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Activity Requires Plastic Representations of Time



Reviewer #1 (Remarks to the Author):

In this manuscript, Cone et al. propose a model of error-based learning in which the temporal 

basis is not fixed during the course of learning but is itself learned. They show that the resultant 

algorithm produces a signal related to mesolimbic DA responses that deviate from some RPE 

predictions. In this sense, they contrast their model with TD RPE. They show that a biophysically 

plausible implementation of their model can capture several experimental results related to 

dopamine. Overall, I find that this work is valuable for the field, but has some limitations that 

dampen my enthusiasm. These are listed below.

1. Their core point here is that the temporal basis for associative learning need not be fixed. They 

show that a fixed basis can have some challenges. However, Hennig et al. showed recently that an 

RNN based model (“value RNN”) can learn cue-reward associations without being given an explicit 

state space. Indeed, they show that the resultant latent representations appear like commonly 

assumed state spaces after learning. However, these representations are themselves learned. 

Thus, this model demonstrates that TD can work without a fixed temporal basis. How do the 

authors compare their model to this alternative?

2. A core point that the authors make is that when distractor stimuli are presented during a cue-

reward simulation, an RNN will not develop a fixed basis set. As above, Hennig et al’s RNN model 

does not have a fixed basis set but still learns the task. So, I am not sure that this is a convincing 

argument. Further, it is not clear to me that FLEX will naturally solve this task. Can the authors 

show that their model will learn the task shown in Figure 2 and naturally identify the distractors as 

being irrelevant?

3. How well does FLEX deal with long cue-reward delays such as those shown in experimental 

results (e.g., up to 16 s in some Schultz papers)?

4. While I am familiar with many similar claims of mismatch of RPE and experimental data, I am 

not familiar with the integral being less than 1. Can the authors mathematically demonstrate that 

TD-RPE must have an integral less than 1 for a Markov state space?

5. As best as I understand, FLEX is a model of learning associations and not value. A fundamental 

property of dopamine responses is scaling of cue responses by predicted reward magnitude. Can 

FLEX account for this?

Reviewer #2 (Remarks to the Author):

The prevailing hypothesis that dopamine (DA) represents temporal-difference (TD) reward 

prediction error (RPE) has been supported by many experimental results, but there are also a 

number of findings that appear inconsistent with the hypothesis, including that temporal shift of 

DA response from reward timing to cue timing (predicted from the hypothesis) is not always 

observed. Also, the DA = TD-RPE hypothesis presumes that each sensory cue stimulus evokes, by 

default, a specific temporal basis function, on which TD-RPE-based value learning occurs, but this 

presumption itself has a theoretical difficulty (it is practically impossible to generate basis function 

for "every" stimulus, but it is also impossible to generate it only for "relevant" stimulus without a 

priori knowledge about which stimulus is relevant). In order to address these difficulties in the 

traditional DA = TD-RPE hypothesis, the authors developed a new neurocomputational model, the 

FLEX model, that explains how such a stimulus-specific temporal basis function for reward-

associated stimulus, initially not existing, can be gradually shaped through plasticity mechanisms. 

The authors showed that the model can be in line with experimental results that appear at odds 

with the DA = TD-RPE hypothesis.

I would agree with the authors that the issue tackled by this work is a central question in 

neuroscience or even widely in related sciences. I also like the FLEX model, its potential 

explanatory power and also its uniqueness as a model bridging the algorithmic level (TD 

reinforcement learning (RL)) and the implementation level (neuronal plasticity). However, I think 

there remain major points, described below, that are desired to be addressed or clarified.

i) I expected that the FLEX model was first introduced at the algorithmic level (Marr's 2nd level), 

but the authors almost immediately went to the implementation level (Marr's 3rd level). After 

reading the whole article, I gradually understood that in the case of the FLEX model, these two 



levels are really integrated together, and it may be difficult to describe its algorithm, as a set of 

equations, separately from implementation. But still, it would be helpful if the core mechanism of 

the model is first described before going to implementation. In the introduction, the authors 

explained when there are many sensory stimuli, A, B, C, etc, and only some of them, e.g., C, is 

associated with reward after a certain delay (unknown to agent) while other stimuli are just noise, 

the C-reward association is difficult to be learnt by fixed temporal basis functon(or attractor 

dynamics) starting from each stimulus or general temporal basis function. These explanations are 

very nice, but what is lacking, I think, is a conceptual explanation of what the FLEX model is and 

how it can resolve this critical issue. In fact, there is already a corresponding description (section 

"The FLEX theory of reinforcement learning: A theoretical framework based on a plastic temporal 

basis.", page 10-11), but I think it is too broad and does not point to how the FLEX model resolves 

the critical issue (distinguishing C from other stimuli).

ii) Related to point i) above, I think it would be necessary to show the abovementioned point (i.e., 

activity starting from C is formed while activity starting from A or B is not) by actual simulation. 

