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Supplementary Fig. 1 | NASBA with different primer directionalities. a, Diagram of NASBA 
using a primer set in which the T7 promoter is incorporated through the reverse primer, i.e., the 
primer for the first cDNA synthesis. This primer set generates antisense RNA (complementary to 
the input RNA). b, Diagram of NASBA using a primer set in which the T7 promoter is incorporated 
through the forward primer. This primer set amplifies the same sequence as the input RNA, and 
there is an extra round of DNA synthesis required to double strand the T7 promoter prior to 
generating the RNA product. 
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Supplementary Fig. 2 | NASBA and CRISPR-Cas13a cleavage can be performed in a one-
pot isothermal reaction. One-pot NASBA-Cas13a was performed with a commercial NASBA kit 
using a, synthetic SARS-CoV-2 genome or b, plant lysate enriched with cucumber mosaic virus 
(CMV) as RNA input. The kit generates activator RNA. Upon sensing this RNA, LbuCas13a 
indiscriminate ssRNase activity is activated, and LbuCas13a cleaves a reporter, producing a 
fluorescent signal. c, Fluorescence kinetics of SARS-CoV-2–sensing NASBA-Cas13a (primer set 
8 – gRNA 1) initiated by 0, 2 or 20 fM synthetic SARS-CoV-2 genome. d, Fluorescence kinetics 
of the CMV–sensing NASBA-Cas13a initiated by 0.5% or 5% v/v infected plant lysate or 5% v/v 
uninfected plant lysate. Data shown are for n=3 independent biological replicates, each plotted 
as a line with raw fluorescence standardized to MEF (µM fluorescein). Shading indicates the 
average of the replicates ± standard deviation. Sequences of primers and gRNAs are listed in 
Supplementary Data 1. 
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Supplementary Fig. 3 | Sequential NASBA reveals various off-target products. a, Sequential 
NASBA using RTs tested in Fig. 1 generates different off-target products at different steps of the 
reaction (Sequential NASBA in Materials and Methods). Testing the effect of RNase H on off-
target products. Reactions were performed sequentially with 0.5 U/µL AMV RT and initiated either 
by b, SARS-CoV-2 input RNA fragment targeted by primer set 5 or by c, CMV input RNA 
fragment. Data in a–c are a representative of n=3 independent biological replicates. Uncropped, 
unprocessed gel images in a–c are available as Supplementary Data 2. 
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Supplementary Fig. 4 | Optimization of in-house NASBA-Cas13a. DMSO improves NASBA 
efficiency. Fluorescence kinetics from NASBA-Cas13a (primer set 8 – gRNA 1) initiated by 0, 5 
or 50 fM synthetic SARS-CoV-2 genome in the presence of varying concentrations of DMSO: a, 
0%, b, 5%, c, 10% and d, 15%. Adding fresh DTT and BSA with 15% DMSO increases the final 
fluorescence magnitude. Fluorescence kinetics from NASBA-Cas13a (primer set 8 – gRNA 1) 
initiated with 0, 0.2, 2 or 20 fM synthetic SARS-CoV-2 genome e, without fresh DTT or BSA, f, 
with 5 mM fresh DTT, g, with 0.1 µg/µL BSA or h, with 5 mM fresh DTT and 0.1 µg/µL BSA. Data 
shown are for n=3 independent biological replicates, each plotted as a line with raw fluorescence 
standardized to MEF (µM fluorescein). Shading indicates the average of the replicates ± standard 
deviation. Sequences of primers and gRNAs are listed in Supplementary Data 1. 
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Supplementary Fig. 5 | Screening of guide RNAs and activator RNAs. Fluorescence kinetics 
for NASBA-Cas13a with varying concentrations of synthetic SARS-CoV-2 genome using a, gRNA 
2–1, b, gRNA 2–2, c, gRNA 7–4 or d, gRNA 3–1. A predicted secondary structure of each gRNA 
including the constant region and the spacer sequence is depicted. The spacer sequence in gRNA 
2–2 and gRNA 7–4 overlaps with the corresponding NASBA primer binding site (red). gRNA 3–1 
is not predicted to form the necessary hairpin structure (red) required for complexing with 
LbuCas13a, which potentially contributes to the observed low cleavage efficiency. e, A predicted 
secondary structure of activator RNA 6. The region targeted by each gRNA is shaded. 
Fluorescence kinetics for NASBA-Cas13a with varying concentrations of synthetic SARS-CoV-2 
genome using f, gRNA 6–1, g, gRNA 6–2 or h, gRNA 6–3 with predicted secondary structure of 
each gRNA above the kinetic traces. Lines on gRNA 2–1 (a) and gRNA 6–2 (g) indicate additional 
predicted long-range interactions. Data shown are for n=3 independent biological replicates, each 
plotted as a line with raw fluorescence standardized to MEF (µM fluorescein). Shading indicates 
the average of the replicates ± standard deviation. 
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Supplementary Fig. 6 | Experimental conditions before and after data processing. a, Full 
experimental data set before pre-processing. The conditions shown here were run with both low 
(2.25 nM) and high Cas13a-gRNA (45 nM). Numbers for T7 RNAP, RNase H and RT are in units 
of U/µL. b, The model did not aim to describe low Cas13a-gRNA conditions or conditions with 0 
input RNA, so these conditions were withheld. An additional condition (dark gray) was withheld 
from the training data for data set 1 due to high measurement error, but this condition was used 
in the training data for data sets 2 and 3 (Supplementary Fig. 9).  For each data set, the out of 
sample data was defined as the conditions after pre-processing that were not in the training data. 
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Supplementary Fig. 7 | Distribution of summary metrics F0 and n. Histogram of F0 values 
across a-c, all conditions in experimental Data Sets 1, 2, and 3, respectively and d-f, the subset 
of conditions used for parameter estimation in simulated Data Sets 1, 2, and 3, respectively. It is 
not intended for the model to include a mechanism for background signal (readout in the absence 
of input RNA). Histogram of n values across g-i, all conditions in experimental Data Sets 1, 2, and 
3, respectively and j-l, the subset of conditions used for parameter estimation in simulated Data 
Sets 1, 2, and 3, respectively.  
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Supplementary Fig. 8 | When Cas13a-gRNA is relatively low, the readout is similar to 
background level. Fitted Fmax values across time courses with shared conditions. Data points 
represent fitted Fmax values, the box extends from the Q1 to Q3 quartile values, the line represents 
the median, and the whiskers denote the range of the data. a-c, Experimental data for Data Sets 
1, 2, and 3, respectively. The left box is for conditions without input RNA and includes conditions 
with low and high Cas13a-gRNA (2.25 and 45 nM). The middle box is for conditions with input 
RNA (1 and 10 fM) and low Cas13a-gRNA. The right box is for conditions with input RNA and 
high Cas13a-gRNA. Conditions with low Cas13a-gRNA have Fmax values generally 
indistinguishable from without input RNA.  
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Supplementary Fig. 9 | Pre-processing of training data to remove conditions with relatively 
high measurement error. a, The mean proportion error, p, was calculated for each condition, j 
in data set 1 (Materials and Methods). b, For the condition in data set 1 with pj > 0.3 within the 
subset of conditions before pre-processing (Materials and Methods), normalized readout 
trajectories for each replicate are shown (gray), along with the normalized mean readout trajectory 
across all 3 replicates (blue). This condition had one replicate for which the readout remained 
near zero throughout the time course, in contrast to the other replicates in the condition. c-d, For 
data sets 2 and 3, the mean proportion error, p, was calculated for each condition, j. The condition 
with pj > 0.3 in each data set was not in the subset of conditions before pre-processing (Materials 
and Methods), so these conditions were not analyzed further or removed from training data. 
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Supplementary Fig. 10 | Parameter estimation method workflow and evaluation. a, 
Parameters were estimated using a multi-start optimization strategy. First, a Latin hypercube 
global search with nsearch parameter sets was used to sample the parameter space. The top ninit 
parameter sets (with the lowest cost function values) were each used to initialize independent 
optimization runs using the Levenberg-Marquardt algorithm. The optimized parameter set with 
the lowest cost function was defined as the calibrated parameter set.  b, The parameter estimation 
method (PEM) was evaluated for each model. First, a Latin hypercube global search was 
performed, and the results were filtered based on fit to the training data. The top nPEM eval parameter 
sets were used to generate PEM evaluation training data by using each parameter set to simulate 
the training data and adding noise to each data point. Next, parameters were estimated using 
each PEM evaluation data set, and the results were analyzed.  
 

