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Supplementary Fig. 1 | NASBA with different primer directionalities. a, Diagram of NASBA
using a primer set in which the T7 promoter is incorporated through the reverse primer, i.e., the
primer for the first cONA synthesis. This primer set generates antisense RNA (complementary to
the input RNA). b, Diagram of NASBA using a primer set in which the T7 promoter is incorporated
through the forward primer. This primer set amplifies the same sequence as the input RNA, and
there is an extra round of DNA synthesis required to double strand the T7 promoter prior to
generating the RNA product.
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Supplementary Fig. 2 | NASBA and CRISPR-Cas13a cleavage can be performed in a one-
pot isothermal reaction. One-pot NASBA-Cas13a was performed with a commercial NASBA kit
using a, synthetic SARS-CoV-2 genome or b, plant lysate enriched with cucumber mosaic virus
(CMV) as RNA input. The kit generates activator RNA. Upon sensing this RNA, LbuCas13a
indiscriminate ssRNase activity is activated, and LbuCas13a cleaves a reporter, producing a
fluorescent signal. ¢, Fluorescence kinetics of SARS-CoV-2—sensing NASBA-Cas13a (primer set
8 — gRNA 1) initiated by 0, 2 or 20 fM synthetic SARS-CoV-2 genome. d, Fluorescence kinetics
of the CMV-sensing NASBA-Cas13a initiated by 0.5% or 5% v/v infected plant lysate or 5% v/v
uninfected plant lysate. Data shown are for n=3 independent biological replicates, each plotted
as a line with raw fluorescence standardized to MEF (UM fluorescein). Shading indicates the
average of the replicates * standard deviation. Sequences of primers and gRNAs are listed in
Supplementary Data 1.
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Supplementary Fig. 3 | Sequential NASBA reveals various off-target products. a, Sequential
NASBA using RTs tested in Fig. 1 generates different off-target products at different steps of the
reaction (Sequential NASBA in Materials and Methods). Testing the effect of RNase H on off-
target products. Reactions were performed sequentially with 0.5 U/uL AMV RT and initiated either
by b, SARS-CoV-2 input RNA fragment targeted by primer set 5 or by ¢, CMV input RNA
fragment. Data in a—c are a representative of n=3 independent biological replicates. Uncropped,
unprocessed gel images in a—c are available as Supplementary Data 2.
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Supplementary Fig. 4 | Optimization of in-house NASBA-Cas13a. DMSO improves NASBA
efficiency. Fluorescence kinetics from NASBA-Cas13a (primer set 8 — gRNA 1) initiated by 0, 5
or 50 fM synthetic SARS-CoV-2 genome in the presence of varying concentrations of DMSO: a,
0%, b, 5%, ¢, 10% and d, 15%. Adding fresh DTT and BSA with 15% DMSO increases the final
fluorescence magnitude. Fluorescence kinetics from NASBA-Cas13a (primer set 8 — gRNA 1)
initiated with 0, 0.2, 2 or 20 fM synthetic SARS-CoV-2 genome e, without fresh DTT or BSA, f,
with 5 mM fresh DTT, g, with 0.1 ug/uL BSA or h, with 5 mM fresh DTT and 0.1 pg/uL BSA. Data
shown are for n=3 independent biological replicates, each plotted as a line with raw fluorescence
standardized to MEF (uM fluorescein). Shading indicates the average of the replicates + standard
deviation. Sequences of primers and gRNAs are listed in Supplementary Data 1.
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Supplementary Fig. 5 | Screening of guide RNAs and activator RNAs. Fluorescence kinetics
for NASBA-Cas13a with varying concentrations of synthetic SARS-CoV-2 genome using a, gRNA
2-1, b, gRNA 2-2, ¢, gRNA 7—4 or d, gRNA 3—1. A predicted secondary structure of each gRNA
including the constant region and the spacer sequence is depicted. The spacer sequence in gRNA
2—-2 and gRNA 7—4 overlaps with the corresponding NASBA primer binding site (red). gRNA 3-1
is not predicted to form the necessary hairpin structure (red) required for complexing with
LbuCas13a, which potentially contributes to the observed low cleavage efficiency. e, A predicted
secondary structure of activator RNA 6. The region targeted by each gRNA is shaded.
Fluorescence kinetics for NASBA-Cas13a with varying concentrations of synthetic SARS-CoV-2
genome using f, gRNA 6-1, g, gRNA 6-2 or h, gRNA 6-3 with predicted secondary structure of
each gRNA above the kinetic traces. Lines on gRNA 2—-1 (a) and gRNA 6-2 (g) indicate additional
predicted long-range interactions. Data shown are for n=3 independent biological replicates, each
plotted as a line with raw fluorescence standardized to MEF (uM fluorescein). Shading indicates
the average of the replicates * standard deviation.
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Supplementary Fig. 6 | Experimental conditions before and after data processing. a, Full
experimental data set before pre-processing. The conditions shown here were run with both low
(2.25 nM) and high Cas13a-gRNA (45 nM). Numbers for T7 RNAP, RNase H and RT are in units
of U/uL. b, The model did not aim to describe low Cas13a-gRNA conditions or conditions with 0
input RNA, so these conditions were withheld. An additional condition (dark gray) was withheld
from the training data for data set 1 due to high measurement error, but this condition was used
in the training data for data sets 2 and 3 (Supplementary Fig. 9). For each data set, the out of
sample data was defined as the conditions after pre-processing that were not in the training data.



