAAGCTTCCGCCGCGGGGCTCCCAGC
m5UTR_iso3 F H3	AAAAGCTTCTGGAACTGGGGGCAGGAAGAAGAG
m5UTR_iso3 R H3	AAAAGCTTcccggaatccagcgtgtaacacac

Supplementary Table 5 Sequence of oligos used to create RUNX1T1 shRNA constructs

Primer Name	Sequence 5'-3'
shRNA#l <i>RUNX1T1</i>	TCCCGGTTCCTTACTACCCTGCA TTCAAGAGA <i>TGCAGGGT</i>
Ambion Forward	<i>AGTAAGGAACC</i> TTTTTC
shRNA#l <i>RUNXITI</i>	TCGAGAAAAAGGTTCCTTACTACCCTGCATCTCTTGAATG
Ambion Reverse	CAGGGTAGTAAGGAACC
shRNA#2 <i>RUNX1T1</i>	TCCC AAGCAAGCGACCATGCACTA TTTCAAGAGA <i>ATAGTG</i>
Forward	CATGGTCGCTTGCTTTTTTTC
shRNA#2 <i>RUNX1T1</i>	TCGAGAAAAAAGCAAGCGACCATGCACTATTCTCTTGA
Reverse	A ATAGTGCATGGTCGCTTGCTT
shRNA <i>HAND2</i>	TCCC <i>TCAAGAAGACCGACGTG</i> AAAGCTCGAG CTTTCACGT
Forward	CG GTCTTCTTGATTTTTTC
shRNA <i>HAND2</i>	TCGAGAAAAAA <i>TCAAGAAGACCGACGTGAAA</i> GCTCGAGC
Reverse	TTTCACGTCGGTCTTCTTGA

Bases in Bold: sense or passenger (same as transcript) Bases in Italics: antisense or guide (real siRNA)

Supplementary Table 6 Primers used to create mutant RUNX1T1 constructs

Primer Name	Sequence 5'-3'
Forward containing <i>Not1</i> sequence (in bold)	AAGCGGCCGCTCTGTCAAAAGAAACACTTGG
Reverse containing <i>BamH1</i> sequence (in bold)	AAGGATCCCTAGCGAGGCGTCGTCTCTATG
Forward <i>Runx1t1</i> Mutant (YH) (mutant base in bold)	CACTGTGGCTCTTTTTGCCAGC
Reverse <i>Runx1t1</i> Mutant (YH)	TCGGGCCGTGTTACAGCCGCTG

Supplementary Table 7 Primers for Max ChIP-qPCR assays

Primer Name	Sequence 5'-3'
GSPT1 Fw	TTCGCCTCGGTAGTTCTCTG
GSPT1 Rev	TGTCCCTGAACTTCGACTCC
CLNS1A Fw	ACCCCGGAAGAACAACTTAG
CLNS1A Rev	GCCGCTTTTCCTAGAATGTC
NAP1L1 Fw	AGTTTGAAACCCAGGGACAG
NAP1L1 Rev	CCTCGGTCTGTGCTTACTTTG
ABCA10 Fw	AGCAACATCACCAACCTTATATTTCCC
ABCA10 Rev	TTAGTCAGTAAACACTCACTCAGTAAAGC
RUNX1T1 peak1 Fw	ACTTGCACAAACCAGAGCTG
RUNX1T1 peak1 Rv	AGGACTTCCGCCTTGTAATGAC
RUNX1T1 peak2 Fw	AGGGCGTCATCCTCTTCTTG
RUNX1T1 peak2 Rv	TGGCCAGGCTTTTATTGTGC
RUNX1T1 peak3 Fw	AATCCCAACCCCGCATATG
RUNX1T1 peak3 Rv	AAGGCTGCATGGAGAAAAGC
RUNX1T1 peak4 Fw	CACACACACACATACACACCAC
RUNX1T1 peak4 Rv	CTGCCCACGAGAGCTACAAG