 
 
 
 
 
 
 
 
 
 
 



 12 

 
 
Supplementary Fig. 11 | Parameter estimation evaluation results. a-c, PEM evaluation results 
for model A for Data Sets 1, 2, and 3, respectively. d-f, PEM evaluation results for model B for 
Data Sets 1, 2, and 3, respectively. g-i, PEM evaluation results for model C for Data Sets 1, 2, 
and 3, respectively. j-l, PEM evaluation results for model D for Data Sets 1, 2, and 3, respectively. 
In each case, nsearch = 5000 and ninit = 24. Note that the PEM evaluation criterion is not exactly 
met for model C, Data Set 1, PEM evaluation Data Set 3; model C, Data Set 3, PEM evaluation 
Data Set 2; and model D, Data Set 3, PEM evaluation Data Set 1. In each case, the PEM 
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evaluation data set is just under (<0.005) the PEM evaluation criterion. This is a minor 
inconsistency that is unlikely to affect downstream parameter estimation results. 
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Supplementary Fig. 12 | Calibration and analysis of sub-optimal candidate model A for Data 
set 1. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 13 | Calibration and analysis of sub-optimal candidate model A for Data 
Set 2. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 14 | Calibration and analysis of sub-optimal candidate model A for Data 
Set 3. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 15 | Calibration and analysis of sub-optimal candidate model B for Data 
Set 1. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 16 | Calibration and analysis of sub-optimal candidate model B for data 
Set 2. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA. The calibrated 
parameter set for this model and data set did not pass the cost function filter (Materials and 
Methods), which is a further indication that it is not able to describe the training data. 
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Supplementary Fig. 17 | Calibration and analysis of sub-optimal candidate model B for Data 
Set 3. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 18 | Calibration and analysis of sub-optimal candidate model C for Data 
Set 1. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 19 | Calibration and analysis of sub-optimal candidate model C for Data 
Set 2. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 20 | Calibration and analysis of sub-optimal candidate model C for Data 
Set 3. a–c, Time course trajectories for data subsets with simulated data generated with a, mid-
range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and high 
Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA.  
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Supplementary Fig. 21 | Detailed model schematic. The schematic depicts model states and 
interactions between model states for the final model (Model C). Circled numbers group related 
processes into the overall stages of the NASBA-Cas13a mechanism. 
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Supplementary Fig. 22 | Side-by-side comparison of experimental and simulated modeling 
objectives for Data Set 1. a-c, Hill-like functions were fit to each time course trajectory, and 
summary metrics (n, t1/2, F0, and Fmax) were parameterized (Fig. 3b is a visual representation of 
these metrics). a, For each time course, R2 for the normalized data and Hill fit were calculated; 
values are plotted as a histogram for all conditions in the data set (experimental column) or all 
conditions in the simulated training data set (simulation column). b–c, Histograms of values 
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across all conditions simulated in the data set (experimental column) or all conditions in the 
training data set (simulation column) were calculated for: b, t1/2 and c, Fmax. d–f, Time course 
trajectories for data subsets: d, mid-range RNase H and T7 RNAP and high Cas13a-gRNA, (the 
0.5 U/µL condition was omitted as it was removed from the training data due to high measurement 
error (Supplementary Fig. 9) e, mid-range RNase H and RT and high Cas13a-gRNA and f, mid-
range T7 RNAP and RT and high Cas13a-gRNA. g, Parity plot for the correlation between 
normalized experimental data and normalized simulated data. Each point in the plot represents a 
combination of enzyme doses and time point. In a scenario of perfect agreement, all points would 
be on the y = x line (gray).  
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Supplementary Fig. 23 | Side-by-side comparison of experimental and simulated modeling 
objectives for Data Set 2. a-c, Hill-like functions were fit to each time course trajectory, and 
summary metrics (n, t1/2, F0, and Fmax) were parameterized (Fig. 3b is a visual representation of 
these metrics). a, For each time course, R2 for the normalized data and Hill fit were calculated; 
values are plotted as a histogram for all conditions in the data set (experimental column) or all 
conditions in the simulated training data set (simulation column). b–c, Histograms of values 
across all conditions simulated in the data set (experimental column) or all conditions in the 