Currently, the authors first described the case where there is only a single sensory stimulus (page 

13-), and then described the case where there are sequentially presented multiple (high-order) 

cue stimuli (page 16-). But this latter case differs from the situation where there are many 

irrelevant stimuli (A, B, ..) and only some (C) is relevant, because all the sequentially presented 

stimuli are relevant (reward-associated) ones. I would like to see actual simulation results on how 

the FLEX model realizes formation of cue-specific sustained activation (temporal basis function) 

only for relevant stimuli.

iii) Regarding the point that cue-specific sustained activation (temporal basis function) is shaped 

through plasticity mechanisms, there exists a previous study that is not cited in the present 

manuscript:

Nicolas Deperrois, Victoria Moiseeva, & Boris Gutkin

Minimal Circuit Model of Reward Prediction Error Computations and Effects of Nicotinic Modulations

Front. Neural Circuits, Volume 12 - 2018

https://doi.org/10.3389/fncir.2018.00116

I think it would be necessary to cite this work and discuss how the FLEX model is conceptually 

different from (and/or superior to) this previous model (or if the authors think discussing this 

previous work is not necessary, please explain the reason). I think this point is especially 

important given that the authors claim that the FLEX model is a "proof-of-concept" model; how 

does it significantly depart from the concept of the previous work by Deperrois et al.?

iv) The authors' (FLEX model's) claim that DA does not represent TD-RPE by default but such a 

representation is developed through plasticity mechanisms is certainly an important departure 

from the traditional view. However, once DA's representation of TD-RPE is learnt, can it be used to 

implement TD RL (i.e., storing values in the strength of cortico-striatal synapses through DA-

dependent plasticity)? If so, I think that the present model does not completely replace the 

traditional DA = TD-RPE hypothesis but instead replaces a part of it and complements the 

remaining part, and the authors' strong argument against the traditional hypothesis (in particular, 

the description mentioning "a paradigm shift" at the bottom of page 9) would need to be toned 

down.

v) The traditional DA = TD-RPE hypothesis does not only explain the response of DA neurons in 

association of sensory cue and primary reward but also explain the response of DA neurons or 

signals in DA-rich striatal/medial-prefrontal regions in more abstract value learning situations (e.g. 

with monetary reward or social reward) in longer time scales that may not correspond to time 

scales of synaptic plasticity (~ seconds). Can the FLEX model also explain such a wide range of 

observations?

Minor points:

- "However, additional data obtained more recently indicates this might not always be the case and 

that significant response to reward persists throughout training" in the middle of page 8. These 

can be (broadly) consistent with the DA = TD-RPE hypothesis (e.g., Gershman, 2014, Neural 

Comput; Morita & Kato, 2014, Front Neural Circuits).



- "by making ad-hoc modifications27,28." at the bottom of page 8. I do not agree with the authors 

to describe these considerations as "ad hoc". In particular, distributional RL discussed in 27 is an 

important extension of RL theory even purely theoretically (separately from biological 

correspondence).

- "Synfire chains" at the top of page 11. I think this term is well known to computational 

neuroscientists but probably not to people in other fields, and so it may be good to explain it in a 

brief phrase. Also, it is good to add citation about the term "Synfire chains".

- "however in FLEX there is no analog for the value neurons assumed in TD " in the middle of page 

18. Following this part, the authors argued that the FLEX model can be in line with some 

experimental findings suggesting computations without value representation. However, there are 

also a lot of experimental results (e.g., Samejima et al., 2005, Science) that indicate neural 

representation of values and seem consistent with the DA = TD-RPE hypothesis. How can the FLEX 

model be in line with these many results? (please see also major point iv) above)

(End)

Reviewer #3 (Remarks to the Author):

The standard model of temporal difference learning (TDL) assumes a hardwired set of basis 

functions to encode time. Here the authors point out that this component of TDL is probably not 

biologically plausible. That these hardwired basis function are implausible is often acknowledged, 

but I don’t think specific models have been put forth in the context of TDL to explain how temporal 

basis functions could develop, as done in the current paper. Here a model in which the basis 

functions are learned is proposed based on the previous published model of timing from the lab. 

The model is placed in the context of TDL, including a feedback circuit between DA release which 

modulates synaptic plasticity and DA inhibition. An integrate-and-fire spiking model is developed, 

in which a population of neurons representing a cortical network undergoes DA modulated 

plasticity, and the “messenger” cells in the cortical network inhibit VTA DA neurons through GABA 

interneurons. First, the paper correctly highlights the problems with assuming a hardwired set of 

basis functions, and then proceeds to develop a model, and takes steps towards providing some 

experimental support for the model based on the reanalysis of published data. The proposal of a 

biologically plausible TDL model in regards the basis function is an important step forward, 

however as it currently stands it’s a bit difficult to determine how consistent the model is with 

existing data.

The model deviates significantly from standard TDL predictions, and thus with a significant amount 

of published data. Thus it is important to determine which novel predictions are made and if they 

are consistent with the experimental data. The authors focus on the important prediction that total 

DA can transiently increase over the course of training. Support for this is provided by the 

reanalysis of published data (Fig 3 and S1), but this data perhaps, also shows a dip in total DA on 

Day 2. The authors seem to smooth over this a bit by averaging Day 1 and 2. I believe the model 

does clearly predict an increase in DA on day two which is not observed? Statistics should be 

performed per day not averaged in blocks over days, and the dip which may not be significant 

should be addressed, although the peak might not be significant either? The authors could 

probably also reanalyze other data sets including the Jeong et al data (?).

