## Table S1. Metadata human postmortem brain tissue

| Sample nr | PM delay  | AAO | AAD | Duration | Gender | Clinical<br>Diag          | Path Diag                         | Cleanedpat<br>hdiag | Brain<br>Weight | APOE | Braak Tau | Thal Phase | CERAD | ABC    | CAA |
|-----------|-----------|-----|-----|----------|--------|---------------------------|-----------------------------------|---------------------|-----------------|------|-----------|------------|-------|--------|-----|
| 1         | 34:00:00  | 54  | 63  | 9        | м      | Picks/FTD<br>(bvFTD)      | AD                                | AD                  | 1150            | 44   | 6         | 5          | 3     | A3B3C3 | 2   |
| 2         | 90:05:00  | 64  | 77  | 13       | м      | AD<br>(Amnestic)          | AD                                | AD                  | 1264            | 44   | 6         | 5          | 3     | A3B3C3 | 3   |
| 3         | 60:25:00  | 59  | 76  | 17       | F      | AD                        | AD                                | AD                  | 1191            | 44   | 6         | 5          | 3     | A3B3C3 | 2   |
| 4         | 70:00:00  | 55  | 68  | 13       | М      | DLB                       | AD                                | AD                  | 1522            | 33   | 6         | 5          | 3     | A3B3C3 | 1   |
| 5         | 76:40:00  | 49  | 62  | 13       | F      | AD<br>(Amnestic)          | AD                                | AD                  | 996             | 33   | 6         | 5          | 3     | A3B3C3 | 0   |
| 6         | 84:45:00  | 58  | 69  | 11       | М      | PPA / AD                  | AD                                | AD                  | 1600            | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 7         | 61:19:00  | 63  | 79  | 16       | М      | AD                        | AD                                | AD                  | 1423            | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 8         | 78:15:00  | 69  | 81  | 12       | М      | AD                        | AD                                | AD                  | 1116            | 33   | 6         | 5          | 3     | A3B3C3 | 2   |
| 9         | 31:42:00  | 48  | 63  | 15       | М      | AD                        | AD                                | AD                  | 1042            | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 10        | 34:25:00  | 54  | 65  | 11       | М      | AD                        | AD                                | AD                  | 1089            | 44   | 6         | 5          | 3     | A3B3C3 | 3   |
| 11        | 17:10:00  | 55  | 67  | 12       | F      | PPA                       | AD                                | AD                  | 1009            | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 12        | 14:50:00  | 62  | 72  | 10       | М      | PD                        | AD                                | AD                  | 1180            | 44   | 6         | 5          | 3     | A3B3C3 | 2   |
| 13        | 66:00:00  | 51  | 60  | 9        | F      | CBD                       | AD                                | AD                  | 1090            | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 14        | 33:26:00  | 63  | 74  | 11       | М      | AD                        | AD                                | AD                  | 1022            | 44   | 6         | 5          | 3     | A3B3C3 | 3   |
| 15        | 44:05:00  | 68  | 84  | 16       | F      | VD                        | AD                                | AD                  | 1127            | 44   | 6         | 5          | 3     | A3B3C3 | 3   |
| 16        | 45:35:00  | 52  | 71  | 19       | М      | AD                        | AD                                | AD                  | 1097            | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 17        | 52:30:00  | 53  | 68  | 15       | F      | Picks                     | AD                                | AD                  | 1103            | 44   | 6         | 5          | 3     | A3B3C3 | 1   |
| 18        | 40:10:00  | 49  | 69  | 20       | F      | AD                        | AD                                | AD                  | 986             | 44   | 6         | 5          | 2     | A3B3C2 | 3   |
| 19        | 92:47:00  | 50  | 66  | 16       | F      | Picks (PPA)<br>(Amnestic) | AD                                | AD                  | 906             | 33   | 6         | 5          | 3     | A3B3C3 | 2   |
| 20        | 30:25:00  | 59  | 79  | 20       | F      | AD                        | AD                                | AD                  | 961             | 33   | 6         | 5          | 3     | A3B3C3 | 3   |
| 21        | 80:00:00  |     | 64  |          | М      | Control                   | Control                           | Control             | 1695            | 33   | 0         | 1          | 0     | A1B0C0 | 0   |
| 22        | 47:00:00  |     | 73  |          | М      | Control                   | Control                           | Control             | 1291            | 33   | 4         | 1          | 0     | A0B2C0 | 0   |
| 23        | 171:00:00 |     | 69  |          | м      | Control                   | Control/path<br>aging             | Control             | 1435            | 33   | 1         | 3          | 1     | A2B1C1 | 0   |
| 24        | 26:46:00  |     | 70  |          | F      | Dystonia?                 | Control                           | Control             | 1200            | 23   | 1         | 0          | 0     | A0B1C0 | 0   |
| 25        | 79:00:00  |     | 76  |          | М      | Control                   | Control                           | Control             | 1366            | 34   | 2         | 1          | 0     | A1B1C0 | 0   |
| 26        | 24:00:00  |     | 73  |          | F      | Control                   | Path Ageing                       | Control             | 1214            | 34   | 2         | 2          | 2     | A1B1C2 | 1   |
| 27        | 76:10:00  |     | 71  |          | F      | Control                   | Control                           | Control             | 1214            | 33   | 3         | 2          | 1     | A1B1C0 | 2   |
| 28        | 47:05:00  |     | 89  |          | М      | Control                   | Control                           | Control             | 1356            | 33   | 2         | 3          | 1     | A2B1C1 | 1   |
| 29        | 29:30:00  |     | 78  |          | F      | Control                   | Control age<br>related<br>changes | Control             | 1225            | 22   | 2         | 0          | 0     | A0B2C0 | 0   |
| 30        | 88:50:00  |     | 79  |          | F      | Control                   | Control                           | Control             | 1288            | 33   | 1         | 2          | 1     | A2B1C1 | 0   |
| 31        | 45:05:00  |     | 68  |          | F      | Control                   | Control                           | Control             | 1330            | 23   | 0         | 0          | 0     | A0B0C0 | 0   |
| 32        | 54:20:00  |     | 73  |          | М      | Control                   | Control                           | Control             | 1498            | 24   | 3         | 4          | 2     | A3B2C2 | 3   |
| 33        | 3:30:00   |     | 79  |          | М      | Control                   | Control                           | Control             | 1355            | 33   | 2         | 0          | 0     | A0B1C0 | 0   |

