
Supplementary Appendix 1: Transcriptome-wide impact and 𝝅𝑫𝑬𝑮 
Transcriptome-wide impact and 𝜋$%& capture different aspects of the distribution of differential 
effects. Transcriptome-wide impact is the variance of the effect-size distribution, and 𝜋$%& is a 
function of the kurtosis of the effect size distribution, that captures the “effective number of 
differentially expressed genes”. The relationship between transcriptome-wide impact and 𝜋$%& 
gives insight into how effects are spread across genes. 
 

 
(Notably, this and the below analyses are restricted to perturbations that caused significant 
transcriptome-wide impact, due to the instability of 𝜋$%& in the setting of low/non-significant 
transcriptome-wide impact) 
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As predicted, transcriptome-wide impact and 𝜋$%& are positively associated; as the number of 
genes affected rises, so too does the amount of differential expression signal. Less trivially, 
there appear to be no perturbations that achieve a large transcriptome-wide impact while 
affecting a few genes (i.e. paucity of points in the top-left of the above plots). This suggests that 
no perturbations cause large transcriptomic change via very large effects on a small set of 
genes; rather, when perturbations cause large transcriptomic change, they do so by affecting 
many genes.  
 
A typical log2(FoldChange) magnitude of affected genes 𝜎 can be computed with the ratio of 
transcriptome-wide impact to 𝜋$%&: 
 

𝜎 = 	&
𝑛'()(* ∗ 𝑇𝐼
𝜋$%&

 

 

 
 
Examining the distribution of 𝜎 reveals several aspects of perturbation effect architecture: 

• For all experiments, the variability in 𝜎 is mostly limited to the range (0.1,1), suggesting 
that typical differential expression effects exhibit a limited range across perturbations 

• For the K562 cell line, 𝜎 is larger in the GenomeWide experiment than in the Essential 
experiment, suggesting that while essential perturbations affect more genes, they do so 
with a smaller typical effect size 

• The mean 𝜎 varies between cell types. In particular, it is largest in the RPE1 
experiments, slightly smaller in the HepG2 experiments, and smaller in the K562 and 
Jurkat experiments 
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Supplementary Appendix 2: Bias of the sample correlation coefficient 
This phenomenon, known as attenuation, was identified in Spearman (1904); the arguments 
from that paper are paraphrased here. 
 
Consider two sets of effect sizes (i.e. log2FoldChanges) that are estimated with additive, 
independent measurement error: 
 

𝛽+, =	𝛽+ +	𝜖+ 
𝛽,, =	𝛽, +	𝜖, 

 
The correlation between the estimated effect sizes is: 
 

𝐶𝑜𝑟𝑟2𝛽+,,𝛽,,4 =	
𝐶𝑜𝑣2𝛽+,,𝛽,,4

6𝑉𝑎𝑟2𝛽+,4𝑉𝑎𝑟2𝛽,,4
	

	

= 	
𝐶𝑜𝑣(𝛽+ +	𝜖+, 𝛽, +	𝜖,)

;𝑉𝑎𝑟(𝛽+ +	𝜖+)𝑉𝑎𝑟(𝛽, +	𝜖,)
	

	

=
𝐶𝑜𝑣(𝛽+, 𝛽,) + 𝐶𝑜𝑣(𝛽+, 𝜖,) + 𝐶𝑜𝑣(𝜖+, 𝛽,) + 𝐶𝑜𝑣(𝜖+, 𝜖,)

;𝑉𝑎𝑟(𝛽+ +	𝜖+)𝑉𝑎𝑟(𝛽, +	𝜖,)
	

	

=
𝐶𝑜𝑣(𝛽+, 𝛽,)

;𝑉𝑎𝑟(𝛽+ +	𝜖+)𝑉𝑎𝑟(𝛽, +	𝜖,)
<

𝐶𝑜𝑣(𝛽+, 𝛽,)
;𝑉𝑎𝑟(𝛽+)𝑉𝑎𝑟(𝛽,)