Does the model predict a discrete drop in US evoked DA as Figure 7 suggests? Additionally, the 

model seems to predict that the US evoked DA should remain constant until the temporal basis 

functions are learned. If these are indeed predictions are they consistent with the Amo or Jeong 

data?

The model predicts there is no backward migration of the DA response, but does predict a forward 

migration of the “messenger” neurons? Can this serve as an experimentally testable prediction? 

Either way it would helpful to list what the authors consider testable predictions that would 



disprove the model.

There are some concerns with over weighing the results of the recent Jeong paper as an example 

that TDL is incorrect, because that paper might be taken to argue against the current model 

because they don’t seem to see much of a characteristic DA dip during extinction trials, appearing 

to suggest there is no need for any temporal basis functions at all.

Minor comments.

To provide a more direct comparison with the experimental data, perhaps it would be best to not 

use the auROC but the more standard DA “firing rate” in Fig. 6 and 7.

The values of most of the parameters were not provided in the paper, and I don’t think rho was 

defined.

Typo: cell responses that have evolve during trace conditioning.

Legend Figure 7A. State that it is total/integrated DA across the trial that is being plotted.



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

In this manuscript, Cone et al. propose a model of error-based learning in which the temporal basis 

is not fixed during the course of learning but is itself learned. They show that the resultant algorithm 

produces a signal related to mesolimbic DA responses that deviate from some RPE predictions. In 

this sense, they contrast their model with TD RPE. They show that a biophysically plausible 

implementation of their model can capture several experimental results related to dopamine. 

Overall, I find that this work is valuable for the field, but has some limitations that dampen my 

enthusiasm. These are listed below. 

1. Their core point here is that the temporal basis for associative learning need not be fixed. They 

show that a fixed basis can have some challenges. However, Hennig et al. showed recently that an 

RNN based model (“value RNN”) can learn cue-reward associations without being given an explicit 

state space. Indeed, they show that the resultant latent representations appear like commonly 

assumed state spaces after learning. However, these representations are themselves learned. Thus, 

this model demonstrates that TD can work without a fixed temporal basis. How do the authors 

compare their model to this alternative? 

Thank you for comment. It is indeed important for us to explain how our work differs from previous 

work such as that by Henning et al (2023). The work by Hennig et al does not really use the TD 

algorithm, instead it uses the cost function used in TD for training an RNN, by using a BPTT 

algorithm. Such algorithms are based on the calculation of a gradient, and in BPTT this approach 

breaks both locality and causality and is therefore not biophysically plausible. Such an approach 

overcomes the problems of biophysically implausible assumptions about the network structure by 

using a powerful but biophysically implausible learning rule. Our analysis and approach is centered 

on biophysically plausible solutions. In the revised version we have tried to clarify this point, and 

explain the distinction between our approach and approaches based on gradient based algorithms. 

(see pg 7) 

2. A core point that the authors make is that when distractor stimuli are presented during a cue-

reward simulation, an RNN will not develop a fixed basis set. As above, Hennig et al’s RNN model 

does not have a fixed basis set but still learns the task. So, I am not sure that this is a convincing 

argument. Further, it is not clear to me that FLEX will naturally solve this task. Can the authors show 

that their model will learn the task shown in Figure 2 and naturally identify the distractors as being 

irrelevant? 

There are two points we can infer from this comment, one that the Hennig model can learn even 

with distractors and the second to doubt if FLEX can learn with distractors. To address the second 

point, we have added a new supplemental figure (Fig. S5) and text (pg 16) to show that FLEX can 

learn with distractors. In addition, it is unclear to us how the Hennig approach would respond to 

distractors. If the task was learned without distractors, but then distractors were presented, which 

affect the dynamics of the RNN, it seems to us that the performance of the network would be 

impaired. In contrast, it might be possible to teach the network to ignore specific distractors during 

the learning phase. Because we do not know to what extent the Henning approach can address 

distractors we have not elaborated on this point in the paper. 



3. How well does FLEX deal with long cue-reward delays such as those shown in experimental results 

(e.g., up to 16 s in some Schultz papers)? 

This is a very reasonable question. Learning activity on long timescales (orders of magnitudes larger 

than the neural time constant) is generally a bottleneck in recurrent networks, particularly when 

considering biophysically plausible learning rules (as we do in this work).  

There are two sources for this bottleneck, one stems from intrinsic limitations of biophysically 

plausible spiking RNNs and another stemming from the time scale of eligibility traces in the learning 

rule. 

We have previously shown (Aksoy et al 2022) that with additional biophysically plausible single cell 

mechanisms stochastic spiking RNN’s can be trained for slowly decaying activity lasting up to tens of 

seconds, as observed experimentally in this system. We have not used these additional mechanisms 

here, but now relate to this problem and cite our previous work as a partial solution.  

