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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

 

Helmer and colleagues provide extensive empirical data simulation results 

to carefully compare Canonical Correlation Analysis and Partial Least Squares in 

data scenarios that are commonly encountered in imaging neueroscience and other 

areas of biomedicine. 

 

In particular, the authors introduce a generative model that was 

used to systematically explore parameter dependencies, to 

assess stability, to calculate required sample sizes in new studies, 

and to estimate weight stability in previously published studies. Additionally, 

a calculator of dataset properties is proposed for anticipating the 

stability of the CCA and PLS estimates. The is a unique contribution to the 

broader computational biology literature. This urgent assessment will help 

guide many quantitative investigations in rich datasets with strong correlations, 

typical for many types of biomedical measurements. 

 

This reviewer has several suggestions that the author may want to consider, 

before publication of this study: 

 

 

Major 

a) Semantic hygiene: 'sample' is sometimes used in the sense of observation and sometimes in the 

sense of drawn collection of observations, which could be avoided by consistent usage of the term 

throughout. 

 

b) Maybe the "loadings" / "score" / "weight" terminology could be changed to something else. The 

writing in the whole paper appears to be exceptionally clear, but this terminology choice may perhaps 

be made more crisp, as a service to computational biomedicine community. The reviewer is not 

claiming that he/she a perfection solution for this point. One possibility is perhaps by systematically 

using PLS/CCA "vectors" (the latent variable vector), PLS/CCA "variates" (the projections based on the 

latent variable vector), and simply PLS/CCA "parameter" (a single variable's association as capture by 

the model, naturally udnerstanable in analogy to ANOVA and other linear regression models), as well 

as PLS/CCA "inter-set correlation" (used consistently throughout rather than using mere "correlation" 

often times which from this reviewer's experience is highly confusing for many applied computational 

scientists). 

 

c) Principal component bases appear to be an important component of the generative model for the 

empirical data simulation experiments. In the limitations section of the discussion section, please 

reflect on the role of rotation-invariance as a known weakness of the PCA approach, and whether and 

how the present profiling analyses are affected by this. 

 

d) When arguing for the “samples per feature” metric, it could help to cite papers that have used 

explicitly scaling of samples against the number of input variable before: 

 

Varoquaux, G., 2018. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 

180, 68-77. 

 

Schulz, M.-A., Yeo, B.T., Vogelstein, J.T., Mourao-Miranada, J., Kather, J.N., Kording, K., Richards, B., 

Bzdok, D., 2020. Different scaling of linear models and deep learning in UKBiobank brain images 

versus machine-learning datasets. Nat Commun 11, 1-15. 



 

Bzdok, D., Engemann, D.A., Thirion, B., 2020. Inference and Prediction Diverge in Biomedicine. 

Patterns (Cell Press). 

 

e) As the authors know, PLS is a family of methods instead of a single method. In the limitations 

section, please reflect on which particular instance of PLS was interrogated in the present study, and 

whether results can be expected to differ for other popular variants of PLS. 

 

f) One useful extension of the corpus of simulation results could be to relate them to the increasing 

use of the Allen Human Brain Atlas. Is there perhaps a way to extend the generative model for fake-

data simulation to also cover data scenarios that cover thouands of gene expressions with their 

relation to high-dimensional brain features. It would be great to extend to these increasingly common 

imaging-transcriiptomics settings, if possible. 

 

 

 

Minor 

a) Neither abstract nor statement appear to mention "fake/synethic/empirical data simulation" 

although this probably exactly describes the character of the used methodology. 

 

b) Discussion / Generalizability. Dot missing at end of subtitle. 

 

c) All figures using "r" metric should unpack in the figure caption what metric this symbol is exactly 

referring to in each case/graph. 

 

d) Semantics: "Projection on CCA/PLS weights..." does not appear sound to this reviewer. In the case 

of CCA, the resulting canonical variates are the *result* using the already known CCA parameters. 

