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A Technical Details

We proposed a test for empirical power (PWR) that rejects when infψ∈Ψn,1−ϑ1

{
V̂n(ψ)−

z1−ϑ2
ς̂n(ψ)√
n

}
≥

B0. Recall we chose ϑ1 and ϑ2 such that ϑ1 + ϑ2 = α. The type 1 error rate is then given by

P

[
inf

ψ∈Ψn,1−ϑ1

{
V̂n(ψ)−

z1−ϑ2 ς̂n(ψ)√
n

}
≥ B0

]
≤ P

[
inf

ψ∈Ψn,1−ϑ1

{
V̂n(ψ)−

z1−ϑ2 ς̂n(ψ)√
n

}
≥ V (dopt)

]
≤ P

{
V̂n(ψ

∗)− z1−ϑ2 ς̂n(ψ
∗)√

n
≥ V (dopt)

}
+ ϑ1 + o(1)

= P

[√
n{V̂n(ψ∗)− V (ψ∗)}

ς̂n(ψ∗)
≥ z1−ϑ2

]
+ ϑ1 + o(1)

≤ α + o(1).

Therefore, the proposed test is an α-level test for (PWR). The power for this test is given

by

P

[
inf

ψ∈Ψn,1−ϑ1

{
V̂n(ψ)−

z1−ϑ2 ς̂n(ψ)√
n

}
≥ B0

]
= P

{
inf

ψ∈Ψn,1−ϑ1

[√
n{V̂n(ψ)− V (ψ)}

ς̂n(ψ)
+

√
n{V (ψ)−B0}

ς̂n(ψ)

]
≥ z1−ϑ2

}

≥ P

{
inf

ψ∈Ψn,1−ϑ1

[√
n{V̂n(ψ)− V (ψ)}

ς̂n(ψ)
+

min [
√
n{V (ψ)−B0},

√
nη]

ς̂n(ψ)

]
≥ z1−ϑ2

}
.
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B Confidence Interval for ψ

We used a simulation study to illustrate the coverage of the multistage m-out-of-n bootstrap

proposed in Section 3.3. The same data generating model as the simulation study in Section

4 of the main paper was used, which was given by:

X1 ∼ N{0, 1}, P (A1 = 1|H1 = h1) =
{
1 + e−(ϖ1,0+ϖ1,1x1)

}−1

τ1 ∼ N(0, 1), X2 = µ20 + µ21X1 + τ1,

H⊺
2 = (X1, A1, X2), P (A2 = 1|H2 = h2) =

{
1 + e−(ϖ2,0+ϖ

⊺
2,1h2)

}−1

,

τ2 ∼ N(0, 1), X3 = µ30 + µ31X1 + µ32X2 + τ2,

H⊺
3 = (X1, A1, X2, A2, X3), P (A3 = 1|H3 = h3) =

{
1 + e−(ϖ3,0+ϖ

⊺
3,1h3)

}−1

,

H⊺
3,1 = (1, X1, X2, X3), H⊺

3,0 = (1, X1, A1, A1X1, X2, A2, A2X1, A2X2, X3, X
2
1 )

υ ∼ N(0, 1), Y = H⊺
3,0λ3,0 + A3H

⊺
3,1λ3,1 + υ.

We posited the following models for the treatment-free and blip functions:

γ1(h1, a1;ψ1) = a1(ψ1,0 + ψ1,1x1),

g1(h1; β1) = β1,0 + β1,1x1,

γ2(h2, a2;ψ2) = a2(ψ2,0 + ψ2,1x1 + ψ2,2x2),

g2(h2; β2) = β2,0 + β2,1x1 + β2,2a1 + β2,3a1x1 + β2,4x2,

γ3(h3, a3;ψ3) = a3(ψ3,0 + ψ3,1x1 + ψ3,2x2 + ψ3,3x3),

g3(h3; β3) = β3,0 + β3,1x1 + β3,2a1 + β3,3a1x1 + β3,4x2 + β3,5a2 + β3,6a2x2 + β3,7x3.

Therefore, the blip models were correctly specified while the treatment-free models were all

misspecified. We posited a correctly specified logistic regression model for the treatment

model so that dynamic weighted ordinary least squares (dWOLS) produced consistent es-

timates of the blip parameters. The parameters of the data generating model were given
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by:

ϖ1 = (0.25, 1), ϖ2 = (0.25, 1,−1,−1),

ϖ3 = (0.25, 0.5, 0.5,−0.5, 1,−0.5),

µ2 = (0, 0.5), µ3 = (0,−0.5, 0.5),

λ3,0 = (1, 1, 0.5,−0.75, 0.5,−0.5,−0.5, 0.5, 0.5, 0.25), λ3,1 = (0.25, 0.5, 0.5,−0.5).