= 𝐶𝑜𝑟𝑟(𝛽+, 𝛽,) 

 
Therefore, the correlation of the estimated effect sizes is a downwardly biased estimator of true 
effect size correlation, and this downward bias is related to the relative magnitude of the 
sampling noise. If the sampling variation is of similar or greater magnitude than the true effect 
size variance, this bias will be severe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Appendix 3: Consistency of dose-response curves 
 
Consider the relationship between the expression of target genes of a gene perturbation. For 
each target gene 𝑔, the expression of the target gene at dosage 1 of the perturbed gene is 
equal to the expression of the target gene at full dosage of the perturbed gene times a function 
𝑓'(𝑑𝑜𝑠𝑎𝑔𝑒), that describes the response kinetics of 𝑔 in response to changing dosage of the 
perturbed gene. 
 

Expression-(dosage+) = 𝑓'(dosage+) ∗ Expression-(full	dosage) 
Expression-(dosage,) = 𝑓'(dosage,) ∗ Expression-(full	dosage) 

 
Rearranging: 
 

FoldChange-(dosage+) = 𝑓'(dosage+) 
FoldChange-(dosage,) = 𝑓'(dosage,) 

 

FoldChange-(dosage+) = 	
𝑓'(dosage+)
𝑓'(dosage,)

FoldChange-(dosage,) 

 
 
When 𝑓! is identical across target genes up to a scaling factor, then "!($%&'()")

"!($%&'()#)
 is 

constant, and FoldChange((dosage+) and FoldChange((dosage,) are perfectly correlated 
across genes. However, when 𝑓! varies across genes, and "!($%&'()")

"!($%&'()#)
 is no longer 

constant, there is an imperfect correlation between FoldChange((dosage+) and 
FoldChange((dosage,). This reveals that consistency of perturbation effects across 
dosages is at least partially a function of the consistency of downstream response 
kinetics across target genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Supplementary Appendix 4: Bias of the sample Euclidean Distance 
 
This phenomenon is described in Mahalanobis (1936), and paraphrased here. It is closely 
related to the bias of the sample correlation in the presence of uncorrelated noise. 
 
Consider the Euclidean distance between expression states of two clusters of cells: 
 

Euclidean	Distance, =	W2𝜇' − 𝜈'4
,

'

 

Where 𝜇' is the mean expression of gene 𝑔 in cluster 1, and 𝜈' is the mean expression of gene 
𝑔 in cluster 2. 
 
In computing distance metrics for analyses such as hierarchical clustering, this quantity is 
typically estimated using sample means, which differ from the population mean due to sampling 
variation with a known distribution: 
 

𝜇'[ =	𝜇' +	𝜖'																											𝜖'~𝑁(0,
𝜎',

𝑛+
) 

 

𝜈'[ =	𝜈' +	𝛿'																											𝛿'~𝑁(0,
𝜏',

𝑛,
) 

 
Computing the Euclidean Distance with sample means rather than population means, we have: 
 

Euclidean	Distance, =	W2𝜇' + 𝜖' − (𝜈' + 𝛿')4
,

'

 

 
Taking expectation, and assuming that 𝜖' and 𝛿' are independent: 
 

W2𝜇' − 𝜈'4
,

'

+	W𝑉𝑎𝑟2𝜖'4 + 𝑉𝑎𝑟2𝛿'4
'

	

= W2𝜇' − 𝜈'4
,

'

+	W
𝜎',

𝑛+
+
𝜏',

𝑛,'

	

= Euclidean	Distance, +	
1
𝑛+
W𝜎',
'

+
1
𝑛,
W𝜏',
'

	

 
We see that that when estimating Euclidean Distance with sample means, the resulting 
estimates are upwardly biased in the following manner: 

• The upward bias becomes smaller as the number of cells in each cluster (𝑛+ and 𝑛,) 
increases 

• The upward bias becomes larger as the variance in expression between cells (𝜎', and 
𝜏',) grows. 

• The upward bias becomes larger as more genes are included in the calculation. 


