A Introductory demographic summary statistics

- "Twenty-seven percent of neonatal deaths now occur in India."
 - Births per five-year period in thousands, from UN World Population Prospects (2010-2015): World: 699,214; India: 129,729. Thus 19% of births each year are in India.
 - Neonatal mortality rates (2015), from World Bank World Development Indicators (WDI), expressed per 1,000: World: 19.2; India 28.
 - These imply 3,632 neonatal deaths per five-years in India and 13,425 globally, both in thousands.
- Decline in IMR: World Bank WDI show 121.9 in 1960 to 31.7 in 2015, both per 1,000 births.
- "Over three-fifths of infant deaths are neonatal deaths: deaths in the first month of life.": World Bank WDI NNM in 2015 is 19.2 for the world, compared with 31.7 for IMR. 19.2 ÷ 31.7 is 61%.

B How age predicts alternative BMI cutpoints

Figure 5 focuses on one cut-point in the BMI distribution: the division between being underweight or not. In the Supplementary Appendix, Figure A.7 extends this analysis by examining the cross-sectional association between adult women's ages and the linear probability of being above a range of BMI scores. The figure shows that in India's cross-section, age predicts whether a woman has *normal*, *rather than low*, *BMI*, while in the rest of the DHS age predicts whether a woman has *high*, *rather than normal*, *BMI*. A low BMI is one that is less than 18.5, a normal BMI is one that is between 18.5 and 25, and a high BMI is one that is greater than 25. For each BMI cutpoint, *c*, in half-point increments, for each sample *s* (India or the rest of the DHS), the figure plots the coefficients $\beta_{1,c}^{s}$ from the following linear probability model, with and without controls for children ever born:

$$\mathbf{1}[BMI_{ms} > c] = \beta_0^s + \beta_{1,c}^s age_{ms} + \theta \text{children ever born}_{ms} + \varepsilon_{ms}$$
(6)

Thus, figure A.7 plots regression coefficients from separate regression estimations. All of the coefficients are positive because older adults tend to weigh more than younger adults in populations worldwide. The coefficients are larger for Indian women than for the rest of the DHS, meaning that age is especially predictive of BMI, and are especially large around the low BMI cutpoints, which is where maternal undernutrition poses a threat to

Supplementary Appendix

children. In other words, in India, the distribution of BMI for older women is different from the distribution for younger women around the *underweight* side of the distribution; in the rest of the developing world, age is associated with a shift of the distribution through normal BMIs to overweight. Controlling for the number children ever born (results shown with dashed lines) makes the age-BMI gradients more steeply positive because age, parity progression, and BMI are all positively correlated with one another, but higher-fertility women weigh less, on average, because they are poorer.

Figure A.1: Early-life mortality by birth order and sibsize, restricted sample

Restricted sample: Starting from the main DHS sample of births described in section 3, this sample excludes all births to mothers who have had a birth in the past five years to avoid confounding by incomplete fertility. Mortality rates are scaled to per 1,000.

Figure A.2: NNM by birth order and sibsize, replication with African sample

Restricted sample: Starting from the main DHS sample of births described in section 3, this sample excludes all births to mothers who have had a birth in the past five years to avoid confounding by incomplete fertility. African sample: This sample includes a set of DHS survey rounds used by Jayachandran and Pande (2017) to study height. They are listed in table A.1. Mortality rates are scaled to per 1,000.

Figure A.3: Robustness: How the relationship between birth order and mortality in India differs from the rest of the developing world, restricted sample

(a) Coefficients on *birth order*_{ims} \times *India*_s indicators from equation 1, all controls included: NNM, PNM, and IMR are dependent variables

(b) Coefficients on *birth order*_{ims} \times *India*_s indicators without sibsize controls, with sibsize controls, and with mother FEs: NNM is the dependent variable

Restricted sample: Starting from the main DHS sample of births described in section 3, this sample excludes all births to mothers who have had a birth in the past five years to avoid confounding by incomplete fertility. Each connected set of estimates is from a separate regression. 95% confidence intervals in panel (a) reflect standard errors clustered by survey PSU. Panel (a) uses the fully controlled specification from equation 1, including mother fixed effects. In panel (b) s = sex and c = birth cohort of mom and child.

Figure A.4: Robustness: How the relationship between birth order and mortality in India differs from an alternative sub-Saharan African comparison sample

(a) Coefficients on *birth order*_{ims} \times *India*_s indicators from equation 1, all controls included: NNM, PNM, and IMR are dependent variables

(b) Coefficients on *birth order*_{ims} \times *India*_s indicators without sibsize controls, with sibsize controls, and with mother FEs: NNM is the dependent variable

India's 2005-6 DHS is compared with the set of African DHS rounds used by Jayachandran and Pande (2017) to study height and listed in table A.1. Each connected set of estimates is from a separate regression. 95% confidence intervals in panel (a) reflect standard errors clustered by survey PSU. Panel (a) uses the fully controlled specification from equation 1, including mother fixed effects. In panel (b) s = sex and c = birth cohort of mom and child.

Figure A.5: India's birth order pattern of NNM is not reversed by deaths at later ages

Main DHS sample of births, described in section 3. This figure is a robustness check and extension of panel (a) of figure 2, but with survival to age 2 ($_{2q_0}$) as a dependent variable. Each mortality rate (NNM, IMR, $_{2q_0}$) is a dependent variable in a separate regression. The results are slightly quantitatively different from the main result because only children born at least two years before their mother's interview date are included, so that the sample is comparable across the three mortality rates. 95% confidence intervals for the effect on NNM are clustered by survey PSU and overlap with the other coefficients.

Figure A.6: Mothers' BMI in India and in sub-Saharan Africa, by sibsize

Computations are identical to figure 4 in the main text, but here "rest of DHS" refers to the African comparison sample. We use the same set of DHS surveys used by Jayachandran and Pande (2017) to study height, which is listed in table A.1. Vertical lines are 95% CIs, with standard errors clustered to reflect survey design.

Figure A.7: How age predicts women's BMI, at dichotomised BMI cut-points: India compared with the rest of the DHS

Women's anthropometry sample, described in sections 3 and 6. CEB stands for "children ever born" and indicates that controls for indicators of children ever born at the time of the survey are included. The figure plots and connects coefficients on age estimated from the following linear probability model: $\mathbf{1}[BMI_{ms} > c] = \beta_0^s + \beta_1^s \text{age}_{ms} + \theta$ children ever born_{ms} + ε_{ms} . Figure A.8: The rate of change in BMI of month-of-birth cohorts of women differs between India and the rest of the DHS

(b) India 1998/9 – 2005/6 is compared to those surveys collected during a similar time period

Panel (a) restricts the women's anthropometry sample described in sections 3 and 6 to include those surveys for which there is more than one DHS survey round in the same country. Panel (b) restricts the women's anthropometry sample to those DHS surveys for which the first of two surveys in the same country was within 2.5 years before or after the 1998/9 Indian DHS. In both panels, cohort mean changes are annualised by dividing by the time interval in months between DHS rounds.