 27 

training data set (simulation column) were calculated for: b, t1/2 and c, Fmax. d–f, Time course 
trajectories for data subsets: d, mid-range RNase H and T7 RNAP and high Cas13a-gRNA e, 
mid-range RNase H and RT and high Cas13a-gRNA and f, mid-range T7 RNAP and RT and high 
Cas13a-gRNA. g, Parity plot for the correlation between normalized experimental data and 
normalized simulated data. Each point in the plot represents a combination of enzyme doses and 
time point. In a scenario of perfect agreement, all points would be on the y = x line (gray). 
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Supplementary Fig. 24 | Side-by-side comparison of experimental and simulated modeling 
objectives for Data Set 3. a-c, Hill-like functions were fit to each time course trajectory, and 
summary metrics (n, t1/2, F0, and Fmax) were parameterized (Fig. 3b is a visual representation of 
these metrics). a, For each time course, R2 for the normalized data and Hill fit were calculated; 
values are plotted as a histogram for all conditions in the data set (experimental column) or all 
conditions in the simulated training data set (simulation column). b–c, Histograms of values 
across all conditions simulated in the data set (experimental column) or all conditions in the 
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training data set (simulation column) were calculated for: b, t1/2 and c, Fmax. d–f, Time course 
trajectories for data subsets: d, mid-range RNase H and T7 RNAP and high Cas13a-gRNA, e, 
mid-range RNase H and RT and high Cas13a-gRNA and f, mid-range T7 RNAP and RT and high 
Cas13a-gRNA. g, Parity plot for the correlation between normalized experimental data and 
normalized simulated data. Each point in the plot represents a combination of enzyme doses and 
time point. In a scenario of perfect agreement, all points would be on the y = x line (gray). 
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Supplementary Fig. 25 | Comparison of time course trajectories for optimized parameters 
with default vs. low ODE solver tolerances for data set 2, model D. The default solve_ivp 
error tolerances were initially used to run simulations for parameter estimation, but simulated 
concentration values sometimes took negative values, so optimization was repeated with 
decreased error tolerances to check whether parameters were relatively insensitive to these 
errors (Materials and Methods). a–c, Time course trajectories for data subsets with simulated 
data using the default error tolerances (left) or the low error tolerances (right) generated with a, 
mid-range RNase H and T7 RNAP and high Cas13a-gRNA, b, mid-range RNase H and RT and 
high Cas13a-gRNA and c, mid-range T7 RNAP and RT and high Cas13a-gRNA. 
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Supplementary Fig. 26 | Parameter sensitivity analysis using Fmax or t1/2 as a metric. a-c, 
Percent change in t1/2 when increasing each parameter individually by 10% (left) or decreasing 
each parameter individually by 10% (right), relative to the metric for the calibrated parameter set, 
for Data Sets 1-3, respectively. d-f, Percent change in Fmax when increasing each parameter 
individually by 10% (left) or decreasing each parameter individually by 10% (right), relative to the 
metric for the calibrated parameter set, for Data Sets 1-3, respectively. 
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Supplementary Fig. 27 | Parameter sensitivity analysis using MSE as a metric. a-c, percent 
change in MSE when increasing each parameter individually by 10% (left) or decreasing each 
parameter individually by 10% (right), relative to the MSE for the calibrated parameter set, for 
Data Sets 1-3, respectively. 
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Supplementary Note 1 | Mathematical implementation  
 
Effective rate constant for T7 RNAP-mediated transcription 
 
The effective rate constant 𝑘!"#,	&''&(!)*& was calculated for each initial condition of T7 RNAP, 
[𝐱𝐓𝟕	𝐑𝐍𝐀𝐏]1, where 𝑘!"#,234&	is a free parameter for base case transcription: 

 

𝑘!"#,	&''&(!)*& =
𝑘!"#,234&
[𝐱𝐓𝟕	𝐑𝐍𝐀𝐏]1

 

	

(Equation S1) 

 
Cas13 deactivation 
 
An exponential decay function was used to define deactivation of Cas13a indiscriminate ssRNase 
activity over time. At each time (𝑡), the fraction of active Cas13a (𝑓𝑟𝑎𝑐56789) was calculated using 
the Python package SciPy’s stats module1 expon function: 
 
 

𝑓𝑟𝑎𝑐56789 = 𝑒𝑥𝑝𝑜𝑛(𝑡, 	𝑘:;(,<&3(!)*3!);#, 	𝑘4(3:&,<&3(!)*3!);#) 
	

(Equation S2) 

 
𝑘:;(,<&3(!)*3!);#and 	𝑘4(3:&,<&3(!)*3!);# are parameters that define the exponential decay function. 
	𝑘:;(,<&3(!)*3!);# determines the time between initialization of the simulation and the start of 
deactivation, and 	𝑘4(3:&,<&3(!)*3!);# determines the rate of deactivation once it has started. The 
total activated Cas13a (i.e., with indiscriminate ssRNase activity) (𝐱𝐚𝐂𝐚𝐬𝟏𝟑) is calculated as follows, 
where 𝐱𝐂𝐚𝐬𝟏𝟑 is the total target-activated Cas13a: 
 
 

𝑥656789 = 𝑓𝑟𝑎𝑐56789 ∙ 𝐱𝐂𝐚𝐬𝟏𝟑 
	

(Equation S3) 

 
Non-monotonic RNase H activity 
 
A beta distribution was used to define 𝑘BCD for each initial condition of RNase H, 𝐱𝐑𝐍𝐚𝐬𝐞	𝐇,𝟎, 
where 𝑎HIJ and 𝑏HIJ are shape parameters for the beta distribution and 𝑐HIJ determines the 
scaling on the distribution: 

 
𝑘BCD = cBCD ∙ (𝑥HK67L	I,1)6!"#M8 ∙ 71 − 𝑥HK67L	I,1:

N!"#M8 
	

(Equation S4) 

RNase H initial conditions were scaled such that each condition was between 0 and 1, which 
are the bounds of the beta distribution. 
 