# **Supplementary figures**



**Supplementary Figure 1. Lipotypes (most differentiating species) of human iPSC-derived neurons, astrocytes and microglia** A) Heatmap of most differentiating lipid species different between iPSC-derived neurons, astrocytes and microglia. alpha = 0.8.



**Supplementary Figure 2. Extended analysis of human (AD) brain lipidomics** A) Heatmap with Z-scored lipid class concentrations (nmol/mg brain material) from indicated brain regions (control subjects only). B-C) PCA plot of unbiased lipidomic analysis of AD (purple) and control (green) brain tissue samples from (FC) white matter (B) and Cerebellum (C). D-F) Volcano plots of individual lipid species in AD vs control brain tissue for FC gray matter (D), FC white matter (E) and Cerebellum (F) as a % of total lipidome. CE species are highlighted. G-I) Fold change of phospholipid and TG species with indicated number of double bonds in AD vs control samples from FC gray matter (G), FC white matter (H) and Cerebellum (I) from % of total lipids. J) Heatmap depicting changes in lipid classes (concentrations) for individual AD samples compared to the average of control samples. Log2fold change plotted independent for each donor and each brain area. K) Average log2fold change in AD subject group compared to control samples per lipid class and brain area. Data from (J). L-N) Bar graphs present individual lipid class changes in FC gray matter (L), FC white matter (M) and Cerebellum (N) in AD versus control samples (group level) as % of total lipids. O-Q) Bar graphs present individual lipid class levels in FC gray matter (O), FC white matter (P) and Cerebellum (Q) in AD and control samples (group levels) as concentrations.



## Supplementary Figure 3. Extended lipidomic analysis of human isogenic APOE3/3 and APOE4/4 iPSC-

**derived astrocytes** A) Representative sequencing result for confirming cell identity and expected ApoE genotype B) Image of differentiated iAstrocytes, from both BIONi037 and Kolf2.1J lines. Scale bar = 25mm C) Gene expression levels (as determined by RNAseq) of indicated mature and immature astrocyte markers in our iPSC-derived astrocytes. n=6 wells BIONi037 (n=3 ApoE3 n=3 ApoE4) D-E) Volcano plots of lipid species in Kolf2.1J (D) or BIONi037 (E) ApoE4 vs ApoE3 iAstrocytes from a second independent lipidomics experiment. n=3 wells for Kolf2.1J, n=2 for BIONi037 (one BIONi037 ApoE4 sample was removed as outlier). F) Bar graphs of lipid classes in ApoE3 and ApoE4 iAstrocytes from BIONi037 and Kolf2.1J background (% of total). n=6 samples Kolf2.1J n=5 BIONi037 G) Fold change of phospholipid species with indicated number of double bonds in ApoE4 vs ApoE3 iAstrocytes.