Please make the phrasing less ambiguous to future readers of this paper. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript COMMSBIO-23-1546 entitled "On stability of Canonical 

Correlation Analysis and Partial Least Squares with application to 

brain-behavior associations" presents an analysis of the numerical 

stability of CCA and PLS methods, based on a data simulation and data 

resampling approach. 

The paper mostly establishes that 

 

* stability mostly depends on the samples/features ratio 

* both CCA and PLS suffer from limited power and large variance in the estimates 

* PLS shows less variability but more bias, as it tends to converge to the first principal component of 

the data 

 

Overall, it cautions against the use of these methods in population studies with high-dimensional data. 

 

I find that the paper does a fairly good job at criticizing 

ill-grounded statistical approaches. It could well have been written 

20 years ago, but ---unfortunately, do to the lack of statistical 

culture of practitioners--- it is still useful. 

 

I think there is still room for improvement. 

 



Major points 

------------ 

 

1. Regarding the in-sample / out-of-sample distinction, the paper looks like out-of-sample analysis is 

useful to provide an unbiased (if not conservative) estimate of the multivariate associations between 

multi-modal data. This point could be made clearer. But the elephant in the room is that CCA/PLS 

analyses have no predictive validity: they simply inform practitioners about complex multivariate 

associations. This dramatically limits their interpretability, but the point is that the community does 

not understand that and tends to interpret such multivariate associations as predictions ('brain activity 

predicts XXX' is a familiar, yet often ungrounded paper heading). This has to be written clearly 

somewhere, at least in the discussion section. 

 

Second, I recommend to introduce asymmetric formulations of PLS (aka reduced-rank regression) that 

are actually multivariate predictive approaches. I believe that they may behave better in terms of 

convergence, but this is to be checked. If this is the case, that strengthens the paper by opening a 

clear direction. 

Detailed experiments could go to appendix. 

 

2. I think that the proposed data generation approach makes a lot of 

assumptions that are somewhat arbitrary. For instance, the variance 

decay model, that the association between hetero-modal variables is 

driven by mainly one component, and that the associations involve only 

the high-variance components of the data ("Weight vectors were chosen 

randomly and constrained such that the X and Y scores explain at least 

half as much variance as an average principal component in their 

respective sets."). There is no reason why this should hold on any 

dataset. For this reason, I think that the simulation-based results are 

less conclusive than the one based on data resampling, that do not 

suffer from unfulfilled hypotheses. This should be discussed more 

seriously. 

 

This being said, I find it intriguing that "the reported canonical 

correlation could be well predicted simply by the number of samples 

per feature alone (R2 = 0.83)". This hints at universal scaling laws 

which would be worth investigating. 

 

 

 

3. The figures are overall, but there are several issue: 

 

* Fig.2 should have error bars. 

* I really don't see the point of plotting error in log scale. this makes sense when you study the 

convergence of an algorithm, but it is not the case here. 

* Many figures are too cluttered, with two many sub-figures. For instance Fig.3 Reduce this by half, so 

that one can parse them more easily and put additional figures in suppmat. The 2-dim analysis is 

completely useless, it sounds toyish and does not bring any useful information. 

* Fig 4 sounds useless, as it repeats fig. 3. 

* Fig.5 has too many sub-figures with heterogeneous quantities displayed. 

Each quantity displayed has to be defined by an equation in the main text. 

 

4. The authors rely on preliminary 100-dim reduction by PCA. The only justification for this is that it 

was done in previous work. This is not acceptable. This modeling choice had to be justified properly. 

The only reasonable way I see is to run analysis with and without this reduction and compare the 

outcome. 



 

A related point on p.12 is that the authors mention "optimizing the number of PCs". It is unclear what 

it involves. I am really worried that this amounts choosing post-hoc the dimensionality that yields the 

highest association. If this is the case, this is overfit, and should absolutely be removed, since you 

want by all means not to do that. 

 

5. It is good that the paper ends with practical recommendations. 

 

* However, I disagree about recommendation 1 if the authors do not indicate a clear procedure to 

*optimize the number of components* that would not overfit the data. 