Re-scaling 
 
To avoid numerical instability, we re-scaled xinput RNA such that: 
 

x)#OP!	BQDR = 𝐶4(3:& ∙ 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀 
	

(Equation S5) 
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With 𝐶4(3:& = 10X. We show separate derivations for the ODE describing 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀 and all other 
ODEs.  For the ODE that tracks xinput RNA, we used the following derivation for rescaling: 
 
 

𝑑𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀
𝑑𝑡

= 𝑘 ∙ 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀 ∙ 𝐱𝐨𝐭𝐡𝐞𝐫	
(Equation S6) 

where 𝒙𝐨𝐭𝐡𝐞𝐫 is all state variables that are not 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀. Substituting 
𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀
-

5./012
 for 𝑥] ,	the equation 

is: 
 

1
𝐶4(3:&

∙
𝑑𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀R

𝑑𝑡
= 𝑘 ∙

1
𝐶4(3:&

∙ 𝐱′𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀 ∙ 𝐱𝐨𝐭𝐡𝐞𝐫 

	

(Equation S7) 

After simplification, the equation becomes: 
 

𝑑𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀R

𝑑𝑡
= 𝑘 ∙ 𝐱′𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀 ∙ 𝐱𝐨𝐭𝐡𝐞𝐫 

	

(Equation S8) 

Therefore, no changes are required for the ODE that tracks xinput RNA. For each remaining term 
involving xinput RNA, we used the following equation for re-scaling: 
 

𝑑𝐱𝐨𝐭𝐡𝐞𝐫
𝑑𝑡

= 𝑘 ∙ 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀 ∙ 𝐱𝐨𝐭𝐡𝐞𝐫 + 𝑘^ ∙ 𝐱𝐨𝐭𝐡𝐞𝐫 ∙ 𝐱𝟐 
	

(Equation S9) 

After substituting 
𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀
-

5./012
 for 𝒙𝒗, the equation becomes: 

 
𝑑𝐱𝐨𝐭𝐡𝐞𝐫
𝑑𝑡

= 𝑘 ∙
1

𝐶4(3:&
∙ 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀R ∙ 𝐱𝐨𝐭𝐡𝐞𝐫 + 𝑘^ ∙ 𝐱𝐨𝐭𝐡𝐞𝐫 ∙ 𝐱𝟐 

	

(Equation S10) 

Therefore, for each term including 𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀R 	(in all equations except for the one that tracks 
𝐱𝐢𝐧𝐩𝐮𝐭	𝐑𝐍𝐀), the term is divided by 𝐶4(3:&. Re-scaling is accounted for in Supplementary Table 4.  
 
Conservation laws 
 
Conservation laws were applied to internal model states that by definition are conserved. At each 
time step, the following equations were used to calculate concentrations. In each equation, the 
first term after the equals sign is the initial value. 
 
𝐱𝐩𝟏 = 𝐱𝐩𝟏,𝟎	 − 𝐱𝐩𝟏𝐯 − 𝐱𝐩𝟏𝐜𝐯 − 𝐱𝐑𝐓𝐩𝟏𝐯 − 𝐱𝐑𝐓𝐩𝟏𝐜𝐯	 − 𝐱𝐜𝐃𝐍𝐀𝟏𝐯 − 𝐱𝐑𝐍𝐚𝐬𝐞𝐜𝐃𝐍𝐀𝟏𝐯

− 𝐱𝐜𝐃𝐍𝐀𝟏 − 𝐱𝐩𝟐𝐜𝐃𝐍𝐀𝟏 − 𝐱𝐩𝟏𝐜𝐃𝐍𝐀𝟐 − 𝐱𝐑𝐓𝐩𝟐𝐜𝐃𝐍𝐀𝟏 − 𝐱𝐑𝐓𝐩𝟏𝐜𝐃𝐍𝐀𝟐
− 𝐱𝐩𝐫𝐨 − 𝐱𝐓𝟕𝐩𝐫𝐨 

(Equation S11) 

 
𝐱𝐩𝟐 = 𝐱𝐩𝟐,𝟎	 − 𝐱𝐩𝟐𝐮 − 𝐱𝐩𝟐𝐜𝐮 − 𝐱𝐑𝐓𝐩𝟐𝐮 − 𝐱𝐑𝐓𝐩𝟐𝐜𝐮	 − 𝐱𝐜𝐃𝐍𝐀𝟐𝐮 − 𝐱𝐑𝐍𝐚𝐬𝐞𝐜𝐃𝐍𝐀𝟐𝐮

− 𝐱𝐜𝐃𝐍𝐀𝟐 − 𝐱𝐩𝟐𝐜𝐃𝐍𝐀𝟏 − 𝐱𝐩𝟏𝐜𝐃𝐍𝐀𝟐 − 𝐱𝐑𝐓𝐩𝟐𝐜𝐃𝐍𝐀𝟏 − 𝐱𝐑𝐓𝐩𝟏𝐜𝐃𝐍𝐀𝟐
− 𝐱𝐩𝐫𝐨 − 𝐱𝐓𝟕𝐩𝐫𝐨 

(Equation S12) 

 
𝐱𝐑𝐓 = 𝐱𝐑𝐓,𝟎	 − 𝐱𝐑𝐓𝐩𝟏𝐯 − 𝐱𝐑𝐓𝐩𝟐𝐮 − 𝐱𝐑𝐓𝐩𝟏𝐜𝐯 − 𝐱𝐑𝐓𝐩𝟐𝐜𝐮 − 𝐱𝐑𝐓𝐩𝟐𝐜𝐃𝐍𝐀𝟏

− 𝐱𝐑𝐓𝐩𝟏𝐜𝐃𝐍𝐀𝟐 (Equation S13) 
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𝐱𝐑𝐍𝐚𝐬𝐞 = 𝐱𝐑𝐍𝐚𝐬𝐞,𝟎 − 𝐱𝐑𝐍𝐚𝐬𝐞𝐜𝐃𝐍𝐀𝟏𝐯 − 𝐱𝐑𝐍𝐚𝐬𝐞𝐜𝐃𝐍𝐀𝟐𝐮 (Equation S14) 

 
𝐱𝐓𝟕 = 𝐱𝐓𝟕,𝟎 − 𝐱𝐓𝟕𝐩𝐫𝐨 

 
(Equation S15) 

 
𝐱𝐢𝐂𝐚𝐬𝟏𝟑 = 𝐱𝐢𝐂𝐚𝐬𝟏𝟑,𝟎 − 𝐱𝐂𝐚𝐬𝟏𝟑 (Equation S16) 

 
𝐱𝐪 = 𝐱𝐪𝐑𝐟,𝟎 − 𝐱𝐪𝐑𝐟 

	 (Equation S17) 

𝐱𝐟 = 𝐱𝐪𝐑𝐟,𝟎 − 𝐱𝐪𝐑𝐟 (Equation S18) 
 
 
Supplementary Note 2 | Evaluation of parameter estimation method (PEM) 
 
Algorithm for PEM evaluation 
 
Before using the PEM to estimate parameters to describe the training data, we evaluated the 
ability of the proposed PEM to find parameter sets yielding good agreement with the training data. 
To accomplish this, we generated three PEM evaluation data sets using three different sets of 
PEM evaluation parameters (Supplementary Fig. 10b). Each PEM evaluation data set has the 
same structure as the training data, and each data set was generated using the proposed model 
in question. This process was repeated for each new version of the model (A, B, C, and D). After 
generation of the PEM evaluation data, parameters were fit to the data, and the ability of the PEM 
to identify parameter sets with good agreement with the training data was evaluated by calculating 
the PEM evaluation criterion. The PEM evaluation criterion was satisfied for each model, for each 
data set (Supplementary Fig.11a-l), which supports that the proposed PEM is appropriate for 
each model given the structure of the training data. PEM evaluation is described further in the 
initial report of the GAMES workflow2.  
 