In the three-stage setting, we have that ψ1 and ψ2 are both nonregular. Let ψNR =

(ψ1, ψ2) denote the vector of all nonregular parameters indexing the dynamic treatment

regime. We used the proposed multistagem-out-of-n bootstrap to construct a 95% confidence

region for ψNR. We also evaluated the nominal coverage of 95% confidence regions for ψ1

and ψ2 as well as the main effect of treatment in the first and second stage given by ψ1,0 and

ψ2,0, respectively. For ψ1,0 and ψ2,0, we constructed confidence intervals. For the remaining

parameters, which are multidimensional, we constructed joint confidence regions.

We fixed the sample size at n = 500 and the tuning parameter ν = 0.001. We considered

settings in which κ was fixed, and in which κ was chosen in a data-driven fashion. For the

fixed κ approach, we considered three values, κ ∈ {0.01, 0.05, 0.1}, whereas for the data-

adaptive approach, a modification of the double bootstrap methods of Chakraborty et al.

[2013] was employed to choose κ from a fine grid of candidate values. In particular, this

data-adaptive approach proceeded as follows:

1. Set a grid of candidate values for κ, e.g. κ ∈ {0.025, 0.05, . . . , 1}.

2. Set κ to the smallest value in the grid of candidate values.

3. Draw B1 bootstrap samples of size n and calculate ψ
(b1)
k,n for k = 1, . . . , K, b1 =

1, . . . , B1.

4. Calculate ϱ̂
(b1)
K = PnI

[
n{H(b1)T

K,ψ ψ̂
(b1)
K }2 ≤ τn{H(b1)

K,ψ}
]
and m̂

(b1)
K = n

1+κ{1−v̂ϱ
(b1)
K

}
1+κ for b1 =

1, . . . , B1.
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5. Draw B2 nested bootstrap samples of size m̂
(b1)
K from each of the B1 samples.

6. Use the B2 samples to construct a confidence interval for h
(b1)T
K−1,ψψ

(b1)
K−1,n for b1 =

1, . . . , B1.

7. Estimate ϱ̂
(b1)
K−1 by the proportion of individuals for which the confidence interval for

hTK−1,ψψ
(b1)
K−1,n contains 0 and calculate m̂

(b1)
K−1 = n

1+κ{1−ϱ̂
(b1)
K−1

}
1+κ for b1 = 1, . . . , B1.

8. Repeat steps 5-7 to calculate ϱ̂
(b1)
k for k = 1, . . . , K, b1 = 1, . . . , B1.

9. Calculate ϱ̂(b1) = maxk ϱ̂
(b1)
k and m̂(b1) = n

1+κ{1−ϱ̂(b1)}
1+κ for b1 = 1, . . . , B1.

10. Draw B2 nested bootstrap samples of size m̂(b1) from each of the B1 samples.

11. Calculate ψ̂
(b1,b2)

k,n,m̂(b1)
for k = 1, . . . , K, b1 = 1, . . . , B1, b2 = 1, . . . , B2.

12. Calculate the ϵk/2× 100 and (1− ϵk/2)× 100 percentiles of
[√

m̂(b1){ψ̂(b1,b2)

k,n,m̂(b1)
− ψ̂

(b1)
k,n },

b2 = 1, . . . , B2

]
, which we will denote by l̂

(b1)
k and û

(b1)
k for k = 1, . . . , K, b1 = 1, . . . , B1.

13. Construct confidence intervals as
(
ψ̂

(b1)
k,n − û

(b1)
k /

√
m̂(b1), ψ̂

(b1)
k,n + l̂

(b1)
k /

√
m̂(b1)

)
for k =

1, . . . , K, b1 = 1, . . . , B1.

14. Estimate the coverage rate as

1

B1

B1∑
b1=1

[
K−1∏
k=1

I
{
ψ̂

(b1)
k,n − û

(b1)
k /

√
m̂(b1) ≤ ψ̂k,n ≤ ψ̂

(b1)
k,n + l̂

(b1)
k /

√
m̂(b1)

}]
.

15. If the estimated coverage is greater than or equal to the desired coverage, then select the

current value of κ. Otherwise, set κ to the next highest value in the grid of candidate

values and repeat steps 3-15.