Figure A.9: Geographic effect heterogeneity is suggestive of the role of maternal underweight 1: Comparisons within India

Conclusion: The birth order gradient is steeper in north India, where undernutrition is more severe and women's social status is more constrained, than in south India

$$NNM_{im} = \sum_{b} \beta^{b}$$
 birth order_{im} + $\gamma sex_{im} + \alpha_{m} + \varepsilon_{im}$.

The figure reports two separate mother fixed effects regressions, using data from the listed states from India's 2005-6 DHS.

Figure A.10: Geographic effect heterogeneity is suggestive of the role of maternal underweight 2: Comparisons across full DHS sample

Conclusion: The local fraction of mothers underweight interacts with birth order $NNM_{imps} = \sum_{b} \beta_{3}^{b} birth \ order_{imps}^{b} \times PSU \ underweight_{ns} +$

$$\sum_{b} \beta_{2}^{b}$$
 birth order $_{imps}^{b} + f\left(CMC_{imps}^{child}, India_{s}\right) +$

 $\gamma_1 sex_{imps} \times India_s + \gamma_2 sex_{imps} + \alpha_{mps} + \varepsilon_{imps}.$

This figure plots predicted effects of being the birth order on the horizontal axis, rather than first-born, at various hypothetical levels of the fraction of women who are underweight in a PSU. This is a way of visualizing the magnitude of the interaction estimated with the equation above. In particular, each dot in the figure is computed as: $(\hat{\beta}_3^b \times PSU \ underweight + \hat{\beta}_2^b)$ at each birth order *b*, for a specified example levels of *PSU underweight*.

The data with which the regression equation is computed for the main DHS sample. Note that birth order is not interacted with India in the regression equation. Instead, the figure includes among the example hypothetical levels of *PSU underweight* the mean within India and the mean for our data outside of India; comparing these two lines would offer a linear post-diction of the interaction between India and birth order. PSU underweight is the fraction, in a local area, of all women of childbearing age measured by the DHS who have a BMI below 18.5; women are included whether or not they have given birth, and each woman is equally weighted in the mean, regardless of how many times she has given birth. PSU = primary sampling unit.

Figure A.11: Across DHS survey rounds, a larger negative effect of birth order on NNM is associated with a steeper negative gradient between age and underweight among adult women (plots of *t*-statistics and *F*-statistics)

(c) birth order categories *F*-statistic, no controls

-10

Bangladesh

underweight-age gradient among adult women (t-statistic)

India

effect of birth order on NNM (signed F-statistic) 300 -200 -100 0 100

-30

-20

rest of DHS

(b) linear birth order *t*-statistic, ln(GDP) control

10

10

-30

-20

rest of DHS

-10

underweight-age gradient among adult womer (t-statitic, residuals after In(GDP per capita))

India

ò

Bangladesh

The sample is DHS survey rounds used to construct the main DHS sample of births discussed in section 3. In all panels, each point plots regression results from two separate regressions, estimated for one DHS survey round at a time. The horizontal axis in all panels plots the *t*-statistics from the same coefficients in the regressions of underweight on the age of adult women in figure 7. In panels (a) and (b), the vertical axis plots the t-statistics on the linear birth order coefficient from the regressions in figure 7 of NNM on birth order, entered linearly, with mother fixed effects. In panels (c) and (d), the vertical axis plots F-statistics (multiplied by the sign of the linear birth order coefficient) from a joint test of all birth order indicators in a regression of NNM on birth order indicators (instead of birth order as a linear independent variable) in regressions with mother fixed effects. The results in panels (b) and (d) additionally control (by residualizing the variables in the horizontal and vertical axes in two separate regressions) for a DHS-survey-round-level mean of GDP per capita; for more detail see section 6.5.

Supplementary Appendix

For online publication only Supplementation Supplementation and Health Surveys in each sample

country	v000	vear	main	SSA	longitudinal	long -restricted
Albania	AI 5	2008-09		0011	iongituaniai	iong. restricted
Armonia	$\Delta M4$	2000 2005	•		.(.(
Armonia		2000, 2005	•		•	•
Azorbajian	Δ75	2015-2010	•		v	v
Bangladosh	RD3	1006_07 1000_2000	•		.(.(
Bangladosh	BD4	2000 2004	•		V	V
Bangladosh	BD5	2004	v		v	V
Bangladosh	BD6	2007	v		v	V
Bonin	BI2	1006	v		v	V
Benin	DJ3 D14	2001	v		v	V
Benin	DJ4	2001	V		V	V
Denin Denin	DJO	2006	V		V	V
Denin Deliaia	DJ0 PO2	2011-12	V		V	V
Dollvia Dollvia	DU3	1993-94, 1998	V		V	V
Bolivia	BO4	2003-04	V		V	V
Bolivia	BO5	2008	V		\checkmark	\checkmark
Brazil	BR3	1996	V		,	
Burkina Faso	BF2	1992-93	V		V	,
Burkina Faso	BF3	1998-99	\checkmark		\checkmark	\checkmark
Burkina Faso	BF4	2003	\checkmark		\checkmark	\checkmark
Burkina Faso	BF6	2010	\checkmark		\checkmark	\checkmark
Burundi	BU6	2010	\checkmark			
Cambodia	KH4	2000	\checkmark		\checkmark	\checkmark
Cambodia	KH5	2005-06, 2010-11	\checkmark		\checkmark	\checkmark
Cambodia	KH6	2014	\checkmark		\checkmark	\checkmark
Cameroon	CM3	1998	\checkmark		\checkmark	\checkmark
Cameroon	CM4	2004	\checkmark	\checkmark	\checkmark	\checkmark
Cameroon	CM6	2011	\checkmark		\checkmark	\checkmark
Central African Republic	CF3	1994-95	\checkmark			
Chad	TD3	1996-97	\checkmark		\checkmark	\checkmark
Chad	TD4	2004	\checkmark	\checkmark	\checkmark	\checkmark
Chad	TD6	2014-2015	\checkmark		\checkmark	\checkmark
Colombia	CO3	1995	\checkmark		\checkmark	
Colombia	CO4	2000, 2004-05	\checkmark		\checkmark	\checkmark
Colombia	CO5	2009-10	\checkmark		\checkmark	\checkmark
Comoros	KM3	1996	\checkmark		\checkmark	
Comoros	KM6	2012	\checkmark		\checkmark	
Congo, Democratic Republic	CD5	2007	\checkmark	\checkmark	\checkmark	
Congo, Democratic Republic	CD6	2013-14	\checkmark		\checkmark	
Cote d'Ivoire	CI3	1994, 1998-99	\checkmark		\checkmark	\checkmark
Cote d'Ivoire	CI6	2011-12	\checkmark		\checkmark	\checkmark
Dominican Republic	DR2	1991	\checkmark		\checkmark	
Dominican Republic	DR3	1996	, ,		\checkmark	\checkmark
Dominican Republic	DR6	2013			, ,	, ,
Fount	EG2	1992-93				•
Fount	EC3	1995-96	•		• ./	
Fount	EC4	2000 2003 2005	•		• ./	<i></i>
Fount	EC5	2000, 2003, 2003	× √		× √	v ./
-bypt	EC6	2000	v		v	v
таури	LGU	2014	v		v	v