Generation of PEM evaluation training data 
 
It is important to accurately represent measurement error when evaluating a parameter 
estimation method for a given set of training data. For each PEM evaluation data set, we first 
simulated each component condition (defined as the raw simulated data), then added noise to 
approximate the experimental measurement error. For each condition, we first calculated the 
standard error, 𝜎!"# , associated with each data point, i, using the following equation: 
 

𝜎!"#,% =
𝜎!&,%

$𝑛'()*%+,-(.
	

 
(Equation S19) 

 
 
𝜎!&	is the standard deviation of each data point, all of which were collected in triplicate (𝑛fLghij6kL7 
= 3).  
 
Next, for each condition, j, we calculated the mean, 𝜇l , and standard deviation, 𝜎!&,/ , of	𝜎!"# 
across all data points for each condition. 𝜇l and 𝜎!&,/ were then used to define a normal 
distribution from which values were randomly generated and added or subtracted to each data 
point in the raw simulated data. If subtracting a noise value led a data point that was less than 0, 



 36 

another random number was generated until the data point with noise was greater than or equal 
to 0. 
 
To determine whether the noise value was added or subtracted from the raw data point, we used 
a random number generator that output a value of either 0 or 1. If the value was 0, the noise value 
was subtracted from the raw value and if the value was 1, the noise value was added to the raw 
value.  
 
We found that, for all conditions, measurement error was near zero for the first 10 time points, so 
we did not include these data points in the mean measurement error calculations. We also did 
not add noise to these data points.  
 
  
Determination of PEM evaluation criterion 
For each PEM evaluation data set, we calculated the R2 value between the raw simulated data 
and the simulated data with added noise. The minimum R2 value across the 3 PEM evaluation 
data sets was used to define the PEM evaluation criterion. 
 
 
Supplementary Note 3 | Calibration and analysis of suboptimal candidate models 
 
Parameter estimation method details  
 
For all models, parameter estimation simulations were initiated with the literature values in 
Supplementary Table 2 and allowed to vary 3 orders of magnitude in each direction. We used 
the literature values for the free parameters (𝑘m3489, 	𝑘<&n_*, 𝑘!"#30.2,𝑘pqq, 𝑘BCD) only as order of 
magnitude estimates, as these values were all determined with different systems and under 
different conditions than our training data. In initial simulations, we found that large values of kCas13 
led to stiff dynamics that stalled out the ODE solver, even when an algorithm appropriate for stiff 
ODEs was used, so we initialized kCas13 at a value 2 orders of magnitude below the literature 
estimate. Literature estimates for	𝑘012,345267856719 and 	𝑘:2504,345267856719 were unavailable. These 
parameters were each allowed to vary between 0 and 240. Bounds for the beta distribution shape 
parameters, 𝑎;<= and 𝑏;<=, were based on visual inspection of the beta distribution to enable 
non-monotonic behavior in the regime of the scaled [𝑅𝑁𝑎𝑠𝑒	𝐻]> values. 𝑎;<= was allowed to 
vary between 1 and 10 and 𝑏;<= was allowed to vary between 1 and 100. Because 𝑐;<= acted 
as a scaling parameter and did not change the shape of the beta distribution, it was allowed to 
vary between 10-3 and 103. 
 
For Models A, C, and D, we found it necessary to implement a timeout function in the global 
search such that if a parameter set takes too long to solve (in our case, we used t = 100s as the 
timeout condition), it was skipped, and the cost function was set to an arbitrarily high value of 3. 
Without the timeout function, the global search simulation stalled indefinitely, making the 
subsequent optimization step impossible. Our timeout function was incompatible with our 
parallelization code, so Models A and C were run without parallelization. Model B did not require 
the timeout function and was run with parallelization. We hypothesize that the stalling 
phenomenon may occur for only some model structures and parameter sets because the ODE 
solver may be forced to take extremely small time steps in some parameter regimes. Skipping 
these parameter sets in the global search is appropriate because only a few parameter sets were 
thrown out, therefore not significantly affecting the downstream results.  
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We note that this timeout function was an extremely important part of our modeling work. Without 
the timeout function, we were forced to rely on manual parameter estimation, as our parameter 
estimation workflow could not be run from start-to-finish without stalling out. This non-rigorous, 
manual parameter estimation method initially led us to erroneously conclude that Model A did not 
meet any of the modeling objectives and we subsequently added in an additional mechanism to 
slow down the reactions. After adding in the timeout function and running our full parameter 
estimation workflow, we concluded that this additional mechanism was in fact not necessary. This 
anecdote highlights the importance of using an appropriately rigorous parameter estimation 
workflow, even when extra effort is required to enable the workflow to run (in our case, the timeout 
function). 
 
 
Further analysis of sigmoidal behavior of the fits to data sets 2 and 3 for models A and B 
 
The calibrated parameters for models A and B for data sets 2 and 3 did not result in a visually 
sigmoidal behavior (Supplementary Figs. 13-14 for model A and Supplementary Figs. 16-17 
for model B), although the Hill-fit metrics did enable each one to satisfy modeling Objectives 1 
and 2 (Table 1). In each case, we performed further analysis to determine whether we could 
achieve a more visually sigmoidal behavior. For each model and data set, we initialized the PEM 
optimization (Materials and Methods) with the corresponding calibrated parameter values for the 
fit to data set 1, which did exhibit a visually sigmoidal behavior for models A and B 
(Supplementary Figs. 12 and 15, respectively). We found that this approach did not result in a 
visually sigmoidal behavior for either model or data set, which indicates that it was not possible 
to achieve a visually sigmoidal behavior for the fits to data sets 2 and 3 with these mechanisms 
alone. 
 