Supplementary Table 8 Antibodies used

Protein	Catalogue #	Company	Host	Application	Dilution
MAX (S-20)	#4739S	Cell Signalling	Rabbit	WB	1:500
			monoclonal		
MXD1	19547-1-AP	Proteintech	Rabbit,	WB	1:500
			polyclonal		
MXD2	A12098	Abclonal	Rabbit,	WB	1:2000
			polyclonal		
MXD3	249041	United States	Mouse,	WB	1:500
		Biological/Assay	polyclonal		
		Matrix Pty Ltd.			
MXD4	ab220495	Abcam	Rabbit,	WB	1:1000
			polyclonal		
MGA	sc-81105	Santa Cruz/Bio-	Mouse	WB	1:250
(MXD5)		Strategy PTY	monoclonal		
MGA6A4H5		Limited			
MNT(MXD6)	MBS9606130	MyBioSource,	Rabbit,	WB	1:1000
		Inc/Jomar Life	polyclonal		
		Research			
MLX(MXD7)	sc-393086	Santa Cruz	Mouse	WB	1:300
(F-12)			monoclonal		
	15404 1 AD	Proteintech	Pabbit	WP	1.1000
KUNATTI	13494-1-AI	Tiotenneen	nolvelonal	WD	1.1000
PUNY1T1	15/0/_1_AP	Proteintech	Rabbit	IHC	1:400
KUNATTI	13494-1-AI		nolvelonal	Inc	1.400
MYCN	sc-53993	Santa Cruz	Mouse	WB	1.1000
(B8.4.B)	50 55775	Sunta Cruz	monoclonal		1.1000
MYCN	ab16898	Abcam	Mouse	IHC	1:200
			monoclonal		(TMA)
(NCM II 100)			monocionai		(1111)
MYCN	10159-2-AP	Proteintech	Rabbit,	IHC	1:1000
			polyclonal		(mouse
					tissues)
B-III Tubulin	802001	Biolegend	Rabbit,	IF	1:1000
			polyclonal		
GAPDH (G-	sc-365062	Santa Cruz	Mouse	WB	1:5000
9)		~	monoclonal		1.5000
ACTIN	A2066	Sigma-Aldrich	Rabbit,	WB	1:5000
	F0165		polyclonal	C D	1.5
FLAG (M2)	F3165	Sigma-Aldrich	Mouse	Co-IP	1.5ug
MYCN	52002	Grant Gran	monocional		2
MYCN (D84D)	sc-53993	Santa Cruz	Mouse	CO-IP	Zug
(B8.4.B)	2025	Canta Cau	Inonocional	C - ID	2
Igo	sc-2025	Santa Cruz	Iviouse	CO-IP	∠ug
	EDD 10451	A h	Inonocional Rabbit	C - ID	1.1000
HAND2	EPK19451	Abcam	Monoclonal	CO-IP	1:1000
Anti IIA	ab0110	Ahaam	Rabbit	Call	1.2000
Anu-HA	a09110	Abcam	Polyclonal	CO-IP	1:3000
			1 019 0101101		1

Source data for Supp Figure 1 can be found with Figure 1

Source data for Supp Figure 2a: Hyperplastic ganglia of 1590 cohort can be found with Figure 2a and 2b

Source Data

Supp Figure 2b Th-MYCN Runx1t1 WT and YH RUNX1T1 and ACTIN

Run

11/01/2018

Densitometry used 4 brains from different animals

Supp Figure 3a Kelly time course 0-72 hours, Control shEV and RUNX1T1 sh#1

Supp Figure 3a continued Kelly time course 0-72 hours, Control shEV and RUNX1T1 sh#1 4/08/2023

Note: Samples in gel#1 and gel#2 are from two independent experiments Run 2 and 3

Supp Figure 3b KELLY +/- Dox Control, sh1, Hela MAX and GAPDH

22/11/2021

gel#1

Kelly cells

SH-SY5Y

Supp Figure 3b continued KELLY +/- Dox Control, sh1, Hela MAX and GAPDH

Note: gel#1 used for supplementary figure 3B

Merged with protein marker

Supp Figure 3c MAX binding partners

RUNX1T1

MXD1

Experiment (10 2 2022)