Supplementary Appendix

For online publication only Supplementation Su

EthiopiaET4200, 2005 \checkmark \checkmark \checkmark \checkmark EthiopiaET62011 \checkmark \checkmark \checkmark \checkmark EthiopiaET72016 \checkmark \checkmark \checkmark GabonGA32000 \checkmark \checkmark \checkmark GabonGA62012 \checkmark \checkmark \checkmark GambiaGM62013 \checkmark \checkmark GhanaGH21993-94 \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark GhanaGH42003 \checkmark \checkmark GhanaGH52008 \checkmark \checkmark GuatemalaGH62014 \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark
EthiopiaET62011 \checkmark \checkmark \checkmark EthiopiaET72016 \checkmark \checkmark \checkmark GabonGA32000 \checkmark \checkmark \checkmark GabonGA62012 \checkmark \checkmark \checkmark GambiaGM62013 \checkmark \checkmark \checkmark GhanaGH21993-94 \checkmark \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark \checkmark GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH52008 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
EthiopiaET72016 \checkmark \checkmark \checkmark GabonGA32000 \checkmark \checkmark \checkmark GabonGA62012 \checkmark \checkmark \checkmark GambiaGM62013 \checkmark \checkmark \checkmark GhanaGH21993-94 \checkmark \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark \checkmark GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH42008 \checkmark \checkmark \checkmark GhanaGH52008 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GabonGA32000 \checkmark \checkmark \checkmark GabonGA62012 \checkmark \checkmark \checkmark GambiaGM62013 \checkmark \checkmark GhanaGH21993-94 \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark GhanaGH42003 \checkmark \checkmark GhanaGH52008 \checkmark \checkmark GhanaGH52014 \checkmark \checkmark GhanaGH62014 \checkmark \checkmark GhanaGH62014 \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark
GabonGA62012 \checkmark \checkmark \checkmark GambiaGM62013 \checkmark \checkmark \checkmark GhanaGH21993-94 \checkmark \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark \checkmark GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH52008 \checkmark \checkmark \checkmark GhanaGH52014 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GambiaGM62012 \checkmark \checkmark GambiaGM62013 \checkmark GhanaGH21993-94 \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark GhanaGH42003 \checkmark \checkmark GhanaGH52008 \checkmark \checkmark GhanaGH52014 \checkmark \checkmark GhanaGH62014 \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark
GhanaGH21993-94 \checkmark \checkmark GhanaGH31998-99 \checkmark \checkmark \checkmark GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH52008 \checkmark \checkmark \checkmark GhanaGH52014 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GhanaGH31998-99 \checkmark \checkmark \checkmark GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH52008 \checkmark \checkmark \checkmark GhanaGH52014 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GhanaGH42003 \checkmark \checkmark \checkmark GhanaGH52008 \checkmark \checkmark \checkmark GhanaGH62014 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GhanaGH52008 \checkmark \checkmark \checkmark GhanaGH62014 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GhanaGH62014 \checkmark \checkmark \checkmark GuatemalaGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GuataGU31995, 1998-99 \checkmark \checkmark \checkmark GuatemalaGU62014-15 \checkmark \checkmark \checkmark
GuatemalaGUS $1755, 1756-77$ VVVGuatemalaGU6 $2014-15$ \checkmark \checkmark \checkmark GuinemaGN2 1000 \checkmark \checkmark
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Guinea GNO 2012 V V V
Guyana $G15 = 2009 \sqrt{1004.05}$
Halti H13 1994-95 \checkmark \checkmark
Haiti H14 2000 \checkmark \checkmark \checkmark
Haiti H15 2005-06 \checkmark \checkmark \checkmark
Haiti H16 $2012 \checkmark \checkmark \checkmark$
Honduras HN5 2005-06 \checkmark \checkmark
Honduras HN6 $2011-12$ \checkmark \checkmark
India IA2 1992-93 🗸
India IA3 1998-99 🗸 🏑 🗸
India IA5 2005-06 \checkmark \checkmark \checkmark
Jordan JO3 1997 🗸 🗸 🗸
Jordan JO4 2002 \checkmark \checkmark \checkmark
Jordan JO5 2007, 2009 🗸 🗸
Jordan JO6 2012 🗸 🗸
Kazakhstan KK3 1995, 1999 🗸
Kenya KE2 1993 🗸 🗸
Kenya KE3 1998 🗸 🏑 🗸
Kenya KE4 2003 🗸 🏑 🗸
Kenya KE5 2008-09 🗸 🗸 🗸
Kenya KE6 2014 🗸 🗸
Kyrgyz Republic KY3 1997 √ √ √
Kyrgyz Republic KY6 2012 \checkmark \checkmark
Lesotho LS4 2004 \checkmark \checkmark
Lesotho LS5 2009 🗸 🗸
Lesotho LS6 2014 🗸 🗸
Liberia LB5 2007 \checkmark \checkmark
Liberia LB6 2013 \checkmark
Madagascar MD3 1997 /
Madagascar MD4 2003-04 ./ ./
Madagascar $MD5$ 2008-09
Malawi MW2 1992
Malawi MW4 2000 2004-05

Supplementary Appendix

For online publication only Supplementation Su

country	v000	Vear	main	SSΔ	longitudinal	long_restricted
Malawi	MW5	2010		<i>55</i> A	./	<u></u>
Mələmi	MM7	2010	v		v	v
Maldives	MV5	2013-10	v ./		v	v
Mali	MI 3	1995-96	v			
Mali	ML3	2001	v		V	.(
Mali	MI 5	2001	v	.(V	V
Mali	ML6	2000	v	v	v	v
Moldova	MB4	2012-13	v		v	v
Morocco	$M\Lambda 2$	2003	v		(
Morecco	MA4	2002.04	v		v	
Mozambiguo	M72	1007	v		v	(
Mozambique	MZ4	2002.04	V		V	V
Mozambique	MZ4	2003-04	V		V	V
Namihia	NIZO	2011	V		V	v
Namibia		1992	V	/	V	
Namibia	INIVIS	2000-07	V	v	V	
Namidia	INIVIO NID2	2013	V		V	
Negal	INP3	1996	V		V	
Nepal	NP4	2001	V		V	
Nepal	NP5	2006	V		V	
Nepal	NP6	2011	V		V	,
Nicaragua	NC3	1998	V		\checkmark	\checkmark
Nicaragua	NC4	2001	V		\checkmark	\checkmark
Niger	NI2	1992	V		V	,
Niger	NI3	1998	V	,	\checkmark	\checkmark
Niger	NI5	2006-07	V	\checkmark	\checkmark	\checkmark
Niger	NI6	2012	\checkmark		\checkmark	\checkmark
Nigeria	NG4	2003	\checkmark		\checkmark	
Nigeria	NG5	2008	\checkmark	\checkmark	\checkmark	
Nigeria	NG6	2013	\checkmark		\checkmark	
Pakistan	PK6	2012-13	\checkmark			
Peru	PE2	1991-92	\checkmark		\checkmark	
Peru	PE3	1996	\checkmark		\checkmark	\checkmark
Peru	PE4	2000	\checkmark		\checkmark	\checkmark
Peru	PE5	2004-08	\checkmark		\checkmark	\checkmark
Peru	PE6	2009, 2010, 2011	\checkmark		\checkmark	\checkmark
Republic of Congo	CG5	2005	\checkmark	\checkmark	\checkmark	
Republic of Congo	CG6	2011-2012	\checkmark		\checkmark	
Rwanda	RW4	2000, 2005	\checkmark	\checkmark	\checkmark	\checkmark
Rwanda	RW6	2010-11, 2014-15	\checkmark		\checkmark	\checkmark
Sao Tome and Principe	ST5	2008-09	\checkmark	\checkmark		
Senegal	SN2	1992-93	\checkmark		\checkmark	
Senegal	SN4	2005	\checkmark	\checkmark	\checkmark	
Senegal	SN6	2010-11	\checkmark		\checkmark	
Sierra Leone	SL5	2008	\checkmark	\checkmark	\checkmark	
Sierra Leone	SL6	2013	\checkmark		\checkmark	
Swaziland	SZ5	2006-07	\checkmark	\checkmark		
Tajikistan	TJ6	2012	\checkmark			
Tanzania	TZ2	1991-92	\checkmark		\checkmark	

