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Table S1. Metadata human postmortem brain tissue

;Path Diag |Cleanedpat|Brain |, pne |p ook Tau [Thal Phase |CERAD [ABC  [cAA

hdiag Weight
,[34:00:00 |54 |63 |o M Z)'s‘;?r’g)m AD AD 1150 |44 |6 5 3 A3B3C3 |2
2 90:05:00 |64 |77 [13 M ﬁA[r)nnestic) AD AD 1264 |44 6 5 3 A3B3C3 (3
3|60:25:00 |59 |76 |17 F AD AD AD 1191 |44 6 5 3 A3B3C3 (2
4|70:00:00 (55 |68 (13 M DLB AD AD 1522 |33 6 5 3 A3B3C3 (1
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26(24:00:00 73 F Control Path Ageing [Control 1214 |34 2 2 2 A1B1C2 |1
27|76:10:00 71 F Control Control Control 1214 |33 3 2 1 A1B1CO (2
28|47:05:00 89 M Control Control Control 1356 |33 2 3 1 A2B1C1 |1

Control age

29:30:00 78 F Control related Control 1225 |22 2 0 A0B2CO (0
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Supplementary figures
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Supplementary Figure 1. Lipotypes (most differentiating species) of human iPSC-derived neurons,
astrocytes and microglia A) Heatmap of most differentiating lipid species different between iPSC-
derived neurons, astrocytes and microglia. alpha = 0.8.
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Supplementary Figure 2. Extended analysis of human (AD) brain lipidomics A) Heatmap with Z-scored
lipid class concentrations (nmol/mg brain material) from indicated brain regions (control subjects
only). B-C) PCA plot of unbiased lipidomic analysis of AD (purple) and control (green) brain tissue
samples from (FC) white matter (B) and Cerebellum (C). D-F) Volcano plots of individual lipid species
in AD vs control brain tissue for FC gray matter (D), FC white matter (E) and Cerebellum (F) as a % of
total lipidome. CE species are highlighted. G-1) Fold change of phospholipid and TG species with
indicated number of double bonds in AD vs control samples from FC gray matter (G), FC white matter
(H) and Cerebellum (l) from % of total lipids. J) Heatmap depicting changes in lipid classes
(concentrations) for individual AD samples compared to the average of control samples. Log2fold
change plotted independent for each donor and each brain area. K) Average log2fold change in AD
subject group compared to control samples per lipid class and brain area. Data from (J). L-N) Bar graphs
present individual lipid class changes in FC gray matter (L), FC white matter (M) and Cerebellum (N) in
AD versus control samples (group level) as % of total lipids. O-Q) Bar graphs present individual lipid
class levels in FC gray matter (O), FC white matter (P) and Cerebellum (Q) in AD and control samples
(group levels) as concentrations.
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Supplementary Figure 3. Extended lipidomic analysis of human isogenic APOE3/3 and APOE4/4 iPSC-
derived astrocytes A) Representative sequencing result for confirming cell identity and expected ApoE
genotype B) Image of differentiated iAstrocytes, from both BIONi037 and Kolf2.1J lines. Scale bar =
25mm C) Gene expression levels (as determined by RNAseq) of indicated mature and immature
astrocyte markers in our iPSC-derived astrocytes. n=6 wells BIONi037 (n=3 ApoE3 n=3 ApoE4) D-E)
Volcano plots of lipid species in Kolf2.1J (D) or BIONi037 (E) ApoE4 vs ApoE3 iAstrocytes from a second
independent lipidomics experiment. n=3 wells for Kolf2.1J, n=2 for BIONIO37 (one BIONi037 ApoE4
sample was removed as outlier). F) Bar graphs of lipid classes in ApoE3 and ApoE4 iAstrocytes from
BIONi037 and Kolf2.1J background (% of total). n=6 samples Kolf2.1J n=5 BIONIO37 G) Fold change of
phospholipid species with indicated number of double bonds in ApoE4 vs ApoE3 iAstrocytes.
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Supplementary Figure 4. Extended proteomic and transcriptomic analysis of human isogenic
APOE3/3 and APOE4/4 iPSC-derived astrocytes A-B) Gene-set enrichment analysis was performed on
proteomics data from ApoE4 versus ApoE3 iAstrocytes for the Kolf2.1J) and the BIONiO37 lines. Plotted
are the enrichment scores (for both lines) for the reactome pathways significantly enriched in Kolf2.1)
(A) and pathways significantly enriched in BIONIO37 (B). C) Scatterplot of changes in protein levels (as
measured by proteomics) versus changes in matching RNA expression (transcriptomics) in BIONi037
ApoE4 vs ApoE3 iAstrocytes. MHC-I and immunoproteasome pathway genes are indicated. D-F)
Heatmaps showing changes of indicated genes in ApoE4 vs ApoE3 iAstrocytes from our study and
previous studies (as indicated) within consistently altered pathways as identified by transcriptomics
in Figure 4K. G) Transcriptomics data from ApoE4 vs ApoE3 BIONi037 iAstrocytes. Log2fold change of
differentially expressed genes (DEGs) in ApoE4 vs ApoE3 astrocytes. Top ten genes with highest
log2fold change and top ten genes with most significant P-value are labeled. n=3 wells per genotype.
H) Top 10 reactome pathways upregulated or downregulated (with lowest FDR) in ApoE4 vs ApoE3 by
gene-set enrichment analysis of transcriptomics data.
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Supplementary Figure 5. Extended lipidomics analysis of reactive human iPSC-derived astrocytes A)
Log2fold change of altered individual lipid species in reactive vs control iAstrocytes (BIONi037 ApoE3).
n=3 wells reactive n=2 wells control. B) Summary data of changes in all detected lipid classes in
reactive vs control iAstrocytes from the Kampmann lab (WTC11iPSC line, ApoE3/3 cultured in 2% FBS).
n=3 wells per condition. C-D) Bar graphs present changes in lipid classes in reactive vs control from
Kolf2.1J) and BIONi037 (C) or WTC11 (Kampmann lab) (D) iAstrocytes. Shown is % of total lipid, n=3
samples per line. E) Most differentiating lipid species in reactive vs control iAstrocytes (Kolf2.1J ApoE3)
a=0.8. F) PLand TG saturation (number of double bonds) in Kolf2.1J, BIONi037 and WTC11 iAstrocytes.
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Supplementary Figure 6. Extended proteomic analysis of reactive human iPSC-derived astrocytes