Western blot gel#2- 24 3 2022

Western blot (6 4 2022)

MXD3

24 03 2022

24 03 2022

Marker

MXD4

MXD5

A549

24 3 2022

MXD6

MXD7

Supp Figure 3d continued KELLY +/- Dox Control, sh1, Hela MAX and GAPDH

s/03/2022 sh EV sh #1 + Hela Anti-Max Anti-GAPDH

Labeled samples used for supplementary figure 3B

(Western-8 3 2022)

Supp Figure 3d Co-IP MYCN and MAX

IP:MYCN

Kelly	.		Input	t(5%)	IP:MYC	N
29/09/2022		Doxy	<u>EV</u> - +	<u>sh #1</u> - +	EVsł	<u>+</u> +
	Anti-MYCN					-
	Anti-Max	ŀ				
					1	1 1
K	elly 29/09/2022		Merged	with marke	er	
nti-MYCN 75kD 50kD	50					- #2 - 29.9 - 50 - 37
Anti-Max 25kD 20kD	20		50 0			

Supp Figure 3d continued Co-IP MYCN and MAX

Kelly 26/09/2022		In	put		IP:N	1YCN	_	BE(2)-C	(Ctrl for N	IYCN)
	Doxy	<u>EV</u> - +	<u>sh</u> -	<u>#1</u> +	<u>EV</u> - +	<u>sh #1</u> + -				
Anti-MYCN						•				
gel#2								-		
gel#3	_			•	-			-		

	Merged wit	n marker		
gel#2				269
/ SKD				 -75
50kD		8 anno.4		
	#3	1		
gel#3	75-1	1.1.1	1	
	50-		15	-

Anti-Max	Input IP:MYCN	BE(2)-C (Ctrl for Max)	Merged with marker	
Do	$\frac{EV}{2} + \frac{Sh \# 1}{2} + \frac{EV}{2} + \frac{Sh \# 1}{2}$		27	
gel#2	¥	25KD -		gel#
	the set of the set of the set of the	20KD		
			12. 26.9	
			37*- *.	
gel#3			25	gel#3
Not	e: gel#2 was used for Supplementary Fig. #C bar ch	art		

Supp Figure 3d continued Co-IP MYCN and MAX

Kelly											
14/03/2022											
Anti-MYCN		1	2	3	4	5	6	7	8	9	
gel#1	•	=		-	-		-			1	
gel#2		1	2	3	4	5	6	7	8	9	
Anti-Max											
gel#1	100	-	2	3	4	5	6	7	8	9	
gel#2		-	2	3	4	5	6	7	8	9	

Supp Figure 3d Co-IP MYCN and MAX (Kelly 14/03/2022)

		Merged with	marker						
gel#1									
	- 0			71.	100	Lane (left	to right)		
	1 2 3	4 5	6 7 8	9		1	Input		
75kD —	75			-75		2	IgG Ctrl		
50kD	10			. 31	2	3	N-Myc IP		
						4	Input		
						5	IgG Ctrl		
						6	N-Myc IP		
						7	Protein ma	rker	
gel#2	- 123		and the	- 并2		8	Hela (negat	ive Ctrl fo	r MYCN)
	150-1 2 3	4 5	6 7 8	9 -3		9	Kelly (positi	ve Ctrl for	MYCN)
75kD	75			.75					
				-50					
50kD				-					
	Merged w	ith marker							
Anti-Max									
gel#1						Lane (left	to right)		
25kD	1 2	3 4 5	6 7	8 9		1	Input		
						2	IgG Ctrl		
20kD	15-					3	N-Myc IP		
		14.3 井	1			4	Input		
						5	IgG Ctrl		
gel#2	1 2	3 4 5	6 7	8 9		6	N-Myc IP		
25kD			-	-		7	Protein ma	rker	
20kD	15-000		-	10.000		8	Hela (Ctrl fo	or Max)	
	+12 114 3	2				9	Kelly		
	Alt same p 1 7 1 m								
	\sim		1						

