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Supplementary Figure 1: Simulations (Transcriptome-wide impact). In these
simulations, we simulated cell-wise counts using mean and overdispersion parameters
inferred from 10 batches of the K562-Essential dataset, and then simulated perturbed
counts using various effect size distribution shapes (“Point-Normal 95% Sparse”, “Point
Normal 75% Sparse”, “Infinitesimal’, see Methods), sample sizes (20, 200, or 2000 per
condition), and transcriptome-wide impacts (i.e. effect size variances). For each
simulation, the true transcriptome-wide impact is on the x-axis, and the inferred

transcriptome-wide impact is on the y-axis



0.00125

0.00100

0.00075

0.00050

0.00025

Transcriptome-Wide Impact
Median)

0.00000

0.009

0.006

0.003

Transcriptome-Wide Impact
(Median)

0.000

K562, Genome-Wide

Negative Control Negative Control
(Random Cells) (Random Guides)

Jurkat, Essential

——

Perturbation

[

Negative Control Negative Control
(Random Cells) (Random Guides)

Perturbation

0.006

0.004

0.002

Transcriptome-Wide Impact
(Median)

0.000

0.015

0010

(Median

0.005

Transcriptome-Wide Impact

0.000

K562, Essential

——

——

0.06

Transcriptome-Wide Impact
(Median)

0.00

RPE1, Essential

HH

Negative Control Negative Control

(Random Cells)

HepG2, Essential

]

(Random Guides)

]

Perturbation

7

Negative Control Negative Control

(Random Cells)

(Random Guides)

Perturbation

Negative Control Negative Control  Perturbation
(Random Cells) (Random Guides)

Supplementary Figure 2: Empirical negative control analyses. For each experiment,
we performed two negative control analyses. In the “Random Cells” analysis, we
randomly selected cells carrying non-targeting guide RNAs as “perturbed” cells, and
conducted pseudobulk differential expression and TRADE analysis, i.e. including cells
from many different non-targeting guides. We did so 500 times for each cell type,
drawing the number of “perturbed” cells from the empirical distribution of targeting guide
counts for each experiment. For the “Random Guides” analysis, we conducted
pseudobulk differential expression and TRADE analysis, for each non-targeting guide,
i.e. treating each non-targeting guide as a “perturbation”. For each panel, the median of
negative-control Tl estimates is shown in comparison with the median of T| estimates for
targeting guide RNAs.
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Supplementary Figure 3: Effects of Downsampling on Transcriptome-wide Impact
(A) To understand why transcriptome-wide impact estimates were slightly smaller in
50% downsampled data, we plotted total cumulative differential expression estimates
between the full and downsampled. This revealed that the points far from the y=x line
were the points without significant transcriptome-wide impact in the downsampled
datasets, where the estimates in the downsampled dataset were greater. This analysis
suggests that the subtle decrease in transcriptome-wide impact with downsampling
arises from an inability to resolve small nonzero effects after crossing a power threshold.
(B) In contrast, the number of FDR-significant genes is consistently much smaller after
downsampling by 50%.
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Supplementary Figure 4: Consistency of Transcriptome-Wide Impact and Number
of DEGs. (A) Comparison of transcriptome-wide impact estimates for perturbation of the
same 2,057 essential genes in the K562-Essential and K562-GenomeWide experiments
(R? =59.7%). (B) Comparison of the number of FDR-significant genes for the same set
of perturbations between the K562-Essential and K562-GenomeWide experiments (R? =
28.4%).
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Supplementary Figure 5:7j ¢, the effective number of differentially expressed
genes. Example distributions of effect sizes and the resulting number of non-null
differentially expressed genes (M) and effective number of differentially expressed genes
(mpEg), in @ scenario with 100 measured genes. The x-axis shows the cumulative
transcriptome-wide impact. In the scenario where all genes have the same effect size
(top line, orange), M and 5, are both equal to 100. When a few genes explain a large
fraction (middle line, red) or dominate (bottom line, blue) transcriptome-wide impact, but
the other genes have small, non-zero effects, mpg; captures this qualitatively different
architecture, while M is still equal to 100.
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Supplementary Figure 6: Simulations (mpgg). Simulations with a similar structure to
those described in Supplementary Figure 1, but with a point normal distribution with
varying proportion of non-null effects; this proportion times the number of genes is the
effective number of DEGs (). As in Supplementary Figure 1, we simulated
experiments with N = 20, 200, and 2000 cells per perturbation. On the x axis is the true
Tpge, and the y axis is the mpg; inferred with TRADE.
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Supplementary Figure 7: Positive Control Enrichments. (A) Perturbation response
enrichment estimates for three gene-sets expected to be enriched or depleted for differential
expression signal, averaged across perturbations in the K562-GenomeWide experiment. “Top
10% DE Prior” and “Bottom 50% DE Prior” are derived from estimates of the DE Prior from
Crow et al, 2019, who predicted which genes are more or less likely to be represented in
significant differentially expressed gene lists from a database of functional genomic data.
“LinSeg” is the set of stably-expressed genes identified by Lin et al (2019), genes which are
similar in expression across evolution and development. Point estimate for Top 10% DE Prior:
5.85 (sem = 0.03). Point estimate for Top 50% DE Prior: 0.79 (sem = 0.003). Point estimate for
LinSEG: 0.38 (sem = 0.003). (B) Perturbation impact enrichment estimate for genes with in the
top decile for on-target knockdown, as quantified by the DESeq2 log2FoldChange. Point
estimate: 1.1 (sem = 0.1)
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Supplementary Figure 8: TI Comparison Across Cell Types. For each pair of cell types, we
compared transcriptome-wide impact estimates for common essential perturbations.
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Supplementary Figure 9: Perturbations with low TRADE replication correlations.
Comparison of transcriptome-wide impact correlation in the K562-Essential and K562-
GenomeWide experiments, with mean transcriptome-wide impact in two experiments (i.e.,
correlation of transcriptomic effects across replicate experiments vs mean of transcriptomic
impact across replicate experiments). Color reflects whether transcriptome-wide impact
estimates are significant in both experiments.
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Supplementary Figure 10: Essentiality stratified correlation analyses. (A) Comparison of
mean average growth effect (i.e. quantitative essentiality) of common essential gene
perturbations, and correlation of transcriptomic effects averaged across all six cell-type pairs. (B
- G) Comparison of inter-cell-type differences in growth effect/essentiality, with transcriptome-
wide impact correlation of perturbation effects, across common essential gene perturbations.
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Supplementary Figure 11: Tl curves for Jost et al CRISPR experiment. For each of the 25
essential gene perturbations in K562 profiled by Jost et al (2020), comparison of degree of
target knockdown (estimated from single-cell RNA-seq) with transcriptome-wide impact of
perturbation. Note that y axis scales differ between plots.
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Supplementary Figure 12: TRADE correlation matrices for Jost et al CRISPR experiment.
For each of the 25 essential gene perturbations in K562 profiled by Jost et al (2020), estimates