Experiment Simulation Experiment Simulation

Data set 1
a d g j
251 131 50 10 1
= 20 4 - 404 w 87
5 5 5 5
O 154 o 030 o 61
O (@) ()
10 201 4
54 10 1 2
0- 0 . 0 O-vL

0.010 0.015 0.020 0.025 0 1 2 3 4 5 4.4 46 4.8 5.0
E, s n n
Data set 2
b e k
204 14 401 12.5 -
€151 o =30 +£10.01
= > = >
o o [e) O 7.51
QO 104 () (201 ©
5.0
5 101 Sl
0 0- ool — r : !
0.020 0.025  0.030 0 1 2 3 4 5 480 485 4.90 4.95 5.00
5 E n
Data set 3
c f i |
14 3
o 40
€ € € €
515 = 530 S5 2
o 5] o 5]
O 104 O O204 O
1 4
0 0 . 0- 0 . . Y
0.05 006 0.07 0 1 2 3 4 5 375 4.00 425 4.50
5 Go n n

Supplementary Fig. 7 | Distribution of summary metrics F, and n. Histogram of F, values
across a-c, all conditions in experimental Data Sets 1, 2, and 3, respectively and d-f, the subset
of conditions used for parameter estimation in simulated Data Sets 1, 2, and 3, respectively. It is
not intended for the model to include a mechanism for background signal (readout in the absence
of input RNA). Histogram of nvalues across g-i, all conditions in experimental Data Sets 1, 2, and