For each simulation setting, we performed 500 Monte Carlo repetitions. When constructing a

confidence interval for only a subset of ψNR with an adaptive choice of κ, step 14 of the double
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bootstrap algorithm is adjusted to use only the estimated coverage of the parameter(s) of

interest.

Table 1 displays Monte Carlo estimates of the coverage of the proposed procedure, the

average resample size, and the average area of the confidence regions for each of the simulation

settings. The estimated coverage was slightly below the nominal coverage for ψ1,0, ψ1, and

ψNR when κ = 0.01. As κ increased, the size of our confidence regions increased, leading to

increased coverage. When κ = 0.1, the confidence regions were conservative, with estimated

coverages all greater than 97.8%. The adaptive choice of κ using the double bootstrap led

to estimated coverage that was close to the nominal coverage for all parameters, but at the

cost of a significantly more computationally expensive procedure.

Table 1: Coverage of 95% confidence regions using the multistage m-out-of-n bootstrap.
E(m̂) gives the average resample size and mean area gives the average area of the confidence
regions produced for each parameter.

Parameter κ E(m̂) Coverage Mean Area

ψ1,0 0.1 339.60 99.2% 0.73
ψ2,0 0.1 339.60 98.2% 0.64
ψ1 0.1 339.60 97.8% 4.05
ψ2 0.1 339.60 98.2% 5.08
ψNR 0.1 339.60 98.0% 9.52

ψ1,0 0.05 407.77 95.6% 0.66
ψ2,0 0.05 407.77 96.8% 0.58
ψ1 0.05 407.77 95.4% 3.91
ψ2 0.05 407.77 97.0% 4.94
ψNR 0.05 407.77 94.2% 9.22

ψ1,0 0.01 479.36 94.8% 0.61
ψ2,0 0.01 479.26 97.0% 0.54
ψ1 0.01 479.26 92.8% 3.79
ψ2 0.01 479.26 95.6% 4.79
ψNR 0.01 479.26 93.4% 8.91

ψ1,0 Adaptive 433.45 95.8% 0.64
ψ2,0 Adaptive 445.51 97.4% 0.55
ψ1 Adaptive 399.46 95.0% 3.90
ψ2 Adaptive 435.68 95.8% 4.87
ψNR Adaptive 395.32 93.8% 9.23
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C Simulation Results for Two-Stage Study

We examined the finite sample performance of our proposed power calculations and sam-

ple size procedure when applied to a two-stage dynamic treatment regime (DTR) using a

simulation study. The data generating model for the two-stage study was given by

X1 ∼ N3{0,ΩAR1(0.5)}, P (Ak = 1|Hk = hk) =
{
1 + e−(ϖk,0+

∑k
j=1ϖ

⊺
j,1xj)

}−1

for k = 1, 2,

τ ∼ N(0, 1), X2 = µ0 + µ⊺
1X1 + τ,

H2,1 = (1,X1, X2), H2,0 = (1,X1, A1, A1X1, X2, X
2
11),

υ ∼ N(0, 1), Y = H⊺
2,0λ2,0 + A2H

⊺
2,1λ2,1 + υ,

where ΩAR1(0.5) was an autoregressive covariance matrix with {ΩAR1(0.5)}ij = 0.5|i−j|. We

posited the following treatment-free and blip models:

γ1(h1, a1;ψ1) = a1(ψ1,0 + ψ⊺
1,1x1), γ2(h2, a2;ψ2) = a2(ψ2,0 + ψ⊺

2,1x1 + ψ2,2x2),

g1(h1; β1) = β1,0 + β⊺
1,1x1, g2(h2; β2) = β2,0 + β⊺

2,1x1 + β2,2a1 + β⊺
2,3x1a1 + β2,4x2.

Therefore, the blip model at each stage was correctly specified, but both treatment-free

models were misspecified. The model for the propensity score was given by a correctly

specified logistic regression model so that dWOLS produced consistent estimates of the blip

parameters. The parameter values used for this generating model are given by

ϖ1 = (0.25, 1,−1, 1), ϖ2 = (0.25, 1,−1,−1,−1,−1),

λ2,0 = (1, 1, 1, 1, 0.25, 0.5,−0.5,−0.5, 0.5, 0.25), λ2,1 = (0.25, 0.5, 0.5,−0.5, 0.5),

µ = (0, 0.5, 0.5, 0.5).