of transcriptome-wide impact correlation across different perturbation dosages. Note that both x
and y axis labels vary across plots.
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Supplementary Figure 13: Inter-technology correlations for neuropsychiatric conditions.
Correlation of log2FoldChange estimates between microarray and RNA-Seq datasets from the

PsychENCODE resource, estimated with the sample Spearman correlation (green) or TRADE
(orange).
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Supplementary Figure 14 Hierarchically organizing cell-types with TRADE. We applied
TRADE to the OneK1K dataset, which profiles 822,522 PBMCs from 969 donors (Methods).
We chose this dataset because PBMCs are relatively well annotated, with known functional and
lineage relationships between readily identifiable cell types. Compared to Euclidean distance,
hierarchically clustering cell types by transcriptome-wide impact as a distance metric lead to an
inferred hierarchy that was more biologically plausible. In particular, several lowly sampled cell
types were placed in more plausible positions within the cell type hierarchy. For example,
plasmablasts (a low-abundance B-cell subtype) were clustered far away from other B-cells via
Euclidean distance, but placed much closer to other B-cells via transcriptome-wide impact.
Similarly, ILCs and NK_CDKG65Bright, two rare subtypes of NK-cells, were placed close to NK
cells via transcriptome-wide impact but not Euclidean distance. Moreover, TRADE recapitulated
the early developmental split between myeloid and lymphoid cells, whereas Euclidean distance
frequently placed both types of cells within the same clade. The only exception to this
myeloid/lymphoid divide in the TRADE hierarchy are plasmacytoid dendritic cells (pDCs), which
were placed near B-cells; notably, pDCs are named for their morphological similarity to B-cells
(plasma cells), suggesting that they may truly transcriptomically resemble lymphoid cells.



