Supplementary Appendix 1: Transcriptome-wide impact and ¢

Transcriptome-wide impact and w5, capture different aspects of the distribution of differential
effects. Transcriptome-wide impact is the variance of the effect-size distribution, and g is a
function of the kurtosis of the effect size distribution, that captures the “effective number of
differentially expressed genes”. The relationship between transcriptome-wide impact and mpg¢
gives insight into how effects are spread across genes.
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(Notably, this and the below analyses are restricted to perturbations that caused significant
transcriptome-wide impact, due to the instability of w5 in the setting of low/non-significant
transcriptome-wide impact)



As predicted, transcriptome-wide impact and mg; are positively associated; as the number of
genes affected rises, so too does the amount of differential expression signal. Less trivially,
there appear to be no perturbations that achieve a large transcriptome-wide impact while
affecting a few genes (i.e. paucity of points in the top-left of the above plots). This suggests that
no perturbations cause large transcriptomic change via very large effects on a small set of
genes; rather, when perturbations cause large transcriptomic change, they do so by affecting
many genes.

A typical log2(FoldChange) magnitude of affected genes o can be computed with the ratio of
transcriptome-wide impact to mpg:
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Examining the distribution of ¢ reveals several aspects of perturbation effect architecture:

e For all experiments, the variability in ¢ is mostly limited to the range (0.1,1), suggesting
that typical differential expression effects exhibit a limited range across perturbations

e For the K562 cell line, ¢ is larger in the GenomeWide experiment than in the Essential
experiment, suggesting that while essential perturbations affect more genes, they do so
with a smaller typical effect size

e The mean ¢ varies between cell types. In particular, it is largest in the RPE1
experiments, slightly smaller in the HepG2 experiments, and smaller in the K562 and
Jurkat experiments



Supplementary Appendix 2: Bias of the sample correlation coefficient
This phenomenon, known as attenuation, was identified in Spearman (1904); the arguments
from that paper are paraphrased here.

Consider two sets of effect sizes (i.e. log2FoldChanges) that are estimated with additive,
independent measurement error:

E=ﬁ1+ €1
B2 = B2+ €

The correlation between the estimated effect sizes is:
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Therefore, the correlation of the estimated effect sizes is a downwardly biased estimator of true
effect size correlation, and this downward bias is related to the relative magnitude of the
sampling noise. If the sampling variation is of similar or greater magnitude than the true effect
size variance, this bias will be severe.



Supplementary Appendix 3: Consistency of dose-response curves

Consider the relationship between the expression of target genes of a gene perturbation. For
each target gene g, the expression of the target gene at dosage 1 of the perturbed gene is
equal to the expression of the target gene at full dosage of the perturbed gene times a function
fg(dosage), that describes the response kinetics of g in response to changing dosage of the
perturbed gene.

Expressiong(dosage;) = f;(dosage,) * Expressiong(full dosage)
Expressiong(dosage;) = f;(dosage,) * Expressiong(full dosage)

Rearranging:

FoldChangeg(dosage;) = f;(dosage;)
FoldChangey(dosage,) = f;(dosage;)

FoldChangeg(dosage,) = % - S
g 2

FoldChange,(dosage;)

fg(dosage,) .
fg(dosagey)
constant, and FoldChange,(dosage,) and FoldChange,(dosage,) are perfectly correlated
f4(dosage;)
fg(dosagez)
constant, there is an imperfect correlation between FoldChange,(dosage; ) and
FoldChangey(dosage,). This reveals that consistency of perturbation effects across
dosages is at least partially a function of the consistency of downstream response
kinetics across target genes.

When f, is identical across target genes up to a scaling factor, then

across genes. However, when f; varies across genes, and is no longer



Supplementary Appendix 4: Bias of the sample Euclidean Distance

This phenomenon is described in Mahalanobis (1936), and paraphrased here. It is closely
related to the bias of the sample correlation in the presence of uncorrelated noise.

Consider the Euclidean distance between expression states of two clusters of cells:

Euclidean Distance? = Z(ug - vg)2
g

Where u, is the mean expression of gene g in cluster 1, and v, is the mean expression of gene
g in cluster 2.

In computing distance metrics for analyses such as hierarchical clustering, this quantity is
typically estimated using sample means, which differ from the population mean due to sampling
variation with a known distribution:
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Computing the Euclidean Distance with sample means rather than population means, we have:

Euclidean Distance? = Z(ug +e5—(vg + 89))2
9

Taking expectation, and assuming that ¢, and §, are independent:
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We see that that when estimating Euclidean Distance with sample means, the resulting
estimates are upwardly biased in the following manner:
e The upward bias becomes smaller as the number of cells in each cluster (n, and n,)
increases
e The upward bias becomes larger as the variance in expression between cells (a; and
T5) grows.
e The upward bias becomes larger as more genes are included in the calculation.