A) Venn diagram depicting the number of proteins that were significantly downregulated >1.25 fold
(>0.3 log2fold) in reactive Kolf2.1J, BIONi0O37 and both iAstrocytes. Top 10 (non-significant) enriched
reactome pathways detected by overrepresentation analysis are plotted. B) Heatmap shows the
log2fold change of all proteins significantly upregulated >1.5 fold in both Kolf2.1) and BIONi037
reactive astrocytes. Next are the log2fold change values of these proteins in ApoE4 vs ApoE3
iAstrocytes. C) Heatmap shows the log2fold change of all proteins significantly downregulated >1.5
fold in Kolf2.1J and BIONi037 reactive astrocytes and the log2fold change values of these proteins in

ApoE4 vs ApoE3 iAstrocytes.
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Supplementary Figure 7. Cholesterol regulates astrocyte activation extended data A) StringDB
analysis of all proteins significantly upregulated >1.5 fold in Kolf2.1) and BIONiO37 reactive astrocytes
(dataset from figure 5). Zoom in shows cluster of genes related to cholesterol metabolism. B)
Normalized II-6 secretion in iAstrocytes (ApoE3), pre-treated with vehicle or avasimibe (0.5mM) for
one hour and then treated for 24 hours with vehicle, cholesterol or cholesterol + avasimibe. n=6
(K2.1J) and n=12 (B037) from 4 independent experiments. ***P<0.001 Welch ANOVA with Dunnett’s
multiple testing correction C) Summary data of changes in all detected lipid classes in cholesterol vs
vehicle treated iAstrocytes (BIONi037-A). n=6 wells from 3 independent experiments. Mann-Whitney
U test with Benjamini-Hochberg correction *=P<0.05. D) Bar graphs of lipid classes in cholesterol vs
vehicle treated iAstrocytes from BIONi037-A background (% of total). n=6 wells from 3 independent
experiments.
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Sample type Experiment Contributing lab
iPSC-derived neurons 1. Human iPSC-derived neurons. Multiple Isaacs lab
inductions from 3 C90rf72 lines and 3
isogenic Control lines (from Giblin et al.)
2. Human iPSC-derived neurons. Multiple Isaacs lab
inductions from 3 C90rf72 lines treated
with C9orf72-knockdown antisense
oligonucleotides (from Giblin et al.)
3. Human iPSC-derived neurons. Multiple Isaacs lab
inductions from 2 control lines transduced
with C9orf72 repeat lentiviruses (from
Giblin et al.)
4. alpha-synuclein E46K neurons Van der Kant lab
5. TMEM106B SS185 vs TT185 vs Null Ward lab
iNeurons
iPSC-derived astrocytes 1. Control vs reactive (IL1o._TNFo_Clq) Kampmann lab & Van
iAstrocytes in three cell lines: WTC11 Rose, | der Kant lab
BIONi037-A & KOLF2.1J (from Feringa and
Koppes-den Hertog et al.)
2. Multiple repeats of ApoE4 vs ApoE3 Van der Kant lab
isogenic iAstrocytes with FBS in two cell
lines: BIONi037-A & KOLF2.1J
3. Multiple repeats of ApoE4 vs ApoE3 Van der Kant lab
isogenic iAstrocytes no FBS in two cell lines:
BIONi037-A & KOLF2.1J (from Feringa and
Koppes-den Hertog et al.)
4. Multiple repeats of ApoE3 iAstrocytes Van der Kant lab
cultured with FBS versus no FBS in two cell
lines: BIONi037-A & KOLF2.1J
iPSC-derived neurons, 1. IPSC-derived neurons, microglia and Van der Kant lab
microglia and astrocytes astrocytes (from Feringa and Koppes-den Kronenberg-Versteeg
Hertog et al.) lab
Human brain 1. Human cerebellum AD vs control (from Lashley lab
Feringa and Koppes-den Hertog et al.) Van der Kant lab
2. Human prefrontal cortex gray matter ADvs | Lashley lab
control (from Feringa and Koppes-den Van der Kant lab
Hertog et al.)
3. Human prefrontal cortex white matter AD Lashley lab
vs control (from Feringa and Koppes-den Van der Kant lab
Hertog et al.)
4. Human prefrontal cortex gray matter, white | Lashley lab
matter and cerebellum all control (from Van der Kant lab
Feringa and Koppes-den Hertog et al.)
5. Human prefrontal cortex gray matter FTLD Lashley lab
vs control (from Giblin et al.) Isaacs lab
6. Human cerebellum FTLD vs control (from Lashley lab
Giblin et al.) Isaacs lab
Mouse brain 1. Mouse cortex ApoE4 vs ApoE3 target Van der Kant lab
replacement mice 6 months old
2. Mouse cortex ApoE4 vs ApoE3 target Van der Kant lab
replacement mice 3 months old

Supplementary Table 1. The Neurolipid Atlas: an open access data commons for brain lipid data
Description of datasets currently available on the Neurolipid Atlas.
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