Behaviorally, cue reward associations can be learned for gaps on the order of minutes, although the 

physiological mechanisms are less well explored. A mechanism in which the temporal basis is 

constructed by a spiking noisy recurrent network is unlikely to be the basis of learning associations 

with delays on the order of minutes. For such long durations, a different class of models would be 

required.  

As stated, FLEX is a general theory. For gaps between stimulus and reward that span minutes, our 

current model is insufficient, and we are also not aware of data from DA neurons at these time 

scales. To account for longer durations, other specific biophysical models would be required though 

they could also fall into the general FLEX framework. We have added a discussion of these issues in 

the current version of the paper (pg. 19). 

4. While I am familiar with many similar claims of mismatch of RPE and experimental data, I am not 

familiar with the integral being less than 1. Can the authors mathematically demonstrate that TD-

RPE must have an integral less than 1 for a Markov state space? 

Thank you for your comment, we have amended our supplemental material to include evidence that 

the integral of RPE should be less than or equal to 1. For the TD(0) case we provide an analytical 

proof, and we supplement it by simulations which demonstrate that this result holds for more 

complex versions of TD. 

5. As best as I understand, FLEX is a model of learning associations and not value. A fundamental 

property of dopamine responses is scaling of cue responses by predicted reward magnitude. Can 

FLEX account for this? 

While the model was not originally designed to encode the reward magnitude directly, as our aim 

was to show that a temporal basis can be learned, we have added a supplemental figure (Fig. S6) 

and a text in the paper (pg 17) demonstrating that in a slightly modified version of the model in 

which cue responses are indeed scaled by predicted reward magnitude. This alternate model 

assumes that some signal of reward magnitude still exists at the time of US. This could be achieved, 

for example, by other neuromodulators are released alongside dopamine upon reward, and when 

rewards are predicted, dopamine release is suppressed while the release of these other 



neuromodulators is not. This allows for the eligibility traces associated with cue learning to bind to 

these neuromodulatory signals even after the reward has been predicted (and dopamine 

suppressed), which allows for an encoding of reward magnitude by the cue both during and after 

training.

Reviewer #2 (Remarks to the Author): 

The prevailing hypothesis that dopamine (DA) represents temporal-difference (TD) reward 

prediction error (RPE) has been supported by many experimental results, but there are also a 

number of findings that appear inconsistent with the hypothesis, including that temporal shift of DA 

response from reward timing to cue timing (predicted from the hypothesis) is not always observed. 

Also, the DA = TD-RPE hypothesis presumes that each sensory cue stimulus evokes, by default, a 

specific temporal basis function, on which TD-RPE-based value learning occurs, but this presumption 

itself has a theoretical difficulty (it is practically impossible to generate basis function for "every" 

stimulus, but it is also impossible to generate it only for "relevant" stimulus without a priori 

knowledge about which stimulus is relevant). In order to address these difficulties in the traditional 

DA = TD-RPE hypothesis, the authors developed a new neurocomputational model, the FLEX model, 

that explains how such a stimulus-specific temporal basis function for reward-associated stimulus, 

initially not existing, can be gradually shaped through plasticity mechanisms. The authors showed 

that the model can be in line with experimental results that appear at odds with the DA = TD-RPE 

hypothesis. 

I would agree with the authors that the issue tackled by this work is a central question in 

neuroscience or even widely in related sciences. I also like the FLEX model, its potential explanatory 

power and also its uniqueness as a model bridging the algorithmic level (TD reinforcement learning 

(RL)) and the implementation level (neuronal plasticity). However, I think there remain major points, 

described below, that are desired to be addressed or clarified. 

i) I expected that the FLEX model was first introduced at the algorithmic level (Marr's 2nd level), but 

the authors almost immediately went to the implementation level (Marr's 3rd level). After reading 

the whole article, I gradually understood that in the case of the FLEX model, these two levels are 

really integrated together, and it may be difficult to describe its algorithm, as a set of equations, 

separately from implementation. But still, it would be helpful if the core mechanism of the model is 

first described before going to implementation. In the introduction, the authors explained when 

there are many sensory stimuli, A, B, C, etc, and only some of them, e.g., C, is associated with reward 

after a certain delay (unknown to agent) while other stimuli are just noise, the C-reward association 

is difficult to be learnt by fixed temporal basis functon(or attractor dynamics) starting from each 

stimulus or general temporal basis function. These explanations are very nice, but what is lacking, I 

think, is a conceptual explanation of what the FLEX model is and how it can resolve this critical issue. 

In fact, there is already a corresponding description (section "The FLEX theory of reinforcement 

learning: A theoretical framework based on a plastic temporal basis.", page 10-11), but I think it is 

too broad and does not point to how the FLEX model resolves the critical issue (distinguishing C from 

other stimuli). 