 
Supplementary Note 4 | Parameter identifiability  
 
One limitation of the model is that not all parameters are identifiable, i.e., capable of being 
uniquely estimated within a finite confidence interval given the training data. Therefore, if the 
model were used to make predictions, such as of an optimal enzyme concentration or predicting 
the impact of a strategic intervention designed to decrease the time to readout, these predictions 
might also not be constrained and could be difficult to validate. For any case in which the model 
is used to make predictions, parameter identifiability analysis could guide model reduction or 
experimental design with the goal of arriving at a fully identifiable model with well-constrained 
predictions3. However, as the path to an identifiable model often changes depending on the type 
of prediction that is desired, such an analysis is beyond our current scope, as we focus on the 
insight gained from the explanatory model. 
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Supplementary Table 1 | Internal model states1.  
 
# States  Name Initial Value 

0 x_inputRNA viral ssRNA (INPUT) 0, 1, or 10 fM → 0, 10-6, or 
10-7 nM 

1 x_p1 ssDNA primer 1 250 nM 

2 x_p2 ssDNA primer 2 250 nM 

3 x_p1v ssDNA primer : viral ssRNA 0 

4 x_p2u ssDNA primer : target ssRNA 0 

5 x_p1vdeg ssDNA primer : cleaved viral ssRNA 0 

6 x_p2udeg ssDNA primer : cleaved target ssRNA 0 

7 x_RT RT 0.5, 2.5, or 10 U/µL → 
69.55, 347.75, 1391.0 nM 

8 x_RNase RNase H 0.001, 0.005, or 0.02 U/µL 
→ 6.06, 30.3, 121.2 nM 

9 x_RTp1v RT-ssDNA primer : viral ssRNA 0 

10 x_RTp2u RT-ss DNA primer : target ssRNA 0 

11 x_RTp1vdeg RT-ssDNA primer : cleaved viral ssRNA 0 

12 x_RTp2udeg RT-ssDNA primer : cleaved target ssRNA 0 

13 x_cDNA1v cDNA : viral ssRNA 0 

14 x_cDNA2u cDNA : target ssRNA 0 

15 x_RNasecDNA1v cDNA : viral ssRNA : RNase H 0 

16 x_RNasecDNA2u cDNA : target ssRNA : RNase H 0 

17 x_cDNA1 cDNA : ssRNA fragments 0 

18 x_cDNA2 cDNA : ssRNA fragments (DNA 2) 0 

19 x_p2cDNA1 cDNA : ssDNA primer 2 0 

20 x_p1cDNA2 cDNA 2 : ssDNA primer 0 

21 x_RTp2cDNA1 cDNA : ssDNA primer 2 : RT/RNase H 0 

22 x_RTp1cDNA2 cDNA 2 : ssDNA primer : RT/RNase H 0 

23 x_T7 T7 RNAP 1, 5, or 20 U/µL → 16.16, 
80.8, 323.2 nM 

24 x_pro dsDNA T7 promoter target 0 

25 x_T7pro T7 RNAP : dsDNA T7 promoter target 0 

26 x_u ssRNA target 0 

27 x_iCas13 Target-inactivated Cas13a-gRNA 2.25 or 45 nM 
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28 x_Cas13 Target-activated Cas13-gRNA  0 

29 x_uv dsRNA 0 

30 x_qRf quencher-ssRNA-fluorophore 2500 nM 

31 x_q quencher 0 

32 x_f fluorophore (OUTPUT) 0 
 
1 Initial values in bold vary in the training data set, and other initial values remain constant. In 
the text, x_iCas13 is target-inactivated Cas13a-gRNA and x_Cas13 is target-activated 
Cas13a-gRNA. In the initial value column, arrows represent conversions from experimental 
units (fM or U/µL) to model units (nM). 
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Supplementary Table 2 | Parameter labels and descriptions1.  
 

# Parameter Free/Fixed Value (if fixed) 
or guess (if free) Units Description 

1 𝑘m3489 Free 0.198 nM–1 
min–1 

Binding of Cas13-gRNA to 
RNA target4 

2 𝑘<&n_* Free 30.6 nM–1 
min–1 

Degradation of viral ssRNA 
by active Cas13-gRNA5 

3 𝑘!"#_234& Free 36 min–1 T7 RNAP-induced 
transcription of RNA6 

4 𝑘rs;# Fixed 3.36 nM–1 
min–1 

Binding of T7 RNAP and 
dsDNA T7 promoter6 

5 𝑘rs;'' Fixed 12 min–1 Unbinding of T7 RNAP and 
dsDNA T7 promoter6 

6 𝑘N<4 
Free, but 

not 
independent 

= 𝑘m3489 
nM–1 
min–1 

Binding of complementary 
double strand4 

7 𝑘Br;# Fixed 0.024 nM–1 
min–1 Binding of RT or RNase H7 

8 𝑘Br;'' Fixed 2.4 min–1 Unbinding of RT or RNase 
H7 

9 𝑘BQ34&;# Fixed 0.024 nM–1 
min–1 Binding of RT or RNase H7 

10 𝑘BQ34&;'' Fixed 2.4 min–1 Unbinding of RT or RNase 
H 

11 𝑘pqq Free 0.6 min–1 First strand synthesis8 

12 𝑘BCD Free 7.8 min–1 RNase H activity 

13 𝑎BCD Free - unitles
s 

Determines shape of beta 
distribution for RNase H 

heuristic 

14 𝑏BCD Free - unitles
s 

Determines shape of beta 
distribution for RNase H 

heuristic 

15 𝑐BCD Free 1.0 unitles
s 

Determines scaling of beta 
distribution for RNase H 

heuristic 

16 𝑘qqq 
Free, but 

not 
independent 

= 𝑘pqq min–1 Second strand synthesis8 
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17 𝑘<&nBt&O 
Free, but 

not 
independent 

= 𝑘<&n_* min–1 Degradation of ssRNA-
based reporter5 

18 	𝑘012,345267856719 Free - min 

Determines the time 
between initialization of the 

simulation and start of 
Cas13 deactivation  

19 	𝑘:2504,345267856719 Free - unitles
s 

Determines the rate of 
Cas13 deactivation after 

starting 
 
1 Values (for fixed parameters) and initial guesses (for free parameters) are based on the 
corresponding reference in the last column
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Supplementary Table 3 | Calibrated parameter values1.  
 