The simulations for estimating the power for a given sample size for a two-stage study

proceeded similarly to the simulations for the three-stage study (see main text). We let

α = 0.05 and η = 1.5, so we estimated the power for a 0.05 level test of H0 : V (dopt) ≤ B0.
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We again evaluated the performance of the procedure when the effect size of tailoring was

equal to η = 1.5 and examined how the results changed as the true effect size increased. We

let V (dopt) = B0 + η +∆η and varied ∆ ∈ {0, 0.25, 0.5}. We let the size of the pilot study

vary such that n0 ∈ {200, 400} and estimated the power for a set of different sample sizes

given by n ∈ {250, 500, 750}.

Table 2 contains the mean, median, and standard deviation of the estimated power across

500 simulation repetitions for different combinations of pilot study sizes, sample sizes, and

effect sizes. The mean of the estimated powers was close to the true power in almost all

combinations of sample and effect sizes. As we saw for the three-stage simulations, when the

true power is close to 1, the mean is slightly biased due to the distribution of the estimated

power being truncated at 1. This bias decreased as the variability in the estimated powers

decreased, which occurred when the true effect size increased and the size of the pilot study

increased.

For the sample size calculations, we let α = 0.05, ϕ = 0.1, and η = 1.5 so that the first

condition (PWR) was satisfied if we had a 0.05 level test ofH0 : V (dopt) ≤ B0 that had power

90% provided that V (dopt) ≥ B0 + 1.5. We examined the power as the effect size changed,

similarly to the approach used in the three-stage simulations by letting V (dopt)+∆ = B0+1.5

and varying ∆ ∈ {0, 0.25, 0.5, 1}. We let ϵ = 0.5 and ζ = 0.1, so the second condition (OPT)

was satisfied if P{V (d̂n) ≥ V (dopt)− 0.5} ≥ 0.9.

These simulations proceeded in the same manner as the three-stage simulations (see main

text). We let the size of the pilot study vary such that n0 ∈ {200, 400}. The power was then

estimated on a grid of candidate sample sizes using 500 bootstrap repetitions for each sample

size. The confidence region for ψ was constructed via the m-out-of-n bootstrap with κ = 0.2.

Using an adaptive choice of κ is best in practice, but is too computationally intensive for

each repetition in a simulation study. To estimate the smallest sample size that achieved the

desired power, we again regressed the estimated power on the tested sample sizes and used
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Table 2: Estimated power from the proposed power calculations using a pilot study of size
n0 for varying sample sizes n. We assume the effect size under the alternative hypothesis is
given by η = 1.5. ∆ denotes the difference between the true value of the optimal regime and
B0 which is given by η(1+∆), so ∆ = 0 corresponds to the true effect size being equal to η.
The remaining columns contain the mean, median, and standard deviation of the estimated
powers across 500 simulated pilot studies as well as the true power which is calculated via
simulation. We do not estimate the power for n = 250 when the pilot is of size n0 = 400,
since the full study we are using the pilot to estimate the power for would be larger than
the pilot.

∆ n n0 True PWR Mean PWR Med PWR SD PWR
0 250 200 0.55 0.57 0.62 0.30

0.25 250 200 0.96 0.86 0.92 0.17
0.5 250 200 1.00 0.95 0.96 0.05
0 500 200 0.85 0.76 0.91 0.30

0.25 500 200 1.00 0.97 1.00 0.08
0.5 500 200 1.00 1.00 1.00 0.00
0 750 200 0.97 0.87 0.99 0.23

0.25 750 200 1.00 0.99 1.00 0.04
0.5 750 200 1.00 1.00 1.00 0.00
0 500 400 0.84 0.80 0.89 0.23

0.25 500 400 1.00 0.99 1.00 0.03
0.5 500 400 1.00 1.00 1.00 0.00
0 750 400 0.96 0.90 0.98 0.18

0.25 750 400 1.00 1.00 1.00 0.02
0.5 750 400 1.00 1.00 1.00 0.00

the fitted model to solve for the sample size that resulted in the targeted power.

Tables 3 and 4 contain the results for sizing for (PWR) and (OPT), respectively. The

results were very similar to those for the three-stage simulation study. When ∆ = 0 and

n0 = 200, the true value of the optimal regime equaled the comparison mean, B0, plus

the effect size of interest, and the procedure was slightly underpowered with an estimated

power of 78.03%. Increasing the size of the pilot study to n0 = 400 increased the power

to 85.00%. As ∆ increased, the power increased to 100% as expected and the variance in

the estimated sample size decreased. Table 4 shows that the estimated concentration when
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Table 3: Empirical power (PWR) using the projection-based sample size procedure at a
nominal level of 90 using a pilot study of size n0 = 200 and n0 = 400. ∆ denotes the
difference between the true value of the optimal regime and B0 which is given by η(1 + ∆).
P (n̂ = ∞) represents the proportion of pilot studies for which n̂(Dn0) = ∞. The remaining
columns give the mean, median, quartiles, and standard deviation of the estimated sample
sizes across the 500 simulation repetitions.