Supplementary Figure 4. Extended proteomic and transcriptomic analysis of human isogenic APOE3/3 and APOE4/4 iPSC-derived astrocytes A-B) Gene-set enrichment analysis was performed on proteomics data from ApoE4 versus ApoE3 iAstrocytes for the Kolf2.1J and the BIONi037 lines. Plotted are the enrichment scores (for both lines) for the reactome pathways significantly enriched in Kolf2.1J (A) and pathways significantly enriched in BIONI037 (B). C) Scatterplot of changes in protein levels (as measured by proteomics) versus changes in matching RNA expression (transcriptomics) in BIONi037 ApoE4 vs ApoE3 iAstrocytes. MHC-I and immunoproteasome pathway genes are indicated. D-F) Heatmaps showing changes of indicated genes in ApoE4 vs ApoE3 iAstrocytes from our study and previous studies (as indicated) within consistently altered pathways as identified by transcriptomics in Figure 4K. G) Transcriptomics data from ApoE4 vs ApoE3 BIONi037 iAstrocytes. Log2fold change of differentially expressed genes (DEGs) in ApoE4 vs ApoE3 astrocytes. Top ten genes with highest log2fold change and top ten genes with most significant P-value are labeled. n=3 wells per genotype. H) Top 10 reactome pathways upregulated or downregulated (with lowest FDR) in ApoE4 vs ApoE3 by gene-set enrichment analysis of transcriptomics data.







0.5

• ÷ 23456789 0 1 Double bonds

÷

### Supplementary Figure 5. Extended lipidomics analysis of reactive human iPSC-derived astrocytes A)

Log2fold change of altered individual lipid species in reactive vs control iAstrocytes (BIONi037 ApoE3). n=3 wells reactive n=2 wells control. B) Summary data of changes in all detected lipid classes in reactive vs control iAstrocytes from the Kampmann lab (WTC11 iPSC line, ApoE3/3 cultured in 2% FBS). n=3 wells per condition. C-D) Bar graphs present changes in lipid classes in reactive vs control from Kolf2.1J and BIONi037 (C) or WTC11 (Kampmann lab) (D) iAstrocytes. Shown is % of total lipid, n=3 samples per line. E) Most differentiating lipid species in reactive vs control iAstrocytes (Kolf2.1J ApoE3) a=0.8. F) PL and TG saturation (number of double bonds) in Kolf2.1J, BIONi037 and WTC11 iAstrocytes.



# **Supplementary Figure 6. Extended proteomic analysis of reactive human iPSC-derived astrocytes** A) Venn diagram depicting the number of proteins that were significantly downregulated >1.25 fold (>0.3 log2fold) in reactive Kolf2.1J, BIONi037 and both iAstrocytes. Top 10 (non-significant) enriched reactome pathways detected by overrepresentation analysis are plotted. B) Heatmap shows the log2fold change of all proteins significantly upregulated >1.5 fold in both Kolf2.1J and BIONi037 reactive astrocytes. C) Heatmap shows the log2fold change of all proteins significantly environment of these proteins in ApoE4 vs ApoE3 iAstrocytes. C) Heatmap shows the log2fold change of all proteins significantly downregulated >1.5 fold in Kolf2.1J and BIONi037 reactive astrocytes and the log2fold change values of these proteins in ApoE4 vs ApoE3 iAstrocytes.



0.0

5.55 % 70 00 % 00 % 00 % 00 % % 00 00 % %

-

•

. 1

0 Log2(fold change) Ż

4

-2

LacCER HexCER

Cei

-4

A

**Supplementary Figure 7. Cholesterol regulates astrocyte activation extended data** A) StringDB analysis of all proteins significantly upregulated >1.5 fold in Kolf2.1J and BIONi037 reactive astrocytes (dataset from figure 5). Zoom in shows cluster of genes related to cholesterol metabolism. B) Normalized II-6 secretion in iAstrocytes (ApoE3), pre-treated with vehicle or avasimibe (0.5mM) for one hour and then treated for 24 hours with vehicle, cholesterol or cholesterol + avasimibe. n=6 (K2.1J) and n=12 (B037) from 4 independent experiments. \*\*\*P<0.001 Welch ANOVA with Dunnett's multiple testing correction C) Summary data of changes in all detected lipid classes in cholesterol vs vehicle treated iAstrocytes (BIONi037-A). n=6 wells from 3 independent experiments. Mann-Whitney U test with Benjamini-Hochberg correction \*=P<0.05. D) Bar graphs of lipid classes in cholesterol vs vehicle treated iAstrocytes from BIONi037-A background (% of total). n=6 wells from 3 independent experiments.