3, respectively and j-l, the subset of conditions used for parameter estimation in simulated Data
Sets 1, 2, and 3, respectively.
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Supplementary Fig. 8 | When Cas13a-gRNA is relatively low, the readout is similar to
background level. Fitted Fnax values across time courses with shared conditions. Data points
represent fitted Fnax values, the box extends from the Q1 to Q3 quartile values, the line represents
the median, and the whiskers denote the range of the data. a-c, Experimental data for Data Sets
1, 2, and 3, respectively. The left box is for conditions without input RNA and includes conditions
with low and high Cas13a-gRNA (2.25 and 45 nM). The middle box is for conditions with input
RNA (1 and 10 fM) and low Cas13a-gRNA. The right box is for conditions with input RNA and
high Cas13a-gRNA. Conditions with low Cas13a-gRNA have Fmax values generally
indistinguishable from without input RNA.
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Supplementary Fig. 9 | Pre-processing of training data to remove conditions with relatively
high measurement error. a, The mean proportion error, p, was calculated for each condition, j
in data set 1 (Materials and Methods). b, For the condition in data set 1 with p;> 0.3 within the
subset of conditions before pre-processing (Materials and Methods), normalized readout
trajectories for each replicate are shown (gray), along with the normalized mean readout trajectory
across all 3 replicates (blue). This condition had one replicate for which the readout remained
near zero throughout the time course, in contrast to the other replicates in the condition. c-d, For
data sets 2 and 3, the mean proportion error, p, was calculated for each condition, j. The condition
with p;> 0.3 in each data set was not in the subset of conditions before pre-processing (Materials
and Methods), so these conditions were not analyzed further or removed from training data.
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Supplementary Fig. 10 | Parameter estimation method workflow and evaluation. a,
Parameters were estimated using a multi-start optimization strategy. First, a Latin hypercube
global search with nsearch parameter sets was used to sample the parameter space. The top Ninit
parameter sets (with the lowest cost function values) were each used to initialize independent
optimization runs using the Levenberg-Marquardt algorithm. The optimized parameter set with
the lowest cost function was defined as the calibrated parameter set. b, The parameter estimation
method (PEM) was evaluated for each model. First, a Latin hypercube global search was
performed, and the results were filtered based on fit to the training data. The top npemeval parameter
sets were used to generate PEM evaluation training data by using each parameter set to simulate
the training data and adding noise to each data point. Next, parameters were estimated using
each PEM evaluation data set, and the results were analyzed.
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Supplementary Fig. 11 | Parameter estimation evaluation results. a-c, PEM evaluation results
for model A for Data Sets 1, 2, and 3, respectively. d-f, PEM evaluation results for model B for
Data Sets 1, 2, and 3, respectively. g-i, PEM evaluation results for model C for Data Sets 1, 2,
and 3, respectively. j-I, PEM evaluation results for model D for Data Sets 1, 2, and 3, respectively.
In each case, Nsearch = 5000 and ninit = 24. Note that the PEM evaluation criterion is not exactly
met for model C, Data Set 1, PEM evaluation Data Set 3; model C, Data Set 3, PEM evaluation
Data Set 2; and model D, Data Set 3, PEM evaluation Data Set 1. In each case, the PEM
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evaluation data set is just under (<0.005) the PEM evaluation criterion. This is a minor
inconsistency that is unlikely to affect downstream parameter estimation results.
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Supplementary Fig. 12 | Calibration and analysis of sub-optimal candidate model A for Data
set 1. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 13 | Calibration and analysis of sub-optimal candidate model A for Data
Set 2. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 14 | Calibration and analysis of sub-optimal candidate model A for Data
Set 3. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 15 | Calibration and analysis of sub-optimal candidate model B for Data
Set 1. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 16 | Calibration and analysis of sub-optimal candidate model B for data
Set 2. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and ¢, mid-range T7 RNAP and RT and high Cas13a-gRNA. The calibrated
parameter set for this model and data set did not pass the cost function filter (Materials and
Methods), which is a further indication that it is not able to describe the training data.
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Supplementary Fig. 17 | Calibration and analysis of sub-optimal candidate model B for Data
Set 3. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 18 | Calibration and analysis of sub-optimal candidate model C for Data
Set 1. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 19 | Calibration and analysis of sub-optimal candidate model C for Data
Set 2. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and ¢, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 20 | Calibration and analysis of sub-optimal candidate model C for Data
Set 3. a—c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 22 | Side-by-side comparison of experimental and simulated modeling
objectives for Data Set 1. a-c, Hill-like functions were fit to each time course trajectory, and
summary metrics (n, ti2, Fo, and Fmax) were parameterized (Fig. 3b is a visual representation of
these metrics). a, For each time course, R? for the normalized data and Hill fit were calculated:;
values are plotted as a histogram for all conditions in the data set (experimental column) or all
conditions in the simulated training data set (simulation column). b—c, Histograms of values
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across all conditions simulated in the data set (experimental column) or all conditions in the
training data set (simulation column) were calculated for: b, ti» and ¢, Fmax. d—f, Time course
trajectories for data subsets: d, mid-range RNase H and T7 RNAP and high Cas13a-gRNA, (the
0.5 U/uL condition was omitted as it was removed from the training data due to high measurement
error (Supplementary Fig. 9) e, mid-range RNase H and RT and high Cas13a-gRNA and f, mid-
range T7 RNAP and RT and high Cas13a-gRNA. g, Parity plot for the correlation between
normalized experimental data and normalized simulated data. Each point in the plot represents a
combination of enzyme doses and time point. In a scenario of perfect agreement, all points would
be on the y = x line (gray).
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Supplementary Fig. 23 | Side-by-side comparison of experimental and simulated modeling
objectives for Data Set 2. a-c, Hill-like functions were fit to each time course trajectory, and
summary metrics (n, ti2, Fo, and Fmax) were parameterized (Fig. 3b is a visual representation of
these metrics). a, For each time course, R? for the normalized data and Hill fit were calculated:;
values are plotted as a histogram for all conditions in the data set (experimental column) or all
conditions in the simulated training data set (simulation column). b—c, Histograms of values
across all conditions simulated in the data set (experimental column) or all conditions in the
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training data set (simulation column) were calculated for: b, ti> and ¢, Fmax. d—f, Time course
trajectories for data subsets: d, mid-range RNase H and T7 RNAP and high Cas13a-gRNA e,
mid-range RNase H and RT and high Cas13a-gRNA and f, mid-range T7 RNAP and RT and high
Cas13a-gRNA. g, Parity plot for the correlation between normalized experimental data and
normalized simulated data. Each point in the plot represents a combination of enzyme doses and
time point. In a scenario of perfect agreement, all points would be on the y = x line (gray).
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Supplementary Fig. 24 | Side-by-side comparison of experimental and simulated modeling
objectives for Data Set 3. a-c, Hill-like functions were fit to each time course trajectory, and
summary metrics (n, ti2, Fo, and Fmax) were parameterized (Fig. 3b is a visual representation of
these metrics). a, For each time course, R? for the normalized data and Hill fit were calculated;
values are plotted as a histogram for all conditions in the data set (experimental column) or all
conditions in the simulated training data set (simulation column). b—c, Histograms of values
across all conditions simulated in the data set (experimental column) or all conditions in the
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training data set (simulation column) were calculated for: b, ti> and ¢, Fmax. d—f, Time course
trajectories for data subsets: d, mid-range RNase H and T7 RNAP and high Cas13a-gRNA, e,
mid-range RNase H and RT and high Cas13a-gRNA and f, mid-range T7 RNAP and RT and high
Cas13a-gRNA. g, Parity plot for the correlation between normalized experimental data and
normalized simulated data. Each point in the plot represents a combination of enzyme doses and
time point. In a scenario of perfect agreement, all points would be on the y = x line (gray).
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Supplementary Fig. 25 | Comparison of time course trajectories for optimized parameters
with default vs. low ODE solver tolerances for data set 2, model D. The default solve_ivp
error tolerances were initially used to run simulations for parameter estimation, but simulated
concentration values sometimes took negative values, so optimization was repeated with
decreased error tolerances to check whether parameters were relatively insensitive to these
errors (Materials and Methods). a—c, Time course trajectories for data subsets with simulated
data using the default error tolerances (left) or the low error tolerances (right) generated with a,
mid-range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and
high Cas13a-gRNA and ¢, mid-range T7 RNAP and RT and high Cas13a-gRNA.
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Supplementary Fig. 26 | Parameter sensitivity analysis using Fnax or ti2 as a metric. a-c,
Percent change in t12 when increasing each parameter individually by 10% (left) or decreasing
each parameter individually by 10% (right), relative to the metric for the calibrated parameter set,
for Data Sets 1-3, respectively. d-f, Percent change in Fmax when increasing each parameter
individually by 10% (left) or decreasing each parameter individually by 10% (right), relative to the
metric for the calibrated parameter set, for Data Sets 1-3, respectively.
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Supplementary Fig. 27 | Parameter sensitivity analysis using MSE as a metric. a-c, percent
change in MSE when increasing each parameter individually by 10% (left) or decreasing each
parameter individually by 10% (right), relative to the MSE for the calibrated parameter set, for
Data Sets 1-3, respectively.