* I also strongly disagree with recommendation 3, average in-sample and cross-validated correlation. 

First I don't see any valid reason why cross-validated scores would be negatively biased (besides the 

sample reduction, but we cannot do much about that). Having pessimistic estimates is better than 

optimistic ones. Validity is more important than sensitivity. 

 

 

Minor points 

------------ 

 

Introduction: 

 

* I find it weird to call "neural features" the features that are commonly used in neuroimaging 

population studies, such as Cortical thickness, GM density etc. It is quite unclear whether how these 

features actually relate to neural characteristics. I would thus call those "brain imaging features". 

 

 

* It should be made clear in the introduction than CCA/PLS do not come with confidence intervals on 

the loadings or associations, so that one has to resort to some bootstrap approach to get such CIs. 

 

* The methods section should indicate clearly how the out-of-sample analysis is performed (references 

are not enough) 

 

 

* Discussion: pleas do not start with "**Our** generative modeling framework" 

 

* Fig S2 should include a legend with px values I think. Fig.S2 carries an essential message I think, 

hence it should be part of the main text. 

 

* I did not understand the following paragraph, please rephrase "Loadings are calculated by 

correlating scores with data matrices. All synthetic data matrices in this study are based in the 

principal component coordinate system. In practice, however, this is not generally the case. 

Nonetheless, as the transformation between principal component and original coordinate system 

cannot be constrained, here we do not consider this effect." 



Contents

1 Reviewer 1 2
1.1 Major . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Minor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Reviewer 2 5
2.1 Major . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Minor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Additional changes 23

1/25



We sincerly thank both reviewers for taking the time to evaluate our manuscript and
their suggestions for its improvements which we address in the following.

1 Reviewer 1

1.1 Major

Remark 1. Semantic hygiene: ’sample’ is sometimes used in the sense of observation
and sometimes in the sense of drawn collection of observations, which could be avoided
by consistent usage of the term throughout.

To avoid any misunderstanding, we have now clarified occurrences of ”sample” in
the meaning of a single observation using instead the term ”observation”, and further
annotating them as ”single” or ”individual” where appropriate. On the other hand, we
have rephrased occurrences of ”sample” in the meaning of a collection of observations
by emphasizing them as a ”collection” of observations or samples. Other related terms
we often use are, ”sample size” ”in-sample”, ”out-of-sample”, ”samples per feature” or
”sample covariance matrix”. We believe these terms to be unambiguous.

Remark 2. Maybe the ”loadings” / ”score” / ”weight” terminology could be changed to
something else. The writing in the whole paper appears to be exceptionally clear, but this
terminology choice may perhaps be made more crisp, as a service to computational
biomedicine community. The reviewer is not claiming that he/she a perfection solution
for this point. One possibility is perhaps by systematically using PLS/CCA ”vectors”
(the latent variable vector), PLS/CCA ”variates” (the projections based on the latent
variable vector), and simply PLS/CCA ”parameter” (a single variable’s association as
capture by the model, naturally udnerstanable in analogy to ANOVA and other linear
regression models), as well as PLS/CCA ”inter-set correlation” (used consistently
throughout rather than using mere ”correlation” often times which from this reviewer’s
experience is highly confusing for many applied computational scientists).

We completely agree with the reviewer that terminology used in the literature for
CCA/PLS properties is not consistent, and that this situation is unfortunate. The
terminology we use is one possible one and, as the reviewer notes, we use it consistently
throughout the manuscript. Thus, to address this situation, we propose to add the
following prominently in the manuscript, at the end of the first Result paragraph,
immediately after we introduce the terminology used in the paper:

We note that alternative terminologies exist [7, 13,16,17,19]. CCA/PLS
“scores” (as described above) could also be called “variates”; “weights” (as
described above) could also be called “vectors”; and “loadings” (as
described above) could also be called “parameters”. For CCA, the
correlation between the score vectors, i.e. the “between-set correlations”, are
also called “inter-set correlations” or “canonical correlations”.