∆ n0 E(n̂) Q1(n̂) Med(n̂) Q3(n̂) SD(n̂) P (n̂ = ∞) PWR
0 200 610.03 274.00 441.00 712.00 486.54 0.03 78.03

0.25 200 276.31 212.00 236.50 279.00 133.94 0.00 96.20
0.5 200 220.45 201.00 217.00 234.00 34.47 0.00 99.80
1 200 216.76 198.00 216.00 233.00 25.83 0.00 100.00
0 400 651.44 376.75 532.00 750.00 441.22 0.00 85.00

0.25 400 255.86 210.00 224.00 255.00 105.85 0.00 94.08
0.5 400 210.88 199.00 210.00 220.00 20.84 0.00 100.00
1 400 211.15 200.00 210.00 222.00 16.82 0.00 100.00

sizing for condition (OPT) was 100% for all values of ϵ and n0. When ϵ or n0 increased, the

mean and variance of the estimated sample size decreased.

D Pseudocode for Simulation Study

A single repetition of the simulation study when sizing for condition (PWR) proceeds as

follows:

1. Generate a pilot study, Dn0 , of size n0.

2. Use bootstrap oversampling of the pilot data to estimate the power for a grid of po-

tential sample sizes.

3. Regress the estimated power on the tested sample sizes using only the observations

that resulted in estimated power within a small range (5%) of the targeted power of

90%.

4. Use the regression model to estimate the sample size, n̂(Dn0), that achieves 90% power.
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Table 4: Empirical concentration (OPT) using the projection-based sample size procedure at
a nominal level of 90 using a pilot study of size n0 = 200 and n0 = 400. We test whether the
true value of the estimated regime is within ϵ of the true value of the true optimal regime.
The remaining columns give the mean, median, quartiles, and standard deviation of the
estimated sample sizes across the 500 simulation repetitions.

ϵ n0 E(n̂) Q1(n̂) Med(n̂) Q3(n̂) SD(n̂) OPT
0.3 200 966.48 852.00 950.50 1066.75 161.64 100.00
0.5 200 532.02 485.00 523.50 573.25 68.83 100.00
0.7 200 375.92 343.00 371.50 401.00 44.93 100.00
0.3 400 936.70 865.00 931.00 1000.00 108.95 100.00
0.5 400 509.71 479.00 500.00 535.00 46.80 100.00
0.7 400 361.62 340.75 361.00 382.25 30.62 100.00

5. Simulate a study of size n̂(Dn0).

6. Use the simulated study to estimate an optimal treatment regime and test the null

hypothesis, H0 : V (dopt) ≤ B0.

When sizing for condition (OPT), a single repetition is given by:

1. Generate a pilot study, Dn0 , of size n0.

2. Use bootstrap oversampling of the pilot data to estimate Q
(b)
n0,n,1−ϑ2,1−ϑ1 for a grid of

potential sample sizes.

3. Regress Q
(b)
n0,n,1−ϑ2,1−ϑ1 on the tested sample sizes.

4. Use the regression model to estimate the smallest n such that Q
(b)
n0,n,1−ϑ2,1−ϑ1 ≤ ϵ and

denote it n̂(Dn0).

5. Simulate a study of size n̂(Dn0).

6. Use the simulated study to estimate an optimal treatment regime we denote by d̂n.

7. Calculate the value of the estimated optimal regime and evaluate whether V (d̂n) ≥

V (dopt)− ϵ.
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E Details of Electronic Health Record Data

For the electronic health record data of Kaiser Permanente Washington members, the antide-

pressants in the selective serotonin reuptake inhibitor (SSRI) class were citalopram, escitalo-

pram, fluoxetine, fluvoxamine, paroxetine, sertraline, and vilazodone. The alternative classes

of antidepressants were norepinephrine and dopamine reuptake inhibitors (NDRI), tricyclic

antidepressants (TCA), serotonin and norepinephrine reuptake inhibitors (SNRI), tetracyclic

antidepressants (TeCA), and monoamine oxidase inhibitors (MAOI). The drugs prescribed

that fit into the alternative classes of antidepressants were bupropion (NDRI), desipramine

(TCA), desvenlafaxine (SNRI), duloxetine (SNRI), imipramine (TCA), mirtazapine (TeCA),

nortriptyline (TCA), selegiline (MAOI), and venlafaxine (SNRI).
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