The Marr three level framework is useful conceptually and it also aids in explaining theories. We are 

not sure how to describe an abstract algorithm for FLEX (Marr level 2) separately from the 

algorithm’s implementation (Marr level 3). However, we have chosen the describe separately the 



general FLEX theory, and our specific mechanistic implementation. The FLEX theory simply states 

that any plausible algorithm must be able to flexibly generate a temporal basis for the sailient cues.  

One problem which makes it hard to describe an general algorithm for FLEX is that the FLEX theory 

does not specify precisely the nature of the temporal basis, our specific model generates a useful 

basis, but is clearly not the only option. We have not described a general algorithm that can do this, 

but instead presented a biophysically plausible implementation as a proof of concept. Indeed, by 

doing this we have skipped over the level 2 description.  

ii) Related to point i) above, I think it would be necessary to show the abovementioned point (i.e., 

activity starting from C is formed while activity starting from A or B is not) by actual simulation. 

Currently, the authors first described the case where there is only a single sensory stimulus (page 13-

), and then described the case where there are sequentially presented multiple (high-order) cue 

stimuli (page 16-). But this latter case differs from the situation where there are many irrelevant 

stimuli (A, B, ..) and only some (C) is relevant, because all the sequentially presented stimuli are 

relevant (reward-associated) ones. I would like to see actual simulation results on how the FLEX 

model realizes formation of cue-specific sustained activation (temporal basis function) only for 

relevant stimuli. 

We agree that it is important to show this behavior directly by simulation, we have amended our 

supplemental material to include a figure (supplementary figure S5 which demonstrates that 

distractor cues do not affect our network’s timing (described in pg 16).

iii) Regarding the point that cue-specific sustained activation (temporal basis function) is shaped 

through plasticity mechanisms, there exists a previous study that is not cited in the present 

manuscript: 

Nicolas Deperrois, Victoria Moiseeva, & Boris Gutkin 

Minimal Circuit Model of Reward Prediction Error Computations and Effects of Nicotinic 

Modulations 

Front. Neural Circuits, Volume 12 - 2018 

https://doi.org/10.3389/fncir.2018.00116

I think it would be necessary to cite this work and discuss how the FLEX model is conceptually 

different from (and/or superior to) this previous model (or if the authors think discussing this 

previous work is not necessary, please explain the reason). I think this point is especially important 

given that the authors claim that the FLEX model is a "proof-of-concept" model; how does it 

significantly depart from the concept of the previous work by Deperrois et al.? 

We greatly appreciate this comment as we were not aware of this paper previously, and did not find 

it in our searches while working on this paper. This is excellent work, which is similar to ours in many 

respects. Although there are specific differences in the details, we see this model as another 

implementation of a FLEX model.  

The details of the Deperrois et al (2018) model differ from ours in several key respects. First, their 

PFC model has a slow time constant of 1000ms introduced by the adaptation variable, which is 

responsible for the slow time scale of decay in this, model which is different from our PFC 

component which depends on an RNN without this postulated slow component. Second, the PFC 

module in the Deperrois paper does not have the equivalent of our messenger cells, consequently it 



could not account for VTA response for a reward that appears earlier than expected, as in the data 

and our model. Third, the learning rules used in that paper are quire different, they assume that the 

recurrent synapses within PFC have access to a variable representing the time between reward, and 

the network decay. They also assume that the cortical striatal synapses have access to the difference 

between the predicted response at CS to the magnitude of the US. Note that these two quantities 

are separated in time. Making this assumption simplifies the learning of CS magnitude, but does not 

seem biophysically plausible. We do not make these assumptions. In our model we use biophysically 

plausible learning rules based on eligibility traces, for which there is experimental evidence. Forth, 

the Deperrios paper used a deterministic rate based MFT model, we use a model with stochastic 

spiking neurons which enable us to also explore the variability between single cell responses, as seen 

in the data. Another difference is that our model does not take into account the role of Ach which is 

extensively studied in the Deperrios model. In addition to the difference in the model itself, we also 

simulate a somewhat different set of experiments than they do. 

More importantly, apart from these specific differences, much of our current work concentrates on 

demonstrating that the previously used TD approach is not biophysically reasonable and is 

inconsistent with experimental data. However, because we are now aware of this paper we discuss 

it, describe it in the context of the FLEX theory, and briefly explain how it differs from our model. 

iv) The authors' (FLEX model's) claim that DA does not represent TD-RPE by default but such a 

representation is developed through plasticity mechanisms is certainly an important departure from 

the traditional view. However, once DA's representation of TD-RPE is learnt, can it be used to 

implement TD RL (i.e., storing values in the strength of cortico-striatal synapses through DA-

dependent plasticity)? If so, I think that the present model does not completely replace the 

traditional DA = TD-RPE hypothesis but instead replaces a part of it and complements the remaining 

part, and the authors' strong argument against the traditional hypothesis (in particular, the 

description mentioning "a paradigm shift" at the bottom of page 9) would need to be toned down. 

It is indeed possible that the temporal basis developed by FLEX could subsequently be used by a 

traditional TD algorithm. Such an assumption might leave a role for traditional TDRL after initial 

learning phase in which the basis functions are learned. However, the DA release in our model is 

testably different from an RPE (Figure 7), so it does directly challenge the DA=TD-RPE hypothesis. 