Supplementary Appendix

country	v000	year	main	SSA	longitudinal	longrestricted
Tanzania	TZ3	1996	\checkmark		\checkmark	\checkmark
Tanzania	TZ4	2004-05	\checkmark	\checkmark	\checkmark	\checkmark
Tanzania	TZ5	2009-10	\checkmark	\checkmark	\checkmark	\checkmark
Tanzania	TZ7	2015-16	\checkmark		\checkmark	\checkmark
Timor-Leste	TL5	2009-10	\checkmark			
Togo	TG3	1998	\checkmark		\checkmark	\checkmark
Togo	TG6	2013-14	\checkmark		\checkmark	\checkmark
Turkey	TR2	1993	\checkmark		\checkmark	
Turkey	TR3	1998	\checkmark		\checkmark	\checkmark
Turkey	TR4	2003-04	\checkmark		\checkmark	\checkmark
Uganda	UG3	1995	\checkmark		\checkmark	
Uganda	UG4	2000-01	\checkmark		\checkmark	\checkmark
Uganda	UG5	2006	\checkmark	\checkmark	\checkmark	\checkmark
Uganda	UG6	2011	\checkmark		\checkmark	\checkmark
Uzbekistan	UZ3	1996	\checkmark			
Yemen	YE6	2013	\checkmark			
Zambia	ZM2	1992	\checkmark		\checkmark	
Zambia	ZM3	1996-97	\checkmark		\checkmark	\checkmark
Zambia	ZM4	2001-02	\checkmark		\checkmark	\checkmark
Zambia	ZM5	2007	\checkmark	\checkmark	\checkmark	\checkmark
Zambia	ZM6	2013-14	\checkmark		\checkmark	\checkmark
Zimbabwe	ZW3	1994	\checkmark		\checkmark	
Zimbabwe	ZW4	1999	\checkmark		\checkmark	\checkmark
Zimbabwe	ZW5	2005-06	\checkmark	\checkmark	\checkmark	\checkmark
Zimbabwe	ZW6	2010-11	\checkmark		\checkmark	\checkmark

Table A.1: Demographic and Health Surveys in each sample

Each row is one of 169 survey rounds of the Demographic and Health Surveys. We include in our main DHS sample of births (marked "main") all DHS rounds that measured maternal anthropometry plus the three Indian DHS. "SSA" indicates the replication sample that compares India with sub-Saharan Africa (such as in figure A.2; this set of DHS rounds matches that used to study height by Jayachandran and Pande, 2017 and Spears, 2017). The longitudinal and longitudinal-restricted samples are used in panels (a) and (b), respectively, of figures 6 and A.8; surveys are excluded if there is only one round per country with adult women's anthropometry. For the reader's convenience, we include v000, which is the code for a DHS survey round provided with the data. All data are publicly available free of charge at measuredhs.com.

	ladle A.2	:: FITECTS 0	I DILUI OLO	IEL OU ININ	IVI, IIIUIA V	/S. IESU UI	CUN		
dependent variable:	(1) NNM	(2) NNM	(3) NNM	(4) NNM	(5) NNM	(9) NNM	(2) NNM	(8) NNM	(9) NNM
hirth order 2 × India	-4 363***	-3 787***	0364	-5 591 ***	-3 477***	-6.528***	-3 478***	-5,570***	-6 065***
	(0.654)	(0.654)	(0.678)	(0.706)	(0.749)	(0.725)	(0.749)	(0.707)	(0.937)
birth order $3 imes$ India	-4.075***	-3.533***	3.952***	-13.07***	-9.138***	-14.88***	-9.118***	-13.03***	-14.05^{***}
	(0.750)	(0.754)	(0.834)	(0.865)	(1.006)	(0.925)	(1.006)	(0.866)	(1.488)
birth order $4 imes India$	-1.907*	-1.271	9.805***	-21.48***	-15.86***	-24.12***	-15.82***	-21.39***	-23.03***
	(0.898)	(0.904)	(1.047)	(1.068)	(1.298)	(1.166)	(1.300)	(1.068)	(2.055)
birth order $5 imes$ India	0.385	1.269	15.98^{***}	-29.57***	-22.33***	-33.03***	-22.28***	-29.38***	-31.69***
	(1.126)	(1.131)	(1.332)	(1.349)	(1.645)	(1.474)	(1.646)	(1.349)	(2.662)
birth order $6+ \times$ India	2.886^{*}	4.128^{**}	24.73***	-39.31***	-29.73***	-43.97***	-29.70***	-39.17***	-41.77***
	(1.281)	(1.301)	(1.627)	(1.599)	(2.000)	(1.784)	(2.000)	(1.600)	(3.450)
birth order 2	-10.02***	-9.167***	-5.891***	-14.68***	-13.04***	-15.87***	-13.03***	-14.67***	-18.80***
	(0.211)	(0.211)	(0.221)	(0.230)	(0.246)	(0.238)	(0.246)	(0.230)	(0.278)
birth order 3	-11.91***	-10.39***	-4.129***	-21.92***	-18.68***	-24.26***	-18.67***	-21.91***	-30.03***
	(0.239)	(0.239)	(0.268)	(0.272)	(0.320)	(0.297)	(0.320)	(0.272)	(0.411)
birth order 4	-10.47***	-8.316***	0.629 +	-24.96***	-20.22***	-28.35***	-20.21***	-24.94***	-36.75***
	(0.271)	(0.273)	(0.324)	(0.315)	(0.399)	(0.359)	(0.399)	(0.315)	(0.547)
birth order 5	-8.711***	-5.867***	5.635***	-27.08***	-20.91***	-31.46***	-20.89***	-27.07***	-42.38***
	(0.315)	(0.318)	(0.390)	(0.366)	(0.484)	(0.427)	(0.484)	(0.366)	(0.688)
birth order 6+	-0.636*	3.766***	20.42^{***}	-29.15***	-20.17***	-35.46***	-20.14***	-29.13***	-51.18***
	(0.316)	(0.324)	(0.452)	(0.388)	(0.574)	(0.490)	(0.574)	(0.388)	(0.881)
survey round fixed effects	>	>	>	>	>	>	>	>	>
child sex and birth cohort		>	>	>	>	>	>	>	>
mother birth cohort			>		>		>		>
sibsize				>	>				
sibling sex combinations						>	>		
mother fixed effects								>	>
n (live births)	6,695,004	6,695,004	6,695,004	6,695,004	6,695,004	6,695,004	6,695,004	6,339,396	6,339,396
ain DHS sample of births, de	scribed in se	ction 3. The	results in co	of the set	his table are	plotted in p	anel (b) of f	igure 2. NN	M = neonat
Ortality. Observations are live CMC code of month of hirth	births that o	ccurred at le عتم fully in	east 1 month taracted writ	betore the i h an India i	nterview da ndicator Sta	te. Mother a	nd child cof	Norts are cub	ic polynomi 1
CMC code of month of difui	. All controls	s are runy m	teracteu wii	ih an Inuia l	naicator. Ju	ingarg errui	s ciustereu	וכיז כחע Yo	