32



Supplementary Note 1 | Mathematical implementation
Effective rate constant for T7 RNAP-mediated transcription

The effective rate constant ki, efrective Was calculated for each initial condition of T7 RNAP,
[X17 RNAP]0, Where ke pase iS @ free parameter for base case transcription:

k
ktxn, effective — _—txnbase (Equation 31)

[XT7 rRNAP]O

Cas13 deactivation

An exponential decay function was used to define deactivation of Cas13a indiscriminate ssRNase
activity over time. At each time (t), the fraction of active Cas13a (fracc,s13) Was calculated using

the Python package SciPy’s stats module’ expon function:

fraCCa513 = expon(t, kloc,deactivation' kscale,deactivation) (Equation 32)

k1oc deactivation@Nd  Kscale deactivation @re parameters that define the exponential decay function.

klocdeactivation determines the time between initialization of the simulation and the start

of

deactivation, and kgcaje deactivation d€termines the rate of deactivation once it has started. The
total activated Cas13a (i.e., with indiscriminate ssRNase activity) (x,cas13) is calculated as follows,

where X¢,513 IS the total target-activated Cas13a:
Xacas13 = fTaCcas13 " Xcas13 (Equation S3)

Non-monotonic RNase H activity
A beta distribution was used to define kgry, for each initial condition of RNase H, Xgnase 1,0

where agy4 and by, are shape parameters for the beta distribution and cgy 4 determines the
scaling on the distribution:

_ braa-1 .
kria = Crua * (Xrnase H,o)aRHA L. (1 — XRNase H,O) (Equation S4)

RNase H initial conditions were scaled such that each condition was between 0 and 1, which
are the bounds of the beta distribution.

Re-scaling
To avoid numerical instability, we re-scaled Xinput Rna SUCh that:

! .
Xinput RNA = Cscale * Xinput RNA (Equation S5)
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With Cgca1e = 108, We show separate derivations for the ODE describing Xinput RNA a@Nd all other
ODEs. For the ODE that tracks Xinput rRnA, WE USed the following derivation for rescaling:

dx; Equation S6
ml:;;:t 2 = k * Xinput RNA " Xother (Equati )

14
. . . . Xj .
where Xomer is all state variables that are not Xipput rna- Substituting ";L“‘NA for x,, the equation

scale

is:

1 dx{ 1 i
C : . ml:il;t RNA =k- C : ' X’input RNA " Xother (Equatlon 87)
scale scale

After simplification, the equation becomes:

!
dXinput RNA

dt =k 'Xlinput RNA * Xother (Equation S8)

Therefore, no changes are required for the ODE that tracks Xinput Rna. FOr each remaining term
involving Xinput RNA, WE UsSed the following equation for re-scaling:

dxother .
dt =k " Xinput RNA * Xother + k3 * Xother * X2 (Equatlon 39)

After substituting X"‘C"“‘ﬂ for x,, the equation becomes:

scale

dxother 1 ’ .
T dt =k- Cot *Xinput RNA * Xother T ky * Xother * X2 (Equation $10)
scale

Therefore, for each term including x{,,u¢rna (in all equations except for the one that tracks
Xinput RNA), the term is divided by Csc,e. Re-scaling is accounted for in Supplementary Table 4.

Conservation laws

Conservation laws were applied to internal model states that by definition are conserved. At each
time step, the following equations were used to calculate concentrations. In each equation, the
first term after the equals sign is the initial value.

Xp1 = Xp1,0 — Xp1v — Xp1cv — XRTp1v — XRTpilcv — XcDNA1v — XRNasecDNA1v
— XcpNA1 — Xp2cDNA1 — Xp1cDNA2 — XRTp2cDNA1 — XRTp1cDNA2
- Xpro - XT7pro

(Equation S11)

Xp2 = Xp2,0 — Xp2u — Xp2cu ~ XRTp2u — XRTp2cu — XcDNA2u — XRNasecDNA2u
— XcDNA2 — Xp2cDNA1 — Xp1cDNA2 — XRTp2cDNA1 — XRTp1cDNA2 (Equation $12)
- Xpro - XT7pro

XRT = XRT,0 — XRTp1v — XRTp2u — XRTpicv ~ XRTp2cu — XRTp2cDNA1 (Equation S13)
— XRTp1cDNA2
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XRNase — XRNase,0 — XRNasecDNA1lv — XRNasecDNA2u (Equation $14)

X17 = X17,0 — XT7pro (Equation S15)
Xicas13 = XiCas13,0 — Xcas13 (Equation S16)
¥a = XqRM0 T XqRf (Equation S17)

Xf = Xqrf,0 — XqRf (Equation S$18)

Supplementary Note 2 | Evaluation of parameter estimation method (PEM)
Algorithm for PEM evaluation

Before using the PEM to estimate parameters to describe the training data, we evaluated the
ability of the proposed PEM to find parameter sets yielding good agreement with the training data.
To accomplish this, we generated three PEM evaluation data sets using three different sets of
PEM evaluation parameters (Supplementary Fig. 10b). Each PEM evaluation data set has the
same structure as the training data, and each data set was generated using the proposed model
in question. This process was repeated for each new version of the model (A, B, C, and D). After
generation of the PEM evaluation data, parameters were fit to the data, and the ability of the PEM
to identify parameter sets with good agreement with the training data was evaluated by calculating
the PEM evaluation criterion. The PEM evaluation criterion was satisfied for each model, for each
data set (Supplementary Fig.11a-l), which supports that the proposed PEM is appropriate for
each model given the structure of the training data. PEM evaluation is described further in the
initial report of the GAMES workflow?.

Generation of PEM evaluation training data

It is important to accurately represent measurement error when evaluating a parameter
estimation method for a given set of training data. For each PEM evaluation data set, we first
simulated each component condition (defined as the raw simulated data), then added noise to
approximate the experimental measurement error. For each condition, we first calculated the
standard error, ggg),, associated with each data point, /, using the following equation:

Osp,i

OsEM,i = —— Equation S19
' V. nreplicates ( 9 )

0sp is the standard deviation of each data point, all of which were collected in triplicate (1 ¢piicates
= 3).