Free 
parameter Model A Model B Model C Model D 

 Data 
set 1 

Data 
set 2 

Data 
set 3 

Data 
set 1 

Data 
set 2 

Data 
set 3 

Data 
set 1 

Data 
set 2 

Data 
set 3 

Data 
set 1 

Data 
set 2 

Data 
set 3 

𝑘m3489 0.4667 0.0009
046 1.275 0.0005

361 
0.0017

23 1.352 
0.0002
90109
010 

0.0002
293 

8.676*
10-5 

0.0002
241 

2.230*
10-5 

6.382*
10-5 

𝑘<&n	 _* 10300 2514 3407 7116 129.0 13710 56.67 2907 20630 136.1 8940 28930 

𝑘!"#_234& 
0.0362

6 
0.0360

0 

 
0.0360

3 
0.8923 0.2514 0.0930

5 1283 1.662 45.59 1151 226.3 119.2 

𝑘pqq 20.41 7.529 0.0174
4 

0.0665
50665

5 

0.0227
1 

0.0067
73 

0.0926
23 315.1 0.1057 0.0960

3 232.9 0.0778
9 

𝑘BCD2 0.0138
1 

0.0170
1 0.9767 0.1144

34 2690 3.608 3933 1.007 220.10    

𝑎BCD          1.660 1.750 1.627 
𝑏BCD          12.48 22.67 23.55 
𝑐BCD          55.71 4.676 22.28 

	𝑘:;(,<&3(!)*3!);#    42.66 36.30 1.507 53.19 114.9 44.44 56.73 97.31 50.03 
	𝑘4(3:&,<&3(!)*3!);#    16.63 39.24 148.3 6.449 26.31 17.93 6.907 19.22 17.07 

 
1 Gray cells indicate that a parameter was not used in a given model. Parameter units are in Supplementary Table 2. 
2In model D, 𝑘BCD was calculated from 𝑎BCD, 𝑏BCD, and 𝑐BCD using Equation S4. 
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Supplementary Table 4 | Equations for model D1.  
 
# State Rates Description 

0 x_v - k_degv · x_inputRNA · x_aCas13 
- k_bds  · x_inputRNA · x_u 
- k_bds  · x_inputRNA · x_p1 

Mediated degradation 
Binding 
Binding 

1 x_p1 - k_bds  · x_inputRNA · x_p1 
- k_bds  · x_p1       · x_cDNA2 

Binding 
Binding 

2 x_p2 - k_bds  · x_u  · x_p2 
- k_bds  · x_p2 · x_cDNA1 

Binding 
Binding 

3 x_p1v + k_bds   · x_inputRNA · x_p1 / C_scale 
- k_degv  · x_p1v      · x_aCas13 
- k_RTon  · x_p1v      · x_RT 
+ k_RToff · x_RTp1v 

Binding 
Mediated degradation 
Binding 
Unbinding 

4 x_p2u + k_bds   · x_u   · x_p2 
- k_degv  · x_p2u · x_aCas13 
- k_RTon  · x_p2u · x_RT 
+ k_RToff · x_RTp2u 

Binding 
Mediated degradation 
Binding 
Unbinding 

5 x_p1vdeg + k_degv  · x_p1v    · x_aCas13 
- k_RTon  · x_p1vdeg · x_RT 
+ k_RToff · x_RTp1vdeg 

Mediated degradation 
Binding 
Unbinding 

6 x_p2udeg + k_degv  · x_p2u    · x_aCas13 
- k_RTon  · x_p2udeg · x_RT 
+ k_RToff · x_RTp2udeg 

Mediated degradation 
Binding 
Unbinding 

7 x_RT + k_RToff · x_RTp1v 
+ k_RToff · x_RTp1vdeg 
+ k_RToff · x_RTp2cDNA1 
+ k_RToff · x_RTp2u 
+ k_RToff · x_RTp2udeg 
+ k_RToff · x_RTp1cDNA2 
- k_RTon  · x_RT · x_p1v 
- k_RTon  · x_RT · x_p1vdeg 
- k_RTon  · x_RT · x_p2cDNA1 
- k_RTon  · x_RT · x_p2u 
- k_RTon  · x_RT · x_p2udeg 
- k_RTon  · x_RT · x_p1cDNA2 
+ k_FSS   · x_RTp1v 
+ k_FSS   · x_RTp2u 
+ k_SSS   · x_RTp2cDNA1 
+ k_SSS   · x_RTp1cDNA2 

Unbinding 
Unbinding 
Unbinding 
Unbinding 
Unbinding 
Unbinding 
Binding 
Binding 
Binding 
Binding 
Binding 
Binding 
Production/unbinding 
Degradation/unbinding 
Degradation/unbinding 
Production/unbinding 

8 x_RNase + k_RNaseoff · x_RNasecDNA1v 
+ k_RNaseoff · x_RNasecDNA2u 
- k_RNaseon  · x_RNase · x_cDNA1v 
- k_RNaseon  · x_RNase · x_cDNA2u 
+ k_RHA      · x_RNasecDNA1v 
+ k_RHA      · x_RNasecDNA2u 

Unbinding 
Unbinding 
Binding 
Binding 
Production/unbinding 
Production/unbinding 

9 x_RTp1v - k_RToff · x_RTp1v 
+ k_RTon  · x_RT    · x_p1v 
- k_degv  · x_RTp1v · x_aCas13 

Unbinding 
Binding 
Degradation 
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- k_FSS   · x_RTp1v Production/unbinding 

10 x_RTp2u - k_RToff · x_RTp2u 
+ k_RTon  · x_RT    · x_p2u 
- k_degv  · x_RTp2u · x_aCas13 
- k_FSS   · x_RTp2u 

Unbinding 
Binding 
Degradation 
Production/unbinding 

11 x_RTp1vdeg - k_RToff · x_RTp1vdeg 
+ k_RTon  · x_RT    · x_p1vdeg 
+ k_degv  · x_RTp1v · x_aCas13 

Unbinding 
Binding 
Degradation 

12 x_RTp2udeg - k_RToff · x_RTp2udeg 
+ k_RTon  · x_RT    · x_p2udeg 
+ k_degv  · x_RTp2u · x_aCas13 

Unbinding 
Binding 
Degradation 

13 x_cDNA1v + k_FSS      · x_RTp1v 
- k_RNaseon  · x_cDNA1v · x_RNase 
+ k_RNaseoff · x_RNasecDNA1v 

Production/unbinding 
Binding 
Unbinding 

14 x_cDNA2u + k_FSS      · x_RTp2u 
- k_RNaseon  · x_cDNA2u · x_RNase 
+ k_RNaseoff · x_RNasecDNA2u 