Supplementary Appendix

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Table A.	3: Effects	of birth or	der on IM	R, India v	s. rest of L	OHS		
birth order 2 × India 4402*** 3.659*** 0.427 4.996*** 2.947*** 5.355**** 2.939*** 4.378************************************	dependent variable:	(1) IMR	(2) IMR	(3) IMR	(4) IMR	(5) IMR	(6) IMIR	(7) IMR	(8) IMR	(9) IMR
birth order $3 \times \ln d_1$ (0.825) (0.829) (0.864) (0.877) (0.236) (0.898) (0.389) (0.887) (1.184) birth order $4 \times \ln d_1$ (0.575 (0.926) (0.884) (0.877) (0.1222) (1.100) (1.272) (1.110) (1.975) (1.100) (1.272) (1.122) (1.222) (1.202) birth order $5 \times \ln d_1$ (1.184) (1.127) (1.372) (1.137) (1.289) (1.289) (1.900) (1.900) birth order $5 \times \ln d_1$ (1.184) (1.127) (1.372) (1.177) (1.289) (1.281) (1.202) (1.202) birth order $5 \times \ln d_1$ (1.184) (1.177) (1.372) (1.177) (1.289) (1.281) (1.202) (1.202) (1.202) birth order $5 \times \ln d_1$ (1.120) (1.474) (1.777) (1.484) (1.477) (1.283) (1.414) (1.777) (1.283) (1.414) (1.777) (1.437) (1.283) (1.414) (1.777) (1.283) (1.414) (1.777) (1.283) (1.202) (1.20	birth order 2 × India	-4.402***	-3.659***	0.427	-4.996***	-2.947**	-5.385***	-2.939**	-4.378***	-2.661*
birth order 3 × India 3769** 3.370*** 13.33*** - 10.24*** - 14.72*** - 10.22*** - 21.77*** - 0.436*** - 9.436*** - 9.436*** - 9.436*** - 9.436*** - 9.436*** - 21.77*** - 10.25*** - 21.77*** - 26.57*** - 21.77*** - 26.57*** - 21.77*** - 26.57*** - 21.77*** - 26.57*** - 21.77*** - 25.57*** - 21.77*** - 25.57*** - 21.77*** - 25.57*** - 21.77*** - 25.57*** - 21.77*** - 25.57*** - 21.77*** - 25.57*** - 21.37*** - 25.57*** - 21.35*** - 22.35**** - 22.35*** - 22.35**** - 22.35**** - 22.35**** - 2		(0.825)	(0.828)	(0.864)	(0.877)	(0.936)	(0.898)	(0.936)	(0.887)	(1.184)
birth order $4 \times \ln dia$ (0.97) (0.980) (1.082) (1.100) (1.272) (1.165) (1.275) (1.110) (1.990) (1.990) birth order $4 \times \ln dia$ (1.373) (1.379) (1.399) (1.379) (1.399	birth order $3 imes India$	-3.768***	-3.260***	3.871***	-13.93***	-10.24***	-14.72***	-10.22***	-12.85***	-9.436***
birth order 4 × India 1575 (1.37) (1.37) (1.56%) (1.48) (1.37) (1.57) (1.77) (1.55) (1.77) (1.57) (1.57) (1.77) (1.57) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.57) (1.77) (1.77) (1.57) (1.77) (1.72) (1.77) (1.72) (1.77) (1.72) (1.77) (1.72) (1.77) (1.72) (1.77) (1.72) (1.77) (1.72) ((0.975)	(0.980)	(1.082)	(1.100)	(1.273)	(1.165)	(1.275)	(1.110)	(1.909)
birth order 5 × India (1.134) (1.124) (1.137) (1.370) (1.659) (2.070) (1.856) (1.379) (2.652) (1.377) (2.377) (1.375) (1.370) (1.836) (1.379) (2.652) (2.377) (1.777)	birth order $4 imes India$	1.575	1.979 +	12.75^{***}	-23.07***	-17.80***	-24.31***	-17.82***	-21.71***	-16.74***
birth order 5 × India 5.153*** 5.67**** 20.24***** 33.04***** 2.6.20**********************************		(1.184)	(1.194)	(1.372)	(1.370)	(1.658)	(1.481)	(1.660)	(1.379)	(2.632)
birth order $6 + \times$ India 12.06 (1.727) (1.699) (2.070) (1.836) (2.070) (3.357) (1.707) (3.357) (1.717) (1.717) (1.745) (2.153) (2.061) (2.572) (2.289) (2.573) (2.070) (3.357) (3.357) (1.707) (3.357) (1.717) (1.217) (1.217) (1.236) (0.315) (0.315) (0.311) (0.329) (0.341) (0.329) (0.341) (0.329) (0.341) (0.329) (0.341) (0.329) (0.341) (0.329) (0.341) (0.329) (0.371) (0.329) (0.371) (0.3729) (0.3729) (0.371) (0.3729) (0.371) (0.3729) (0.371) (0.3729) (0.371) (0.3729) (0.3729) (0.371) (0.3729) (0.371) (0.3729) (0.3729) (0.3729) (0.371) (0.3729) (0.3729) (0.371) (0.3729) (0.3720) (0.371) (0.3729) (0.3720) (0.371) (0.3729) (0.3720) (0.371) (0.3729) (0.3720) (0.	birth order $5 imes India$	5.153^{***}	5.676***	20.24^{***}	-33.04***	-26.20***	-34.71***	-26.25***	-31.47***	-25.02***
Dirth order 2 (177) (1.27) (2.29) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29) (0.392) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74) (0.74)	hinth order 61 × India	(1.462) 12 06***	(1.474) 17 36***	(1.727)	(1.699) 11 70***	(2.070) 33 53***	(1.836) 44.00***	(2.072) 22 65***	(1.707) 10 68***	(3.357) 31 16***
birth order 2 $-\frac{10.82^{+++}}{10.82^{+++}} = \frac{8.870^{+++}}{8.870^{+++}} = \frac{10.42^{++++}}{14.21^{++++}} = \frac{11.22^{++++}}{14.21^{++++}} = \frac{10.324}{10.324}$ (0.324) (0.324) (0.324) (0.324) (0.324) (0.329) (0.311) (0.324) (0.329) (0.314) (0.324) (0.329) (0.379) (0.314) (0.324) (0.379) (0.379) (0.314) (0.324) (0.379) (0.379) (0.314) (0.379) (0.379) (0.379) (0.314) (0.379) (0.379) (0.379) (0.379) (0.314) (0.379) (0.379) (0.379) (0.379) (0.314) (0.379) (0.379) (0.379) (0.379) (0.341) (0.379) (0.379) (0.379) (0.379) (0.379) (0.379) (0.341) (0.379) (0.379) (0.379) (0.341) (0.379) (0.379) (0.379) (0.341) (0.379) (0.370) (0.379		1717) 1777)	(1 745)	7.153)	(7.061)	(0 570)	(2.258)	(2,573)	00.0 1	(4 377)
birth order 3 (0.299) (0.300) (0.315) (0.320) (0.341) (0.329) (0.341) (0.324) (0.392) birth order 3 $(-1247^{***} - 8948^{***} - 6216^{***} - 3248^{***} - 31.66^{***} - 33.58^{***} - 31.66^{***} - 37.66^{***} - 37.68^{***} - 37.24^{***} - 39.43^{***} - 39.43^{***} - 37.23^{***} - 10.10^{***} - 5.58^{***} - 10.539 - 0.539 - 0.539 - 0.550 - 0.4410 - 0.6411 - 0.550 - 0.6801 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6811 - 0.6801 - 0.552 - 1.24.3^{***} - 35.53^{***} - 25.61^{$	birth order 2	-10.82***	-8.870***	-0.949**	-20.04***	-14.22***	-21.48***	-14.21***	-19.38***	-22.39***
birth order 3 -1247^{***} -8948^{***} 6216^{***} -22126^{***} -3538^{***} -37.68^{***} -39.43^{**		(0.299)	(0.300)	(0.315)	(0.320)	(0.341)	(0.329)	(0.341)	(0.324)	(0.392)
birth order 4 (0.341) (0.343) (0.335) (0.385) (0.380) (0.446) (0.410) (0.446) (0.384) (0.579) birth order 4 -10.10^{***} -5.08^{****} 16.63^{***} -40.23^{***} -24.06^{***} -44.49^{***} -39.43^{***} -48.20^{***} birth order 5 7.150^{***} -0.539 27.42^{***} -46.49^{***} -25.61^{***} -35.40^{***} -35.32^{***} -35.32^{***} birth order 6 -4.736 (0.460) (0.561) (0.561) (0.520) (0.596) (0.680) (0.524) (0.973) birth order 6 -4.736^{***} 14.93^{***} 55.37^{***} -56.55^{***} -64.61^{***} -55.93^{***} -57.23^{***} -72.43^{***} child sex and birth cohort mother birth cohort mother birth cohort mother fixed effects $$	birth order 3	-12.47***	-8.948***	6.216***	-32.48***	-21.26***	-35.38***	-21.24***	-31.68***	-37.68***
birth order 4 -10.10*** -5.088*** 16.63*** -40.23*** -24.06**** -44.49*** -39.43*** -48.20*** birth order 5 (0.392) (0.396) (0.468) (0.445) (0.560) (0.499) (0.560) (0.499) (0.73) birth order 5 7.150^{***} -0.539 2.742^{***} -46.49** -55.03*** -55.03*** -57.33*** -57.		(0.341)	(0.343)	(0.385)	(0.380)	(0.446)	(0.410)	(0.446)	(0.384)	(0.579)