Next, for each condition, j, we calculated the mean, uj, and standard deviation, Isp,j» of asgm

across all data points for each condition. u; and asp ; were then used to define a normal

distribution from which values were randomly generated and added or subtracted to each data
point in the raw simulated data. If subtracting a noise value led a data point that was less than 0,
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another random number was generated until the data point with noise was greater than or equal
to 0.

To determine whether the noise value was added or subtracted from the raw data point, we used
a random number generator that output a value of either 0 or 1. If the value was 0, the noise value
was subtracted from the raw value and if the value was 1, the noise value was added to the raw
value.

We found that, for all conditions, measurement error was near zero for the first 10 time points, so
we did not include these data points in the mean measurement error calculations. We also did
not add noise to these data points.

Determination of PEM evaluation criterion

For each PEM evaluation data set, we calculated the R? value between the raw simulated data
and the simulated data with added noise. The minimum R? value across the 3 PEM evaluation
data sets was used to define the PEM evaluation criterion.

Supplementary Note 3 | Calibration and analysis of suboptimal candidate models
Parameter estimation method details

For all models, parameter estimation simulations were initiated with the literature values in
Supplementary Table 2 and allowed to vary 3 orders of magnitude in each direction. We used
the literature values for the free parameters (kcasi3, Kdeg v Kixny,qe, KFss, krua) ONly as order of
magnitude estimates, as these values were all determined with different systems and under
different conditions than our training data. In initial simulations, we found that large values of kcas13
led to stiff dynamics that stalled out the ODE solver, even when an algorithm appropriate for stiff
ODEs was used, so we initialized kcas13 at a value 2 orders of magnitude below the literature
estimate. Literature estimates for kjo¢ geactivation @Nd Kscale deactivation Were unavailable. These
parameters were each allowed to vary between 0 and 240. Bounds for the beta distribution shape
parameters, azy4 and brya, Were based on visual inspection of the beta distribution to enable
non-monotonic behavior in the regime of the scaled [RNase H], values. agzy, was allowed to
vary between 1 and 10 and by, was allowed to vary between 1 and 100. Because cgy,4 acted
as a scaling parameter and did not change the shape of the beta distribution, it was allowed to
vary between 10 and 10°.

For Models A, C, and D, we found it necessary to implement a timeout function in the global
search such that if a parameter set takes too long to solve (in our case, we used t = 100s as the
timeout condition), it was skipped, and the cost function was set to an arbitrarily high value of 3.
Without the timeout function, the global search simulation stalled indefinitely, making the
subsequent optimization step impossible. Our timeout function was incompatible with our
parallelization code, so Models A and C were run without parallelization. Model B did not require
the timeout function and was run with parallelization. We hypothesize that the stalling
phenomenon may occur for only some model structures and parameter sets because the ODE
solver may be forced to take extremely small time steps in some parameter regimes. Skipping
these parameter sets in the global search is appropriate because only a few parameter sets were
thrown out, therefore not significantly affecting the downstream results.
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We note that this timeout function was an extremely important part of our modeling work. Without
the timeout function, we were forced to rely on manual parameter estimation, as our parameter
estimation workflow could not be run from start-to-finish without stalling out. This non-rigorous,
manual parameter estimation method initially led us to erroneously conclude that Model A did not
meet any of the modeling objectives and we subsequently added in an additional mechanism to
slow down the reactions. After adding in the timeout function and running our full parameter
estimation workflow, we concluded that this additional mechanism was in fact not necessary. This
anecdote highlights the importance of using an appropriately rigorous parameter estimation
workflow, even when extra effort is required to enable the workflow to run (in our case, the timeout
function).

Further analysis of sigmoidal behavior of the fits to data sets 2 and 3 for models A and B

The calibrated parameters for models A and B for data sets 2 and 3 did not result in a visually
sigmoidal behavior (Supplementary Figs. 13-14 for model A and Supplementary Figs. 16-17
for model B), although the Hill-fit metrics did enable each one to satisfy modeling Objectives 1
and 2 (Table 1). In each case, we performed further analysis to determine whether we could
achieve a more visually sigmoidal behavior. For each model and data set, we initialized the PEM
optimization (Materials and Methods) with the corresponding calibrated parameter values for the
fit to data set 1, which did exhibit a visually sigmoidal behavior for models A and B
(Supplementary Figs. 12 and 15, respectively). We found that this approach did not result in a
visually sigmoidal behavior for either model or data set, which indicates that it was not possible
to achieve a visually sigmoidal behavior for the fits to data sets 2 and 3 with these mechanisms
alone.

Supplementary Note 4 | Parameter identifiability

One limitation of the model is that not all parameters are identifiable, i.e., capable of being
uniquely estimated within a finite confidence interval given the training data. Therefore, if the
model were used to make predictions, such as of an optimal enzyme concentration or predicting
the impact of a strategic intervention designed to decrease the time to readout, these predictions
might also not be constrained and could be difficult to validate. For any case in which the model
is used to make predictions, parameter identifiability analysis could guide model reduction or
experimental design with the goal of arriving at a fully identifiable model with well-constrained
predictions®. However, as the path to an identifiable model often changes depending on the type
of prediction that is desired, such an analysis is beyond our current scope, as we focus on the
insight gained from the explanatory model.
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Supplementary Table 1 | Internal model states’.