In addition, we went through the manuscript and replaced, wherever applicable,
occurrences of ”correlation” with ”between-set correlation”.

Remark 3. Principal component bases appear to be an important component of the
generative model for the empirical data simulation experiments. In the limitations
section of the discussion section, please reflect on the role of rotation-invariance as a
known weakness of the PCA approach, and whether and how the present profiling
analyses are affected by this.
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PCA rotation-invariance does not affect our analyses. We explain why this is the
case. For a given (centered) data matrix X, PCA can be performed via the singular
value decomposition (SVD):

X = USV T

where the columns of V are the weight vectors and US are the scores. When the input
vectors (the rows of X) are rotated by R we find for the PCA of XRT

XRT = US(RV )T

Thus, while the weight vectors change under a rotation R as V → RV , the PCA scores
are rotation invariant. The intuition behind this finding is that when the geometrical
object defined by the point cloud of data vectors is rotated as a whole, the PCA weight
vectors adapt and take into account the orientation of the point cloud in the ambient
space, but the internal structure of the point cloud, captured by the PCA scores, is not
affected by a rotation.

With regard to our generative model, let ~x be a data vector. This vector
fundamentally represents a given entity and this entity is independent of the choice of
coordinate system. In other words, we can choose any coordinate system to represent
the data in, and independent of the choice of coordinate system the vector ~x is always
fundamentally the same vector, only expressed in a different way. One possible
coordinate system is the one in which the population covariance matrix for the data is
diagonal (which co-incides with the principal component coordinate system).

For the simulations that we perform, we chose to use this principal component
coordinate system because it is convenient (it makes the within-set covariance matrices
diagonal). However, this does not affect the validity of the simulations. Indeed, assume

we had chosen any arbitrary other coordinate system. Let ~Z = (~ZT , ~Y T )T ∼ N (0,Σ).
Moreover, let ~zR = h(~z) = R~z with R ∈ SO(pX + pY ) represent the rotation of the old

into the new coordinate system. If f is the density of ~Z and fR is the density of ~ZR,
then

fR(~zR) = f(h−1(~zR))

∣∣∣∣det
∂h−1(~zR)

∂~zR

∣∣∣∣
Note that ∣∣∣∣det

∂h−1(~zR)

∂~zR

∣∣∣∣ = 1

such that

fR(~zR) = f(~z)

that is, the probability density of ~zR is identical to the probability density of ~z. In other
words, the generative model generates the vector ~z in the principal component
coordinate system with the same probability as the vector ~zR = R~z in the rotated
coordinate system.

We have added the following to the Limitations paragraph in the Discussion section:

For convenience, we have chosen to represent all data generated by the
generative model in each set’s principal component coordinate system. This
does not affect the validity of the simulations.

Remark 4. When arguing for the “samples per feature” metric, it could help to cite
papers that have used explicitly scaling of samples against the number of input variable
before:
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• Varoquaux, G., 2018. Cross-validation failure: small sample sizes lead to large
error bars. Neuroimage 180, 68-77.

• Schulz, M.-A., Yeo, B.T., Vogelstein, J.T., Mourao-Miranada, J., Kather, J.N.,
Kording, K., Richards, B., Bzdok, D., 2020. Different scaling of linear models and
deep learning in UKBiobank brain images versus machine-learning datasets. Nat
Commun 11, 1-15.

• Bzdok, D., Engemann, D.A., Thirion, B., 2020. Inference and Prediction Diverge
in Biomedicine. Patterns (Cell Press).

We have added the following to the Result section:

We used “samples per feature” as an effective sample size parameter to
account for the fact that datasets in practice have very different
dimensionalities. Others have previously explored the effect of varying
samples and features [3, 14,18]. Fig. R14 shows that power and error
metrics for CCA are parameterized well in terms of “samples per feature”,
whereas for PLS it is only approximate. Nonetheless, as “samples per
feature” is arguably most straightforward to interpret, we presented results
in terms of “samples per feature” for both CCA and PLS.