| Sample type              | Experin | nent                                                                          | Contributing lab    |
|--------------------------|---------|-------------------------------------------------------------------------------|---------------------|
| iPSC-derived neurons     | 1.      | Human iPSC-derived neurons. Multiple                                          | Isaacs lab          |
|                          |         | inductions from 3 C90ff72 lines and 3                                         |                     |
|                          | 2       | Human iPSC-derived neurons Multiple                                           | Isaacs lah          |
|                          | 2.      | inductions from 3 C9orf72 lines treated                                       |                     |
|                          |         | with C9orf72-knockdown antisense                                              |                     |
|                          |         | oligonucleotides (from Giblin et al.)                                         |                     |
|                          | 3.      | Human iPSC-derived neurons. Multiple                                          | Isaacs lab          |
|                          |         | inductions from 2 control lines transduced                                    |                     |
|                          |         | with C9orf72 repeat lentiviruses (from                                        |                     |
|                          |         | Giblin et al.)                                                                |                     |
|                          | 4.<br>E | alpha-synuclein E46K neurons                                                  | Van der Kant lab    |
|                          | 5.      | iNeurons                                                                      |                     |
| iPSC-derived astrocytes  | 1.      | Control vs reactive (IL1 $\alpha$ _TNF $\alpha$ _C1q)                         | Kampmann lab & Van  |
|                          |         | IAStrocytes in three cell lines: WIC11 Rose,                                  | der Kant lab        |
|                          |         | BIONIU37-A & KOLFZ.1J (ITOM FEITInga and<br>Konnes-den Hertog <i>et al</i> .) |                     |
|                          | 2       | Multiple repeats of ApoE4 vs ApoE3                                            | Van der Kant lab    |
|                          |         | isogenic iAstrocytes with FBS in two cell                                     |                     |
|                          |         | lines: BIONi037-A & KOLF2.1J                                                  |                     |
|                          | 3.      | Multiple repeats of ApoE4 vs ApoE3                                            | Van der Kant lab    |
|                          |         | isogenic iAstrocytes no FBS in two cell lines:                                |                     |
|                          |         | BIONi037-A & KOLF2.1J (from Feringa and                                       |                     |
|                          |         | Koppes-den Hertog <i>et al.</i> )                                             | Mana dan Kant lah   |
|                          | 4.      | Multiple repeats of ApoE3 IAstrocytes                                         | van der Kant lab    |
|                          |         | lines: BIONi037-A & KOI F2.11                                                 |                     |
| iPSC-derived neurons,    | 1.      | IPSC-derived neurons, microglia and                                           | Van der Kant lab    |
| microglia and astrocytes |         | astrocytes (from Feringa and Koppes-den                                       | Kronenberg-Versteeg |
|                          |         | Hertog et al.)                                                                | lab                 |
| Human brain              | 1.      | Human cerebellum AD vs control (from                                          | Lashley lab         |
|                          |         | Feringa and Koppes-den Hertog <i>et al.</i> )                                 | Van der Kant lab    |
|                          | 2.      | Human prefrontal cortex gray matter AD vs                                     | Lashley lab         |
|                          |         | Hertog et al.)                                                                | van der Kant lab    |
|                          | 3.      | Human prefrontal cortex white matter AD                                       | Lashlev lab         |
|                          |         | vs control (from Feringa and Koppes-den                                       | Van der Kant lab    |
|                          |         | Hertog et al.)                                                                |                     |
|                          | 4.      | Human prefrontal cortex gray matter, white                                    | Lashley lab         |
|                          |         | matter and cerebellum all control (from                                       | Van der Kant lab    |
|                          | -       | Feringa and Koppes-den Hertog et al.)                                         | l h l · · l - h     |
|                          | 5.      | vs control (from Giblin <i>et al.</i> )                                       | Isaacs lab          |
|                          | 6.      | Human cerebellum FTLD vs control (from                                        | Lashley lab         |
| Maura hrain              | 1       | Giblin et al.)                                                                | Isaacs lab          |
|                          | 1.      | replacement mice 6 months old                                                 | van der Kant lab    |
|                          | 2.      | Mouse cortex ApoE4 vs ApoE3 target                                            | Van der Kant lab    |
|                          |         | replacement mice 3 months old                                                 |                     |

**Supplementary Table 1. The Neurolipid Atlas: an open access data commons for brain lipid data** Description of datasets currently available on the Neurolipid Atlas.