States

Name

Initial Value

X _inputRNA

viral ssRNA (INPUT)

0,1,0or10 fM - 0, 10, or
107 nM

1 |x_pl ssDNA primer 1 250 nM

2 |x_p2 ssDNA primer 2 250 nM

3 |x_plv ssDNA primer : viral ssRNA 0

4 |x_p2u ssDNA primer : target ssRNA 0

5 |x _plvdeg ssDNA primer : cleaved viral ssRNA 0

6 [x pZudeg ssDNA primer : cleaved target ssRNA 0

7 [x RT RT 0.5, 2.5, or 10 U/pL -
69.55, 347.75, 1391.0 nM

8 |x RNase RNase H 0.001, 0.005, or 0.02 U/pL
- 6.06, 30.3, 121.2 nM

9 |x_RTplv RT-ssDNA primer : viral ssRNA 0

10|x_RTp2u RT-ss DNA primer : target ssSRNA 0

11|%x_RTplvdeg RT-ssDNA primer : cleaved viral ssRNA |0

12|x_RTpZudeg RT-ssDNA primer : cleaved target ssRNA |0

13|x_cDNAlv cDNA : viral ssRNA 0

14|x_cDNA2u cDNA : target ssRNA 0

15|x_RNasecDNAlv |cDNA : viral ssRNA : RNase H 0

16|x_RNasecDNAZu [cDNA : target ssSRNA : RNase H 0

17|x_cDNA1 cDNA : ssRNA fragments 0

18| x_cDNAZ cDNA : ssRNA fragments (DNA 2) 0

19|x p2cDNAL cDNA : ssDNA primer 2 0

20|x plcDNA2 cDNA 2 : ssDNA primer 0

21|x RTp2cDNAl cDNA : ssDNA primer 2 : RT/RNase H 0

22|x RTplcDNA2 cDNA 2 : ssDNA primer : RT/RNase H 0

23(x_T7 T7 RNAP 1, 5, or 20 U/pL — 16.16,
80.8, 323.2 nM

24|x_pro dsDNA T7 promoter target 0

25|x_T7pro T7 RNAP : dsDNA T7 promoter target 0

26(x u ssRNA target 0

27|x _iCasl3 Target-inactivated Cas13a-gRNA 2.25 or 45 nM
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28([x_Casl3 Target-activated Cas13-gRNA 0
29|x _uv dsRNA 0
30|x_qRf quencher-ssRNA-fluorophore 2500 nM
31|x_9g quencher 0
32(x_£ fluorophore (OUTPUT) 0

1 Initial values in bold vary in the training data set, and other initial values remain constant. In
the text, x_iCas13 is target-inactivated Cas13a-gRNA and x_Cas13 is target-activated
Cas13a-gRNA. In the initial value column, arrows represent conversions from experimental
units (fM or U/uL) to model units (nM).
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Supplementary Table 2 | Parameter labels and descriptions®.

Value (if fixed)

# Parameter | Free/Fixed . Units Description
or guess (if free)
nM~" | Binding of Cas13-gRNA to
1 Kcas1z Free 0.198 min~' RNA target*
nM~ Degradation of viral ssSRNA
2 Kaeg v Free 30.6 min™’ by active Cas13-gRNA®
. T7 RNAP-induced
3 Kixn base Free 36 min transcription of RNA®
. nM~ Binding of T7 RNAP and
4 r70n Fixed 3.36 min~ dsDNA T7 promoter®
, . _1 | Unbinding of T7 RNAP and
5 Fer7oft Fixed 12 min dsDNA T7 promoter®
Free, but 1 -
6 k not =k nM Binding of complementary
bds . Cas13 min~’ double strand*
independent
—1
7 kRrTon Fixed 0.024 rrr]wli\fﬁ Binding of RT or RNase H’
8 krost Fixed 24 min-" Unbinding 01|‘_|I7?T or RNase
—1
9 KrNaseon Fixed 0.024 rrr]wli\fﬁ Binding of RT or RNase H’
10 KNaseoft Fixed 24 min-" Unbinding ofHRT or RNase
11 kess Free 0.6 min™’ First strand synthesis®
12 krua Free 7.8 min~ RNase H activity
unitles Determines shape of beta
13 ARHA Free - S distribution for RNase H
heuristic
unitles Determines shape of beta
14 brua Free - s distribution for RNase H
heuristic
unitles Determines scaling of beta
15 CRHA Free 1.0 S distribution for RNase H
heuristic
Free, but
16 ksss not = kpsg min~' | Second strand synthesis®
independent
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Free, but

Degradation of ssRNA-

17 Kaegrrep _ hot = kdeg v min based reporter®
independent
Determines the time
18 | Ky o Free i min between initialization of the
oc,deactivatig simulation and start of
Cas13 deactivation
unitles Determines_the_ rate of
19 | Kscale,deactiva Free - S Cas13 deactivation after

starting

" Values (for fixed parameters) and initial guesses (for free parameters) are based on the
corresponding reference in the last column
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Supplementary Table 3 | Calibrated parameter values®.