birth order 5 (0.392) (0.396) (0.468) (0.445) (0.445) (0.560) (0.499) (0.560) (0.449) (0.774) birth order 5 -7.150^{***} -15.30^{***} $-5.5.61^{***}$ $-5.6.61^{***}$ $-5.5.61^{***}$ $-5.5.61^{***}$ $-5.5.61^{***}$ $-5.5.30^{***}$ -57.23^{***} birth order 6+ -7.736^{***} -14.90^{***} 55.37^{***} -56.55^{***} -64.61^{***} -25.61^{***} -55.53^{***} -56.61^{***} -55.53^{***} -56.61^{***} -55.53^{***} -56.61^{***} -55.66^{***} -64.61^{***} -55.53^{***} -57.33^{***} (0.973) survey round fixed effects -7 -7 -7 -7 -7 -7 -7 -7	birth order 4	-10.10^{***}	-5.088***	16.63^{***}	-40.23***	-24.06***	-44.49***	-24.04***	-39.43***	-48.20***
birth order 5 -7.150^{***} -0.539 27.42^{***} -46.49^{***} -52.05^{***} -56.05^{***} -57.23^{***} birth order 6+ (0.456) (0.460) (0.561) (0.520) (0.680) (0.524) (0.973) birth order 6+ 4.736^{***} 14.93^{***} 55.37^{***} -56.55^{***} -25.66^{***} -55.93^{***} -72.43^{***} survey round fixed effects (0.451) (0.561) (0.561) (0.562) (1.239) survey round fixed effects (0.452) (0.411) (0.558) (0.806) (0.562) (1.239) survey round fixed effects (0.461) (0.531) (0.561) (0.562) (1.239) survey round fixed effects (0.461) (0.531) (0.530) (0.562) (1.239) subsize indicators (0.461) (0.531) (0.530) (0.562) (1.239) subling sex combinations (0.681) (0.681) (0.681) (0.562) (1.239) isibling sex combinations (0.61) (0.531) (0.73) (0.73) (0.73)		(0.392)	(0.396)	(0.468)	(0.445)	(0.560)	(0.499)	(0.560)	(0.449)	(0.774)
birth order $6+$ (0.456) (0.460) (0.51) (0.520) (0.680) (0.596) (0.680) (0.524) (0.973) birth order $6+$ 4.736*** 14.93*** 55.37*** -56.55*** -64.61*** -55.93*** -72.43*** survey round fixed effects (0.451) (0.553) (0.681) (0.562) (1.239) survey round fixed effects (0.461) (0.641) (0.553) (0.806) (0.681) (0.562) (1.239) survey round fixed effects (0.451) (0.553) (0.806) (0.681) (0.562) (1.239) subsize indicators (0.461) (0.641) (0.553) (0.806) (0.562) (1.239) sibling sex combinations (0.461) (0.553) (0.530,617) (0.752) (1.239) in/live births (1/e) (1/	birth order 5	-7.150***	-0.539	27.42***	-46.49***	-25.64***	-52.05***	-25.61***	-45.80***	-57.23***
birth order 6+ 4.736^{***} 14.93*** 55.37*** -56.55*** -26.65*** -64.61*** -26.61*** -55.93*** -72.43*** (0.452) (0.461) (0.558) (0.806) (0.681) (0.806) (0.562) (1.239) survey round fixed effects 7 7 7 7 7 7 7 7 7 7		(0.456)	(0.460)	(0.561)	(0.520)	(0.680)	(0.596)	(0.680)	(0.524)	(0.973)
(0.452) (0.461) (0.538) (0.806) (0.681) (0.806) (0.562) (1.239) survey round fixed effects \checkmark </td <td>birth order 6+</td> <td>4.736***</td> <td>14.93^{***}</td> <td>55.37***</td> <td>-56.55***</td> <td>-26.65***</td> <td>-64.61***</td> <td>-26.61***</td> <td>-55.93***</td> <td>-72.43***</td>	birth order 6+	4.736***	14.93^{***}	55.37***	-56.55***	-26.65***	-64.61***	-26.61***	-55.93***	-72.43***
survey round fixed effects child sex and birth cohort mother birth cohort sibsize indicators sibling sex combinations mother fixed effects <i>n</i> (live births) 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,300,617 6,030,617 <i>n</i> (live births) <i>n</i> (live births, described in section 3. Regressions and sample correspond with figure 2, where panel (a) plots column 9. IMR th mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts ar ic polynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DH J.		(0.452)	(0.461)	(0.641)	(0.558)	(0.806)	(0.681)	(0.806)	(0.562)	(1.239)
child sex and birth cohort $($ $($ $($ $)$ $($	survey round fixed effects	>	>	>	>	>	>	>	>	>
mother birth cohort v v v v v v v v v v v v v v v v v v v	child sex and birth cohort		>	>	>	>	>	>	>	>
sibsize indicators sibling sex combinations mother fixed effects <i>n</i> (live births) 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,030,617 6,030,617 in DHS sample of births, described in section 3. Regressions and sample correspond with figure 2, where panel (a) plots column 9. IMR ut mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts ar ic polynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DF J.	mother birth cohort			>		>		>		>
sibling sex combinations mother fixed effects <i>n</i> (live births) 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,330,617 6,030,617 in DHS sample of births, described in section 3. Regressions and sample correspond with figure 2, where panel (a) plots column 9. IMR unt mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts ar ic polynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DF J.	sibsize indicators				>	>				
<i>n</i> (live births) <i>6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,030,617 6,030,617 in UHS sample of births, described in section 3. Regressions and sample correspond with figure 2, where panel (a) plots column 9. IMR ant mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts are ic polynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DF J.</i>	sibling sex combinations						>	>		
<i>n</i> (live births) 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,373,337 6,306,17 6,030,617 in DHS sample of births, described in section 3. Regressions and sample correspond with figure 2, where panel (a) plots column 9. IMR ant mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts are columnal of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DH J.	mother fixed effects								>	>
in DHS sample of births, described in section 3. Regressions and sample correspond with figure 2, where panel (a) plots column 9. IMR ant mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts ar bolynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DF J.	n (live births)	6,373,337	6,373,337	6,373,337	6,373,337	6,373,337	6,373,337	6,373,337	6,030,617	6,030,617
ant mortality. Observations are live births in the DHS birth history at least 1 year before the interview date. Mother and child cohorts a bic polynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by D J.	in DHS sample of births, de	scribed in se	ction 3. Reg	ressions and	d sample cor	respond wi	th figure 2, v	vhere panel	(a) plots col	umn 9. IMI
or polynomiaes of Cine coae of monuted of on the controls are range increased with an indua marcaton. Standard Circles chastered by DJ . J	ant mortality. Observations a	are live birth	s in the DH9	S birth histo	ry at least 1 fully interact	year before	the interviev India indica	w date. Mot tor Standar	ther and chil	d cohorts ar
	DIC POLYTIQUILIAIS OF CIVIC COURS		u Dirui. Ali (iuny merac	נובת אזתו מוו	חומום חומוכם	IIUI. JIAIIUAI	u errors ciu	ra ya najais