Production/unbinding 
Binding 
Unbinding 

15 x_RNasecDNA1v - k_RHA      · x_RNasecDNA1v 
- k_RNaseoff · x_RNasecDNA1v 
+ k_RNaseon  · x_RNase · x_cDNA1v 

Degradation/unbinding 
Unbinding 
Binding 

16 x_RNasecDNA2u - k_RHA      · x_RNasecDNA2u 
- k_RNaseoff · x_RNasecDNA2u 
+ k_RNaseon  · x_RNase · x_cDNA2u 

Degradation/unbinding 
Unbinding 
Binding 

17 x_cDNA1 + k_RHA · x_RNasecDNA1v 
- k_bds · x_cDNA1 · x_p2 

Degradation/unbinding 
  

18 x_cDNA2 + k_RHA · x_RNasecDNA2u 
- k_bds · x_cDNA2 · x_p1 

Degradation/unbinding 
  

19 x_p2cDNA1 + k_bds   · x_cDNA1 · x_p2 
+ k_RToff · x_RTp2cDNA1 
- k_RTon  · x_RT    · x_p2cDNA1 

Binding 
Unbinding 
Binding 

20 x_p1cDNA2 + k_bds   · x_cDNA2 · x_p1 
+ k_RToff · x_RTp1cDNA2 
- k_RTon  · x_RT    · x_p1cDNA2 

Binding 
Unbinding 
Binding 

21 x_RTp2cDNA1 + k_RTon  · x_RT · x_p2cDNA1 
- k_RToff · x_RTp2cDNA1 
- k_SSS   · x_RTp2cDNA1 

Binding 
Unbinding 
Production/unbinding 

22 x_RTp1cDNA2 + k_RTon  · x_RT · x_p1cDNA2 
- k_RToff · x_RTp1cDNA2 
- k_SSS   · x_RTp1cDNA2 

Binding 
Unbinding 
Production/unbinding 

23 x_T7 + k_T7off   · x_T7pro 
- k_T7on    · x_T7 · x_pro 
+ k_txn_eff · x_T7pro 

Unbinding 
Binding 
Transcription 

24 x_pro + k_SSS · x_RTp2cDNA1 
+ k_SSS · x_RTp1cDNA2 
- k_T7on    · x_T7 · x_pro 
+ k_T7off   · x_T7pro 

Production/unbinding 
Production/unbinding 
Binding 
Unbinding 



 45 

+ k_txn_eff · x_T7pro Transcription 

25 x_T7pro - k_T7off   · x_T7pro 
+ k_T7on    · x_T7 · x_pro 
- k_txn_eff · x_T7pro 

Unbinding 
Binding 
Transcription 

26 x_u + k_txn_eff · x_T7pro 
- k_bds     · x_u · x_inputRNA / C_scale 
- k_degv    · x_u · x_aCas13 
- k_cas13   · x_u · x_iCas13 
- k_bds     · x_u · x_p2 

Transcription 
Binding 
Mediated degradation 
Activation 
Binding 

27 x_iCas13 - k_cas13 · x_u · x_iCas13 Activation 

28 x_Cas13^ + k_cas13 · x_u · x_iCas13 Activation 

29 x_uv + k_bds · x_u · x_v / C_scale Binding 

30 x_qRf - k_degRrep · x_aCas13 · x_qRf Mediated degradation 

31 x_q + k_degRrep · x_aCas13 · x_qRf Mediated degradation 

32 x_f + k_degRrep · x_aCas13 · x_qRf Mediated degradation 
 
1 The symbol ^ denotes that target-activated Cas13 encompasses two states: target-activated 
Cas13a-gRNA (aCas13) and deactivated target-activated Cas13a-gRNA (d_aCas13) ([Cas13] = 
[aCas13] + [d_aCas13]) (Supplementary Note 1). Only aCas13 has indiscriminate ssRNase 
activity and d_aCas13 is the target-activated Cas13a-gRNA that is removed from the system 
over time due to deactivation. This type of deactivation is distinct from un-binding of Cas13a-
gRNA and the activator RNA, which contributes to the pool of iCas13 (target-inactivated Cas13 
a-gRNA).  
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Supplementary Table 5 | Comparison of most sensitive parameters across datasets1. 
 

    
kCas13 kdeg_v ktxn_ 

base kFSS aRHA bRHA cRHA 
kloc, 

deactiva

tion 

kscale, 

deactiva

tion 

Data 
set 1  

High 
tolerance 

0.000
636 239.9 858.2 0.028 1.754 10.65 42.38 61.83 8.241 

Low 
tolerance 

0.000
224 136.1 1151 0.096 1.66 12.48 55.71 56.73 6.907 

Data 
set 2 

High 
tolerance 

1.517
*10-5 

1222
0 315.8 0.382 2.197 29.34 68.69 101.5 17.97 

Low 
tolerance 

2.230
*10-5 8940 226.3 232.9 1.75 22.67 4.676 97.31 19.22 

Data 
set 3 

High 
tolerance 

0.000
126 

3045
0 41.57 0.079 1.071 14.71 0.627 46.40 18.54 

Low 
tolerance 

6.382
*10-5 

2893
0 119.2 0.078 1.627 23.55 22.28 50.03 17.07 

 
1Bold indicates that a parameter was one of the most sensitive across all 3 data sets. Red 
indicates that, for the given data set, the parameter from the low ODE solver tolerance 
optimization was greater than 1 order of magnitude different from the parameter from the high 
ODE solver tolerance optimization. 
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Supplementary Table 6 | Model fits to each test data set 
 

Model (data set used to 
estimate parameters) Test data set1 R2 MSE 

Data set 1 

Data set 1 training data 0.99 0.0019 

Data set 1 out of sample data 0.68 0.034 

Data set 2 training data 0.56 0.046 

Data set 2 out of sample data 0.41 0.069 

Data set 3 training data 0.65 0.035 

Data set 3 out of sample data 0.19 0.073 

Data set 2 

Data set 2 training data 0.96 0.0026 

Data set 2 out of sample data 0.63 0.014 

Data set 1 training data 0.71 0.045 

Data set 1 out of sample data 0.48 0.054 

Data set 3 training data 0.84 0.022 

Data set 3 out of sample data 0.26 0.046 

Data set 3 

Data set 3 training data 0.85 0.016 

Data set 3 out of sample data 0.38 0.043 

Data set 1 training data 0.83 0.023 

Data set 1 out of sample data 0.64 0.032 

Data set 2 training data 0.82 0.010 

Data set 2 out of sample data 0.62 0.027 

 
1The first row for each model is the fit to training data set used to estimate parameters. 
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