Free Model A Model B Model C Model D
parameter
Data Data Data Data Data Data Data Data Data Data Data Data
set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set3
0.0002
0.0009 0.0005 | 0.0017 0.0002 | 8.676* | 0.0002 | 2.230* | 6.382*
keas1s 04007 | Togg | 1270 | Taer | 23 | 1902 | 99 Taes | q0° | 241 | 10° | 10°
Kaeg v 10300 | 2514 | 3407 | 7116 | 129.0 | 13710 | 56.67 | 2907 | 20630 | 136.1 | 8940 | 28930
konbase | g0 | 70990 | 0.0360 | 0.8923 | 02514 | %00°0 | 1283 | 1.662 | 4550 | 1151 | 2263 | 1192
3
0.0174 | 99865 1 5 5557 | 0.0067 | 0.0926 0.0960 0.0778
Kess 2041 | 7529 |V 50665 | ° : : 3151 | 01057 | 2329 |V
4 0 1 73 23 3 9
Jeein? 0'01138 0'01170 0.9767 0'131444 2690 | 3.608 | 3933 | 1.007 | 220.10
ARHA 1.660 1.750 1.627
breia 12.48 | 2267 | 2355
CREA 55.71 | 4.676 | 22.28
Ktoc deactivation 4266 | 3630 | 1.507 | 53.19 | 1149 | 44.44 | 56.73 | 97.31 | 50.03
Kscale deactivation 1663 | 3924 | 1483 | 6.449 | 2631 | 17.93 | 6.907 | 19.22 | 17.07

' Gray cells indicate that a parameter was not used in a given model. Parameter units are in Supplementary Table 2.
2In model D, kg Was calculated from agga, brua, and crua Using Equation S4.
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Supplementary Table 4 | Equations for model D'.

# |[State Rates Description
0 |x v - k degv - x_inputRNA - x aCasl3 Mediated degradation
- - k bds - x _inputRNA - x u Binding
- k bds - x inputRNA - x pl Binding
1 x pl - k bds - x_inputRNA - x pl Binding
B - k bds - x pl - xX_CDNA2 Binding
2 |x p2 - kbds - xu - xp2 Binding
B - k bds - x p2 - x cDNAl Binding
3 |x plv + k_bds © x_inputRNA - x pl / C_scale [Binding
B - k degv - x plv © x_aCasl3 Mediated degradation
- k RTon - x plv © X RT Binding
+ k RToff - x RTplv Unbinding
4 [x p2u + k_bds © X u - X p2 Binding
B - k degv - x p2u - x_aCasl3 Mediated degradation
- k RTon + x p2u - x RT Binding
+ k RToff - x RTp2u Unbinding
5 |x plvdeg + k degv -+ x plv - x_aCasl3 Mediated degradation
N - k RTon - x plvdeg - x RT Binding
+ k RToff - x RTplvdeg Unbinding
6 |x p2udeg + k degv -+ x p2u - x_aCasl3 Mediated degradation
B - k RTon - x p2udeg - x RT Binding
+ k RToff - x RTp2udeg Unbinding
7 |x RT + k RToff - x RTplv Unbinding
B + k_RToff - x RTplvdeg Unbinding
+ k RToff - x RTp2cDNAL Unbinding
+ k RToff - x RTp2u Unbinding
+ k RToff - x RTp2udeg Unbinding
+ k RToff - x RTplcDNA2 Unbinding
- k RTon + x RT - x plv Binding
- k RTon - x RT - x plvdeg Binding
- k RTon - x RT - x p2cDNAl Binding
- k RTon - x RT * x p2u Binding
- k RTon - x RT - x p2udeg Binding
- k RTon - x RT * x plcDNAZ2 Binding
+ k_FSS - x_RTplv Production/unbinding
+ k_FSS © x_RTp2u Degradation/unbinding
+ k_SSS © x_RTp2cDNAL Degradation/unbinding
+ k 885 - x RTplcDNA2 Production/unbinding
8 |x RNase + k RNaseoff - x RNasecDNAlv Unbinding
B + k_RNaseoff - x RNasecDNA2u Unbinding
- k RNaseon -+ x RNase - x cDNAlv Binding
- k RNaseon -+ x RNase - x cDNAZ2u Binding
+ k_RHA * x_RNasecDNAlv Production/unbinding
+ k_RHA © x_RNasecDNA2u Production/unbinding
9 |[x RTplv - k RToff - x RTplv Unbinding
B + k RTon - x RT - % _plv Binding
- k degv - x RTplv - x aCasl3 Degradation
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- k FsS © x_RTplv Production/unbinding
10 |x_RTp2u - k RToff - x RTp2u Unbinding
+ k RTon - x RT © X _p2u Binding
- k degv - x RTp2u - x_aCasl3 Degradation
- k FsS © x_RTp2u Production/unbinding
11 |x_RTplvdeg - k RToff - x RTplvdeg Unbinding
+ k RTon - x RT - x_plvdeg Binding
+ k degv - x RTplv - x aCasl3 Degradation
12 |x_RTp2udeg - k RToff - x RTp2udeg Unbinding
+ k RTon - x RT © x_p2udeg Binding
+ k degv - x RTp2u - x_aCasl3 Degradation
13 |x_cDNAlv + k_FSS © x_RTplv Production/unbinding
- k RNaseon + x cDNAlv - x RNase Binding
+ k RNaseoff - x RNasecDNAlv Unbinding
14 |x_cDNA2u + k_FSS © x_RTp2u Production/unbinding
- k RNaseon - x cDNA2u - x RNase Binding
+ k RNaseoff - x RNasecDNA2u Unbinding
15 |x RNasecDNAlv |- k RHA © x_RNasecDNAlv Degradation/unbinding
- k RNaseoff - x RNasecDNAlv Unbinding
+ k RNaseon - x RNase - x cDNAlv Binding
16 |x RNasecDNA2u |- k RHA © x_RNasecDNA2u Degradation/unbinding
- k RNaseoff - x RNasecDNA2u Unbinding
+ k RNaseon - x RNase - x cDNAZ2u Binding
17 |x_cDNAl + k RHA - x RNasecDNAlv Degradation/unbinding
- k bds - x cDNAl - x p2
18 |x_ cDNA2 + k RHA - x RNasecDNA2u Degradation/unbinding
- k bds - x cDNAZ - x pl
19 |x_p2cDNAl + k_bds © x _CDNAl - x p2 Binding
+ k RToff - x RTp2cDNAL Unbinding
- k RTon - x RT © X _p2cDNAl Binding
20 |x_plcDNA2 + k_bds - x _cDNA2 - x pl Binding
+ k RToff - x RTplcDNA2 Unbinding
- k RTon - x RT © x_plcDNA2 Binding
21 |x RTp2cDNAl + k RTon - x RT - x p2cDNAL Binding
- k RToff -+ x RTp2cDNAl Unbinding
- k_SSS © x_RTp2cDNAL Production/unbinding
22 |x RTplcDNA2 + k RTon - x RT - x plcDNA2 Binding
- k RToff + x RTplcDNA2 Unbinding
- k_SSS * x_RTplcDNA2 Production/unbinding
23 |x_T7 + k _T7off - x_TTpro Unbinding
- k_T7on - x T7 + x _pro Binding
+ k_txn eff - x T7pro Transcription
24 |x_pro + k SSS - x RTp2cDNAL Production/unbinding
+ k _SSS - x RTplcDNA2 Production/unbinding
- k _T7on - x T7 + x _pro Binding
+ k _T7off - x_T7pro Unbinding
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+ k_txn eff - x T7pro Transcription
25 |x T7pro - k T7off - x_TTpro Unbinding
+ k_T7on - x T7 - x_pro Binding
- k _txn eff - x T7pro Transcription
26 |x u + k_txn eff - x T7pro Transcription
- k_bds © x_u - x_inputRNA / C_scale |Binding
- k _degv © X u - x aCasl3 Mediated degradation
- k casl3 X u - x iCasl3 Activation
- k_bds X u - X _p2 Binding
27 |x iCasl3 - k casl3 + x u - x iCasl3 Activation
28 |x Casl3” + k casl3 - x u - x iCasl3 Activation
29 |x uv + k bds - x u - x v/ C scale Binding
30 [x gRf - k degRrep - x aCasl3 - x gRf Mediated degradation
31 [x g + k _degRrep - x aCasl3 - x gRf Mediated degradation
32 [x £ + k _degRrep - x aCasl3 - x gRf Mediated degradation