Supp Figure 3e MYCN promotor targets

From File named (shAMBPos - F1HUTGPos) - (shAMBNeg -

F1HUTGNeg)_tpm_spia_kegg_go										
genes	entrez_id	logFC	logCPM	LR	PValue	FDR				
GSPT1	2935	-1.2101	8.2221	121.8671	2.47E-28	2.05E-26				
CLNS1A	1207	-0.9988	7.6921	90.2715	2.08E-21	9.71E-20				
NAP1L1	4673	-1.0298	10.2684	89.8286	2.60E-21	1.21E-19				

APEX1	328	-0.3399	8.1752	10.3217	0.001	0.004	-1.266
TFAP4	7023	-0.0923	3.7110	0.1463	0.702	0.782	-1.066
MAX	4149	-0.695	5.580	37.143	1.10E-09	1.30E-08	-1.619
RUNX1T1	862	0.189	5.259	2.460	0.117	0.195	1.140
NTRK1	4914	2.6852	2.9938	50.4777	1.21E-12	2.20E-11	6.432

FC

-2.314

-1.998 -2.042

From File named shAMBPos shAMBNeg tpm spia kegg go

	00_0-							
genes	entrez_id	logFC	logCPM	LR	PValue	FDR	FC	
GSPT1	2935	-1.282	8.222	266.418	0.000	6.82E-58	-2.431	
CLNS1A	1207	-1.076	7.692	205.693	0.000	6.94E-45	-2.109	
NAP1L1	4673	-1.104	10.268	202.726	0.000	2.97E-44	-2.150	
APEX1	328	-0.225	8.175	9.056	0.003	0.005	-1.169	
TFAP4	Not found							
MAX	4149	-0.623	5.580	58.945	1.62E-14	1.34E-13	-1.540	
RUNX1T1	862	0.026	5.259	0.095	0.758031911	0.797	1.018	
1771/4		2.462	2.024	407 770	4 355 30	2 475 20	0.050	
NTRK1	4914	3.163	2.994	127.779	1.25E-29	3.17E-28	8.958	Confirmed by Wester

Gene expression in vector control of shRNA Seq, from file "F1HUTGPos - F1HUTGNeg_tpm"

genes	entrez_id	logFC	logCPM	LR	PValue	FDR	FC
GSPT1	2935	-0.071651399	8.222058511	0.863104586	0.352871351	0.7565982	-1.050918943
CLNS1A	1207	-0.07744534	7.692095616	1.093632294	0.295667809	0.7565982	-1.055147977
NAP1L1	4673	-0.074435657	10.26844727	0.943921451	0.331271381	0.7565982	-1.052949071
APEX1	328	0.114728462	8.175193999	2.352291941	0.12509896	0.7565982	1.082771232
TFAP4	7023	0.27792397	3.711041207	2.653809674	0.10330206	0.7565982	1.212448922
MYCN	4613	0.061924261	11.59586714	0.568396003	0.450897007	0.778420951	1.043857125
МАХ	4149	0.0720874	5.580076539	0.808114975	0.368678146	0.7565982	1.051236592

Supp Figure 4a SY5Y: shEV, Sh#1, sh#2 RUNX1T1 and ACTIN

17/02/2020 gel#2	SH-SY5Y cells	sh EV sh #1 sh #2	sh EV sh #1 sh #2
	Anti-Runx1t1 75 KD 50 KD		Anti-Actin 50 KD 37 KD
		Blot merged	with protein marker

11/03/2020 gel#1	SH-SY5Y cells	sh EV sh #1 sh #2		sh EV sh #1 sh #2	
	Anti-Runx1t1	Z-	100 KD 75 KD Anti-Actin		50 KD 37 KD
			at merged with protein marker	#1L 11.3	