Despite this, we agree that the language regarding a “paradigm shift” is too strong, and as such, we 

have removed it. 

v) The traditional DA = TD-RPE hypothesis does not only explain the response of DA neurons in 

association of sensory cue and primary reward but also explain the response of DA neurons or 

signals in DA-rich striatal/medial-prefrontal regions in more abstract value learning situations (e.g. 

with monetary reward or social reward) in longer time scales that may not correspond to time scales 

of synaptic plasticity (~ seconds). Can the FLEX model also explain such a wide range of 

observations? 

The power of the traditional TD formulation is its normative basis, which can be used for more 

complex and abstract value learning scenarios. The FLEX formulation is primarily concerned with 

biophysically plausible mechanisms. When FLEX converges its response properties are similar to 

those of the traditional TD formulation, but not during the learning process. It might be seen as a 



mechanistic implementation that approximates TD is some cases. We have also shown the response 

of FLEX in a slightly more complex paradigm of sequential conditioning. We have shown results that 

are consistent with experimental results and may even account for apparent contradictions in 

previous results. We have not tested whether FLEX can account for more abstract and complex value 

estimates and over much longer time scales. Because of the normative definition of TD is simpler to 

apply it to these more complex scenarios. In contrast, because mechanistic models of FLEX require a 

plausible mechanism, applying FLEX to more abstract paradigms might be less straightforward. It is 

quite feasible that additional mechanisms would be required to account for these cases. For 

example, as noted above for processes with much longer time scales.  

Minor points: 

- "However, additional data obtained more recently indicates this might not always be the case and 

that significant response to reward persists throughout training" in the middle of page 8. These can 

be (broadly) consistent with the DA = TD-RPE hypothesis (e.g., Gershman, 2014, Neural Comput; 

Morita & Kato, 2014, Front Neural Circuits). 

While these references address spatial navigation tasks in which there is ramping as the target is 

approached., our model is concerned with the simpler trace conditioning tasks in which the 

response at the time of the US does not completely go away, but there is no ramp leading to it. We 

have modified the sentence and added references to the type of persistent response we had in 

mind: “However, additional data obtained more recently indicates this might not always be the case 

and that significant response to reward at the time of the actual reward persists throughout 

training (citation numbers)." 

- "by making ad-hoc modifications27,28." at the bottom of page 8. I do not agree with the authors to 

describe these considerations as "ad hoc". In particular, distributional RL discussed in 27 is an 

important extension of RL theory even purely theoretically (separately from biological 

correspondence). 

We have changed the language we use here. We no longer say ad-hoc. We now say” “by making 

significant modifications to the classical value-based formulation of TD”. That this is a significant 

change from classical TD is clearly stated in the papers cited. The following is taken from Dabney et 

al. 2020:“In contrast to classical temporal-difference (TD) learning, distributional RL posits a diverse 

set of RPE channels, each of which carries a different value prediction, with varying degrees of 

optimism across channels. (Value is formally defined in RL as the mean of future outcomes, but here 

we relax this definition to include predictions about future outcomes that are not necessarily the 

mean.)” 

- "Synfire chains" at the top of page 11. I think this term is well known to computational 

neuroscientists but probably not to people in other fields, and so it may be good to explain it in a 

brief phrase. Also, it is good to add citation about the term "Synfire chains". 

Thank you for pointing this out – we have added references for readers who may not be familiar 

with the term. 



- "however in FLEX there is no analog for the value neurons assumed in TD " in the middle of page 

18. Following this part, the authors argued that the FLEX model can be in line with some 

experimental findings suggesting computations without value representation. However, there are 

also a lot of experimental results (e.g., Samejima et al., 2005, Science) that indicate neural 

representation of values and seem consistent with the DA = TD-RPE hypothesis. How can the FLEX 

model be in line with these many results? (please see also major point iv) above) 

This claim is a statement of fact about FLEX, the model does not have explicit value neurons. 

Whether the brain has value neurons (not RPE neurons) is contentious although some labs have 

reported them others claim their absence (see Hayden and Niv, 2021 ). This paper does not make 

the claim that value neurons are not or should not be found in the cortex, it simply states that we do 

not need them in order to account for the plasticity if DA neurons in VTA. We have now tried to 

clarify this better in the text. 

Reviewer #3 (Remarks to the Author): 

The standard model of temporal difference learning (TDL) assumes a hardwired set of basis 

functions to encode time. Here the authors point out that this component of TDL is probably not 

biologically plausible. That these hardwired basis function are implausible is often acknowledged, 

but I don’t think specific models have been put forth in the context of TDL to explain how temporal 

basis functions could develop, as done in the current paper. Here a model in which the basis 

functions are learned is proposed based on the previous published model of timing from the lab. The 

model is placed in the context of TDL, including a feedback circuit between DA release which 

modulates synaptic plasticity and DA inhibition. An integrate-and-fire spiking model is developed, in 

which a population of neurons representing a cortical network undergoes DA modulated plasticity, 

and the “messenger” cells in the cortical network inhibit VTA DA neurons through GABA 

interneurons. First, the paper correctly highlights the problems with assuming a hardwired set of 

basis functions, and then proceeds to develop a model, and takes steps towards providing some 

experimental support for the model based on the reanalysis of published data. The proposal of a 

biologically plausible TDL model in regards the basis function is an important step forward, however 

as it currently stands it’s a bit difficult to determine how consistent the model is with existing data. 