! The symbol » denotes that target-activated Cas13 encompasses two states: target-activated
Cas13a-gRNA (aCas13) and deactivated target-activated Cas13a-gRNA (d_aCas13) ([Cas13] =
[aCas13] + [d_aCas13]) (Supplementary Note 1). Only aCas13 has indiscriminate ssRNase
activity and d_aCas13 is the target-activated Cas13a-gRNA that is removed from the system
over time due to deactivation. This type of deactivation is distinct from un-binding of Cas13a-
gRNA and the activator RNA, which contributes to the pool of iCas13 (target-inactivated Cas13
a-gRNA).
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Supplementary Table 5 | Comparison of most sensitive parameters across datasets”.

K k|oc, kscale,
Kcas13 kdeg_v btxn— Kess ARHA brHA CRHA deactiva | deactiva
tion tion
High 0.000 | 399 | 8582 | 0.028 | 1.754 | 10.65 | 42.38 | 61.83 | 8.241
Data | tolerance | 636
set 1
Loy 0-000 | 136.1 | 1151 | 0.096 | 1.66 | 12.48 | 55.71 | 56.73 | 6.907
tolerance | 224
High 15171 1222 | 3158 | 0.382 | 2.197 | 29.34 | 68.69 | 101.5 | 17.97
Data | tolerance | *10 0
set 2
Low 2.230 | 8940 | 2263 | 2329 | 1.75 | 22.67 | 4676 | 97.31 | 19.22
tolerance 10
High 0.000 1 3045 | 4157 | 0.079 | 1.071 | 14.71 | 0.627 | 46.40 | 18.54
Data | tolerance | 126 0
set 3
Low 6.382 | 2893 | 1192 | 0.078 | 1.627 | 23.55 | 22.28 | 50.03 | 17.07
tolerance | *10 0

'Bold indicates that a parameter was one of the most sensitive across all 3 data sets. Red

indicates that, for the given data set, the parameter from the low ODE solver tolerance

optimization was greater than 1 order of magnitude different from the parameter from the high
ODE solver tolerance optimization.
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Supplementary Table 6 | Model fits to each test data set

Mod_el (data set used to Test data set! R2 MSE
estimate parameters)
Data set 1 training data 0.99 | 0.0019
Data set 1 out of sample data 0.68 0.034
Data set 2 training data 0.56 0.046
Data set 1
Data set 2 out of sample data 0.41 0.069
Data set 3 training data 0.65 0.035
Data set 3 out of sample data 0.19 0.073
Data set 2 training data 0.96 | 0.0026
Data set 2 out of sample data 0.63 0.014
Data set 1 training data 0.71 0.045
Data set 2
Data set 1 out of sample data 0.48 0.054
Data set 3 training data 0.84 0.022
Data set 3 out of sample data 0.26 0.046
Data set 3 training data 0.85 0.016
Data set 3 out of sample data 0.38 0.043
Data set 1 training data 0.83 0.023
Data set 3
Data set 1 out of sample data 0.64 0.032
Data set 2 training data 0.82 0.010
Data set 2 out of sample data 0.62 0.027

The first row for each model is the fit to training data set used to estimate parameters.
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