Supp Figure 4b SY5Y shRNA colonies

SY5Y FH1UTG RUN 1

-Doxy

+Doxy

SY5Y sh#1 RUN 1

SY5Y sh#2 RUN 1

-Doxy

+Doxy

Supp Figure 4b SY5Y shRNA colonies

SY5Y FH1UTG RUN 2

SY5Y sh#1 RUN 2

SY5Y sh#2 RUN 2

Supp Figure 4b SY5Y shRNA colonies

SY5Y FH1UTG RUN 3

SY5Y sh#1 RUN 3

SY5Y sh#2 RUN 3sad

IB:FLAG

IB:HA

Supp Figure 5d

IB:FLAG

ì

Supp Figure 5e continued KELLY shHAND2

Supp Figure 5e continued KELLY shHAND2

Supp Figure 5g

	Input	Input_HAND2-KD	HAND2 ChIP	HAND2 CHIP-HAND2-KD	RUNX1T1 ChIIRU	JNXT1 ChIP-HAND2-KD
ETO_peak1-rep	1	1	47.17	13.25	14.35	4.2
ETO_peak1-rep2	1	1	53.77	11.98	14.89	6.92
ETO_peak1-rep3	1	1	33.84	15.38	11.49	6.4
ETO_peak2-rep	1	1	18.65	3.76	5.71	1.72
ETO_peak2-rep2	1	1	17.64	1.75	5.38	2.5
ETO_peak2-rep3	1	1	14.73	4.65	5.25	2.09
ETO_peak3-rep	1	1	54.52	10.66	18.52	4.39
ETO_peak3-rep2	1	1	43.07	12.4	20.82	6.19
ETO_peak3-rep3	1	1	48.39	17.9	25.43	8.84
ETO_peak4-rep	1	1	13.55	2.78	3.55	1.02
ETO_peak4-rep2	1	1	10.57	3.24	3.72	1.52
ETO_peak4-rep3	1	1	11.4	4.93	4.12	2.91
			Normalized Fold Enric	chment 2^-DDCT		

OFFICIAL NAME	Lab. TUBE NAM	ESequence_FW	Sequence_RV	Coordinates on hg38	
ETO_Peak1	1971	ACTTGCACAAACCAGAGCTG	GGACTTCCGCCTTGTAATGA	chr8:143039154+14303922	7
ETO_Peak2	2692	AGGGCGTCATCCTCTTCTTG	TGGCCAGGCTTTTATTGTGC	chr17:35801573+35801650	
ETO_Peak3	2746	AATCCCAACCCCGCATATG	AAGGCTGCATGGAGAAAAGC	chr15:62878257+62878379	
ETO_Peak4	ngfr	ACACACACACATACACACA	CTGCCCACGAGAGCTACAAG	chr17:49515378+49515507	

	Two-taile		
	HAND2	RUNX1T1	*≦ 0,05
ETO_Peak1	0.0062 **	0.0045 **	
ETO_Peak2	0.0007 ***	0.0002 ***	** ≥ 0,01
ETO_Peak3	0.0009 ***	0.0033 **	+++< 0 001
ETO_Peak4	0.0018 **	0.0284 *	^^^ i = 0,001

Supp Figure 7b RH41 MYCN Knockdown RUNX1T1 and GAPDH

Supp Figure 7b RH41 MYCN Knockdown RUNX1T1 IncuCyte

Run#1 Set up on 10/11/2022

,,								
Elapsed (hrs)	control siRNA	control siRNA	Ctrl siRNA Average	% of Ctrl at 0	h siRNA #8	siRNA #8	siRNA#8Average	% of Ctrl siRNA at 0 h
0.00	707.67	669.89	688.78	100.0%	506.22	518.56	512.39	74.4%
12.00	952.67	865.78	909.22	132.0%	605.89	606.00	605.94	88.0%
24.00	1163.67	1113.56	1138.61	165.3%	731.00	746.22	738.61	107.2%
36.00	1442.44	1377.56	1410.00	204.7%	885.22	884.67	884.94	128.5%
48.00	1791.78	1722.44	1757.11	255.1%	1042.89	1036.89	1039.89	151.0%
60.00	2313.56	2133.33	2223.44	322.8%	1226.56	1226.22	1226.39	178.1%
72.00	2645.33	2578.67	2612.00	379.2%	1434.11	1444.78	1439.44	209.0%
84.00	2896.00	2768.67	2832.33	411.2%	1732.11	1756.22	1744.17	253.2%
96.00	2740.89	2661.11	2701.00	392.1%	2168.56	2131.22	2149.89	312.1%