The model deviates significantly from standard TDL predictions, and thus with a significant amount 

of published data. Thus it is important to determine which novel predictions are made and if they 

are consistent with the experimental data. The authors focus on the important prediction that total 

DA can transiently increase over the course of training. Support for this is provided by the reanalysis 

of published data (Fig 3 and S1), but this data perhaps, also shows a dip in total DA on Day 2. The 

authors seem to smooth over this a bit by averaging Day 1 and 2. I believe the model does clearly 

predict an increase in DA on day two which is not observed? Statistics should be performed per day 

not averaged in blocks over days, and the dip which may not be significant should be addressed, 

although the peak might not be significant either? The authors could probably also reanalyze other 

data sets including the Jeong et al data (?). 

Thanks for these comments. Indeed, it would be better to have much more data of DA neuronal 

responses during training in order to make our point. The main reason for showing that in 

experimental data the total integral over DA is not monotonically decreasing is to demonstrate that 

existing data is inconsistent with classical TD models. Indeed, in our implementation the dynamics of 





opposite fashion. The model does indeed predict that the US evoked DA should remain constant 

until the temporal basis functions are learned, however, this is not tested in either the Amo or Jeong 

data (no putative temporal basis functions, say from PFC, are recorded). Further experiments are 

needed to test this hypothesis.

The model predicts there is no backward migration of the DA response, but does predict a forward 

migration of the “messenger” neurons? Can this serve as an experimentally testable prediction? 

Either way it would helpful to list what the authors consider testable predictions that would disprove 

the model. 

Yes, the model would predict a forward migration of the timer and messenger neurons. We have 

included this, alongside other predictions, in additional text in the discussion. 

There are some concerns with over weighing the results of the recent Jeong paper as an example 

that TDL is incorrect, because that paper might be taken to argue against the current model because 

they don’t seem to see much of a characteristic DA dip during extinction trials, appearing to suggest 

there is no need for any temporal basis functions at all. 

The Jeong et al paper argues against the normative assumptions of TD. It argues that the DA signal at 

time of CS is at least partially retrospective rather than prospective, and we have discussed and 

referenced it for completeness. There is ample data indicating a reduction in the response 

magnitude at the time of US, this though might require extensive training. This is even apparent in 

the Jeong et al data (Fig. 4C), though we have not tested for its significance. Additionally, in some of 

the published data (e.g: Cohen et al 2012) one observes heterogeneity in the reduction of DA at the 

time of US, with some neurons being completely inhibited while others are not affected at all. This 

heterogeneity is consistent with our model (Fig 6d). We have now tried to clarify the subtle 

distinction in the new version that while the Jeong et al data does argue against the normative basis 

of TD, their data has no bearing on the mechanism of the plasticity of dopamine release.  

Minor comments. 

To provide a more direct comparison with the experimental data, perhaps it would be best to not 

use the auROC but the more standard DA “firing rate” in Fig. 6 and 7. 

We actually agree that firing rates make more sense, and that auROC is an additional confusing and 

unnecessary processing stage. However, since auROC was used in the experiment in which we 

directly compare our Fig 6 and 7 results to (Cohen et al 2012), we felt that its usage was appropriate. 

If the reviewer insist we could easily change this, but it would no longer be a direct comparison to 

Cohen et al 2012. 

The values of most of the parameters were not provided in the paper, and I don’t think rho was 

defined. 

Thanks for the comment, we’ve added a parameter table to the supplemental material, and made 

sure all parameters are defined in the methods.

Typo: cell responses that have evolve during trace conditioning. 



Fixed

Legend Figure 7A. State that it is total/integrated DA across the trial that is being plotted. 

Fixed 



Reviewer #1 (Remarks to the Author):

The authors have done a good job addressing my concerns. I am okay with publication of the 

manuscript. However, I have a few more comments they might wish to consider. I do not need to 

see the revision again.

In the Appendix, there is an alpha missing in A-3 and an I missing in Idelta_{n-1} in A-4. The 

assumptions for this derivation seem a bit limiting to me. Is the core idea that the average RPE 

across all states should reduce over learning since it is the reduced objective function during value 

learning? I guess sum of RPE across all states weighted by frequency of state occurrence should be 

zero if the value function is correctly learned.

Reviewer #2 (Remarks to the Author):

The authors have addressed most of the points that I raised originally. There remains one, but still 

important, point:

In reply to my comment and also Reviewer 1's similar comment, the authors have now shown that 

FLEX works fine in the presence of distractor *during recall* (Supplemental Figure 5). However, 

what I intended to ask was whether FLEX can still work if distractors (irrelevant stimuli) exist 

*during learning*.