Supplementary Appendix

Table A.4: The effect of birth order on NNM is robust to controlling for sibsize \times India \times own sex indicators

	(1)	(2)
dependent variable:	NNM	NNM
birth order 2 $ imes$ India	-6.07***	-6.05***
	(0.94)	(0.94)
birth order 3 \times India	-14.05***	-13.90***
	(1.49)	(1.49)
birth order 4 $ imes$ India	-23.03***	-22.94***
	(2.06)	(2.05)
birth order 5 $ imes$ India	-31.69***	-31.76***
	(2.66)	(2.66)
birth order 6+ \times India	-41.77***	-42.12***
	(3.45)	(3.45)
non-interacted birth order indicators	\checkmark	\checkmark
survey round fixed effects	\checkmark	\checkmark
child sex and birth cohort (cubic) \times India	\checkmark	\checkmark
mother birth cohort (cubic) $ imes$ India	\checkmark	\checkmark
mother fixed effects	\checkmark	\checkmark
sibsize $ imes$ India $ imes$ child own sex		\checkmark
n (live births)	6,339,396	6,339,396

Main DHS sample of births, described in section 3. NNM = neonatal mortality. Observations are live births that occurred at least 1 month before the interview date. Mother and child cohorts are cubic polynomials of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DHS PSU. The sample in this table is smaller than the sample in table A.2, which presents similar results, because the fixed effects are finer and observations are omitted in fixed effect categories with no within variation.

Supplementary Appendix

Table	e A.5: Insti	tutional de	livery: Reg	ression res	ults for chi	ldren under 5	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
sample:	full	columns 2	2-7 include	only child	ren under S	5 with recorded c	lelivery place
dependent variable:	NNM	NNM	NNM	NNM	NNM	institutional	institutional
2nd born	-18.87***	-42.60***	-42.62***	-47.17***	-46.77***	-0.0130*	-0.0970***
3rd born	(1.105) -35.92***	(3.368) -87.99***	(3.368) -87.97***	(3.571) -97.73***	(3.566) -97.15***	(0.00611) 0.0134	(0.00672) -0.143***
4th born	(1.437) -48.86***	(5.524) -125.0***	(5.526) -124.9***	(6.053) -140.3***	(6.033) -139.7***	(0.00981) 0.0561***	(0.0115) -0.159***
5th born	(1.856) -63.26***	(8.537) -168.2***	(8.552) -168.1***	(9.355) -190.5***	(9.311) -189.8***	(0.0135) 0.0938***	(0.0164) -0.175***
6th born	(2.625) -73.91***	(11.72) -186.3***	(11.75) -186.2***	(12.80) -217.2***	(12.72) -216.4***	(0.0174) 0.134***	(0.0214) -0.185***
institutional	(3.828)	(14.56)	(14.59) -1.158	(15.80)	(15.74) 4.064^{\dagger}	(0.0220)	(0.0270)
sibsize indicators	\checkmark	\checkmark	(1.887) √	\checkmark	(2.081) √	\checkmark	\checkmark
n	221,743	48,156	48,156	✓ 48,156	√ 48,156	48,156	√ 48,156

Data are India's 2005-6 DHS, corresponding with figure 3. Standard errors clustered by survey PSU. "Institutional" is an indicator for institutional delivery, rather than delivery at a home. "Further controls" are the century-month code of the birth cohort of the child and the mother (both entered as quadratic polynomials), the sex of the child, and whether the child lives in an urban or rural place.