Run#2 Set up on

12/12/2022		% of Ctrl siRNA at 0 h								
Elapsed (hrs)	Mock	Ctrl siRNA	siRNA #6	siRNA #8	Mock	Ctrl siRNA	siRNA #6	siRNA #8		
0.00	504.2	374.9	332.4	261.6	134.50	100.00	88.68	69.77		
12.03	632.3	458.9	391.3	296.8	168.67	122.41	104.39	79.16		
24.03	849.4	585.0	423.3	357.6	226.59	156.05	112.92	95.38		
36.03	1333.7	947.1	532.9	603.6	355.75	252.64	142.15	161.00		
48.03	1613.9	1171.0	573.6	711.1	430.50	312.36	152.99	189.69		
60.03	1852.0	1415.0	634.6	750.1	494.01	377.45	169.26	200.09		
72.03	2202.0	1508.1	613.8	723.9	587.37	402.28	163.72	193.09		
84.03	2313.6	1823.8	673.4	868.1	617.13	486.48	179.64	231.56		
96.03	1947.7	2039.1	789.0	987.1	519.53	543.92	210.46	263.31		

Run#3 6/02/2023	Set up on 2/02/2023	% of Ctrl siRNA at 0 h							
Elapsed (hrs)	Mock	Ctrl siRNA	siRNA #6	siRNA #8	Mock	Ctrl siRNA	siRNA #6	siRNA #8	
0	803.6	645.3	429.0	518.1	125%	100%	66%	80%	
12	1044.2	773.4	467.1	545.4	162%	120%	72%	85%	
24	1429.1	993.3	558.3	711.0	221%	154%	87%	110%	
36	1843.7	1284.0	565.6	818.6	286%	199%	88%	127%	
48	2278.1	1624.6	604.4	981.3	353%	252%	94%	152%	
60	2750.3	2025.8	668.1	1158.3	426%	314%	104%	179%	
72	2668.3	2465.6	758.3	1366.8	413%	382%	118%	212%	
84	2460.6	2898.3	823.3	1649.7	381%	449%	128%	256%	
96	2266.1	2919.0	1078.8	2001.0	351%	452%	167%	310%	

Supp Figure 7c SCLC cell lines RUNX1T1 and ACTIN

Source Data Supp Figure 7d DMS-273 with RUNX1T1 and ACTIN

DMS-273 cells		DMS-273 cells		sh EV sh #1 sh #2
16/03/2023		15/03/2023	Doxy	
gel#1	sh EV sh #1 sh #2			- + - + - + Kelly
Anti-Runx1t1		Anti-Runx1t1	gel#2	10.3
Doxy	- + - + +	75KD		
75KD				
				Blot merged with protein marker
				Labeled samples in gel#2 used for Supplementary figure7D
Anti-GAPDH		Anti-GAPDH		30
37KD	→ <i>V</i> =			
25KD				153
				Blot merged with protein marker
	Blot merged with protein marker			

Doxy (+)

Supp Figure 7d DMS-273 shRNA RUNX1T1 colonies Run 3 1000 cells/well DMS-273-FHIUTG Doxy (-) Doxy (+) DMS-273-Sh#1 Doxy (-)

Doxy (+)

DMS-273-Sh#2

Doxy (+)

Supp Figure 7e DMS-53 with RUNX1T1 and ACTIN

Supp Figure 7e DMS-53 with shRNA RUNX1T1 colonies

Supp Figure 7e DMS-53 with shRNA RUNX1T1 colonies

Supp Figure 7e DMS-53 with shRNA RUNX1T1 colonies