Regarding how the authors' work relates to the previous work by Deperrois et al. (now cited as 

[69]), I understand the authors' explanation. There is only a type remained:

This previous publication different from our model in the details of the recurrent network...

-> This previous publication differs from our model...?

Reviewer #3 (Remarks to the Author):

The authors have done a good job addressing my concerns. As I stated in my first review I believe 

this is first presentation of network model pf the learned encoding of timed responses in the 

context of TDR, where there has been an assumption of hardwired temporal basis functions. As 

such I think the paper is a significant contribution to the field. I also agree with the authors that 

the Depperois et al, 2018 paper is fundamentally different as it relies on hard-wired intrinsic time 

constants rather than emergent network properties.

While the presented model is unique in that it frames the emergence of temporal basis function in 

the context of RL, the authors acknowledge models that have shown how temporal basis function 

can emerge through supervised and unsupervised mechanisms in RNNs, (e.g., Liu & Buonomano, 

2009, Fiete et al, 2010).

On a minor note: although I understand the term synfire chain is often used to refer to a neural 

sequence, the term synfire chain as originally coined by Abeles actually refers to synchronous 

feedforward (thus the prefix syn) chains and does not really apply to neural sequences in typical 

models of timing. I would recommend sticking to the term “neural sequences”.



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have done a good job addressing my concerns. I am okay with publication of the 

manuscript. However, I have a few more comments they might wish to consider. I do not need to 

see the revision again. 

In the Appendix, there is an alpha missing in A-3 and an I missing in Idelta_{n-1} in A-4. The 

assumptions for this derivation seem a bit limiting to me. Is the core idea that the average RPE 

across all states should reduce over learning since it is the reduced objective function during value 

learning? I guess sum of RPE across all states weighted by frequency of state occurrence should be 

zero if the value function is correctly learned. 

Thank you for comment. We are grateful that you have spotted the typos in the Appendix. Regarding 

the derivation in the appendix, its assumptions mean that this calculation applies only to TD(0), and 

for either a tabular temporal basis or a delta function temporal basis. Using simulations, we show 

that the conclusion, that the integral is non-increasing, holds for TD(lambda) as well, though the 

temporal dynamics of the decrease are more rapid. As the value function is learned the integral 

decreases, and the level of decrease depends on the parameter gamma. If gamma=1, the integral 

does not decrease. However, the sum of all responses does not go to zero. When learning 

converges, for these basis functions, there is only a response (an RPE) to the initial state, because 

that state triggered by the CS, is unpredictable. The RPE for all other states is indeed zero after 

convergence. After convergence, the integral is equivalent to the RPE in the initial state.  

Reviewer #2 (Remarks to the Author): 

The authors have addressed most of the points that I raised originally. There remains one, but still 

important, point: 

In reply to my comment and also Reviewer 1's similar comment, the authors have now shown that 

FLEX works fine in the presence of distractor *during recall* (Supplemental Figure 5). However, what 

I intended to ask was whether FLEX can still work if distractors (irrelevant stimuli) exist *during 

learning*. 

Regarding how the authors' work relates to the previous work by Deperrois et al. (now cited as [69]), 

I understand the authors' explanation. There is only a type remained: 

This previous publication different from our model in the details of the recurrent network... 

-> This previous publication differs from our model...? 

Thank you for following up, we poorly worded our reference to that figure – the distractor cues in 

Supplemental Figure 5 are indeed intermittently presented during learning (not associated with a 

reward). We show the results from after learning, to show that their presence does not disrupt the 

learned timing of the stimulus C. We have added clarification to the figure caption, and revised the 

section in the text to highlight that the cues are shown during learning, and the network is invariant 

to their presence after learning.  

We have also fixed the typo, thank you for pointing it out. 

Reviewer #3 (Remarks to the Author): 



The authors have done a good job addressing my concerns. As I stated in my first review I believe 

this is first presentation of network model pf the learned encoding of timed responses in the context 

of TDR, where there has been an assumption of hardwired temporal basis functions. As such I think 

the paper is a significant contribution to the field. I also agree with the authors that the Depperois et 

al, 2018 paper is fundamentally different as it relies on hard-wired intrinsic time constants rather 

than emergent network properties. 

While the presented model is unique in that it frames the emergence of temporal basis function in 

the context of RL, the authors acknowledge models that have shown how temporal basis function 

can emerge through supervised and unsupervised mechanisms in RNNs, (e.g., Liu & Buonomano, 

2009, Fiete et al, 2010). 

On a minor note: although I understand the term synfire chain is often used to refer to a neural 

sequence, the term synfire chain as originally coined by Abeles actually refers to synchronous 

feedforward (thus the prefix syn) chains and does not really apply to neural sequences in typical 

models of timing. I would recommend sticking to the term “neural sequences”. 

Thank you for review. 

This is a good point regarding the use of “synfire chains”, we have changed all references to 

“sequential neural sequences” or similar.  