Note on sample restriction: The results in column 1 use a sample that includes all available births from the 2005-6 Indian DHS. These results are included for comparison because the results in columns 2-7 necessarily use a restricted sample of children under 5 years old because these are the children for whom place of birth was recorded. This sample restriction complicates the identification of birth order effects, even if sibsize is controlled for. This is because birth order, sibsize, and birth spacing jointly predict selection into the sample (Spears et al., 2019). Consider, for example, a child of birth order 1 in a sibsize of 3: such a child will only be under 5 at the time of the survey if his or her mother has had three children in less than five years, and therefore if he or she comes from a household with low birth spacing. In contrast, a child of birth order 2 in a sibsize of 3 would be expected to have longer birth spacing than the first child, and a child of birth order 3 could have been born at any point in the five year period with any birth spacing. So, part of what appears to be a birth order effect in this sample is, in fact, a household composition effect of selection into the sample. This is why the birth order gradient is steeper here (and in columns 2-5) than in the main result (or, comparably, in column 1). Our point in including this analysis is merely to verify that *institutional delivery* is not an omitted variable in our results: it is not predicted by birth order, and controlling for it does not change the coefficient on birth order predicting NNM.

1		1
	(1)	(2)
dependent variable:	NNM	NNM
excluded:	last-borns w/prior sibling death	last-borns w/prior sibling NNM
birth order 2 $ imes$ India	-4.028***	-4.078***
	(0.679)	(0.676)
birth order $3 \times India$	-6.860***	-6.841***
	(0.834)	(0.821)
birth order $4 imes$ India	-10.08***	-9.460***
	(1.067)	(1.026)
birth order $5 imes$ India	-12.66***	-10.92***
	(1.400)	(1.311)
birth order $6 \times$ India	-26.19***	-23.22***
	(1.711)	(1.606)
mother FEs & controls	\checkmark	\checkmark
n	6,066,288	6,227,729
NNM among included	38.54	38.07
NNM among excluded	69.52	140.7

Table A.6:	Following 1	Lundberg	and Svalery	d (2017),	, we find	that	excluding	possible-
replaceme	nt last births	(after prior	r sibling NN	M) prese	erves the p	oatter	n	

The sample starts from the main "India vs. rest of DHS" sample in Table A.2, but excludes last-born children (where "last-born" is at the time of the survey, within a sibship) whose prior sibling has died (either at a neonatal age or at any age, according to the column header). This robustness check is intended to rule out the biasing threat of endogenous fertility, where mothers would be more likely to have a "replacement" birth after the death of a prior child. Note that because this analysis uses mother fixed effects, we do not use an explicit sibsize variable, so this last-born exclusion does not require a counterfactual sibsize (recall also that controlling for sibship size and sex structure rather than mother fixed effects did not change our main result). This analysis follows that of Lundberg and Svaleryd (2017), who use it to investigate the possible threat of endogenous fertility in a study of birth order in Swedish data.

Note that, although our effect remains visible with these births (and deaths) excluded from the sample — suggesting that endogenous fertility does not drive our result in this way — this is not the type of robustness check where we would expect the coefficient estimates to be quantitatively unchanged. That is because there is unobserved heterogeneity in the "frailty" of children, for reasons that would be correlated within sibships but orthogonal to birth order within a sibship (such as the sanitation and disease environment of a village). By excluding children whose sibling has died, we are reducing the average frailty of our sample. Thus, in the last row of the table, NNM is higher among excluded births than among included births.

Lundberg and Svaleryd report results excluding *all* children who are last-born to their mothers. Although not reported in this table (but available in the replication files), our results are robust to using this sample (with about 4.7 million observations): the coefficients on birth order × India are numerically similar to our main results: -8 for second-born, -15 for third-born, -22 for fouth-born, etc. Such a robustness check, unlike those reported in this table, does not selectively exclude children of high-frailty sibships.

first-born girls, but is stro	onger in sid	snips of firs	st-dorn doys	5		
	(1)	(2)	(3)	(4)	(5)	(6)
sex of first-born to mother:	boy	girl	boy	girl	boy	girl
birth order 2 $ imes$ India	-7.80***	-1.19	-7.17***	-0.72	-7.81***	-1.14
	(1.15)	(1.07)	(1.15)	(1.07)	(1.15)	(1.07)
birth order $3 \times$ India	-18.31***	-5.65***	-16.96***	-4.71***	-18.28***	-5.61***
	(1.39)	(1.23)	(1.40)	(1.24)	(1.39)	(1.23)
birth order $4 imes$ India	-31.67***	-9.51***	-29.74***	-8.16***	-31.69***	-9.45***
	(1.64)	(1.49)	(1.66)	(1.50)	(1.64)	(1.49)
birth order $5 \times$ India	-39.55***	-17.64***	-37.13***	-15.93***	-39.68***	-17.62***
	(2.05)	(1.83)	(2.07)	(1.86)	(2.05)	(1.83)
birth order 2 $ imes$ India	-49.60***	-26.96***	-45.30***	-23.97***	-49.71***	-26.85***
	(2.43)	(2.10)	(2.46)	(2.14)	(2.43)	(2.10)
birth order 2	-16.76***	-11.72***	-21.92***	-15.00***	-16.72***	-11.78***
	(0.36)	(0.34)	(0.42)	(0.40)	(0.36)	(0.34)
birth order 3	-25.23***	-17.67***	-35.38***	-24.13***	-25.19***	-17.73***
	(0.42)	(0.39)	(0.60)	(0.57)	(0.42)	(0.39)
birth order 4	-28.94***	-20.00***	-43.68***	-29.39***	-28.90***	-20.08***
	(0.48)	(0.45)	(0.79)	(0.75)	(0.48)	(0.45)
birth order 5	-31.85***	-21.30***	-50.97***	-33.49***	-31.82***	-21.35***
	(0.54)	(0.52)	(0.98)	(0.94)	(0.54)	(0.52)
birth order 6	-33.87***	-23.40***	-61.41***	-40.97***	-33.84***	-23.46***
	(0.58)	(0.54)	(1.24)	(1.19)	(0.58)	(0.54)
n (live births)	3,238,725	3,100,671	3,238,725	3,100,671	3,422,689	3,272,315
child sex	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
mother fixed effects	\checkmark	\checkmark	\checkmark	\checkmark		
child birth cohort			\checkmark	\checkmark		
sibling sex combinations					\checkmark	\checkmark

Table A.7: India's later-born NNM advantage is seen for sibships with first-born boys and first-born girls, but is stronger in sibships of first-born boys

The data are the main "India vs. rest of DHS" sample in Table A.2. Note that the sum of the sample sizes in columns 1 and 2 or 3 and 4 of this table match the sample size in columns 8 and 9 (which have mother fixed effects) of Table A.2 (3, 238, 725 + 3, 100, 671 = 6, 339, 396). Child cohort is a cubic polynomial of CMC code of month of birth. All controls are fully interacted with an India indicator. Standard errors clustered by DHS PSU.

Note that sex-selective abortion is uncommon for first-born children: even in India, where son preference shapes fertility stopping behavior, the sex of the first born is generally taken to be random (Clark, 2000). So, the sex of the first-born child is not a choice variable. However, subsequent choices, such as the decision to have an additional child, may be correlated with the sex of the first child, so that, for example, Indian mothers who have 3 children rather than 2 are poorer, on average, if they had a first boy than if they had a first girl; this example of heterogeneity, however, would be absorbed by mother fixed effects.