Remark 5. As the authors know, PLS is a family of methods instead of a single
method. In the limitations section, please reflect on which particular instance of PLS
was interrogated in the present study, and whether results can be expected to differ for
other popular variants of PLS.

We have added the following to the Discussion section:

There exist a number of different PLS variants [20] in addition to the
one considered here, which is called PLS-SVD or PLS correlation [1]. They
all result in the same first between-set component [20], although note that
one variant, PLS regression, is sometimes implemented using an
unnormalized first Y -weight vector [5]. Higher-order between-set
components differ between the PLS variants. Throughout the manuscript we
have only considered the first between-set component, which is the one with
the highest possible between-set covariance for the given data. Note that, as
required sample sizes for stable estimates depend on the (true) between-set
covariance, we expect even higher sample size requirements for all
higher-order between-set components than for the first, independent of the
PLS variant.

Remark 6. One useful extension of the corpus of simulation results could be to relate
them to the increasing use of the Allen Human Brain Atlas. Is there perhaps a way to
extend the generative model for fake-data simulation to also cover data scenarios that
cover thouands of gene expressions with their relation to high-dimensional brain features.
It would be great to extend to these increasingly common imaging-transcriiptomics
settings, if possible.

The generative model is agnostic about what each simulated variable represents. I.e.
as long as the joint distributon can reasonably be assumed to be approximately
multivariate-normal, the generative model could in principle be used.

With respect to modeling relationships between brain features and Allen Human
Brain Atlas (AHBA) gene expression data specifically we note the following.

AHBA gene expression data is available for 6 subjects, regions of interest covering
the whole brain and ≈ 20k genes. In principle, we could extract the between-subjects
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covariance matrix for a given set of genes for a given set of brain regions, and use this
covariance in the generative model. Due to the low number of subjects, the estimation
error for this covariance matrix might be fairly high, though. For example, we know
that the differential stability (measuring between-subject stability of the gene maps)
differs substantially depending on the gene.

Another modeling scenario is conceivable. We could match AHBA gene expression
data and brain features along the dimension of brain regions, i.e. we could seek the
multivariate relationships between the nROI × ngene AHBA gene expression data matrix
(i. e. the original gene expression data are averaged across subjects) and a nROI × nbrain

brain feature data matrix, so that, for each of nROI regions of interest, we have ngene

gene expression values and nbrain brain features. This modeling scenario is challenging
though, because now the nROI individual samples are not independent anymore (due to
spatial autocorrelation). Moreover, the number of possible samples is limited by the
resolution of the used parcellation and cannot even in principle be increased beyond a
certain number (dependent on the resolution of the parcellation). We therefore think
that this modeling scenario cannot be well represented in the framework used here.

1.2 Minor

Remark 7. Neither abstract nor statement appear to mention ”fake/synethic/empirical
data simulation” although this probably exactly describes the character of the used
methodology.

The abstract now is

[...] To study these issues systematically, we developed a generative
modeling framework to simulate synthetic datasets. [...]

Remark 8. Discussion / Generalizability. Dot missing at end of subtitle.

We are now no longer using subtitles in the Discussion.

Remark 9. All figures using ”r” metric should unpack in the figure caption what
metric this symbol is exactly referring to in each case/graph.

We have now clarified in figure captions that rtrue refers to the ground-truth
population between-set correlation that was assumed in the generative model used to
simulate the corresponding data.

Remark 10. Semantics: ”Projection on CCA/PLS weights...” does not appear sound
to this reviewer. In the case of CCA, the resulting canonical variates are the *result*
using the already known CCA parameters. Please make the phrasing less ambiguous to
future readers of this paper.

We have rephrased this in Fig. 1 using the terminology suggested by the reviewer in
Remark 2. We now say instead:

Projections based on the CCA/PLS weight vectors . . .

(As described above, we continue to use the term ”weights” or ”weight vectors” instead
of ”latent variable vectors”.) See Fig. R1 for the updated figure.

2 Reviewer 2

2.1 Major

Remark 11. Regarding the in-sample / out-of-sample distinction, the paper looks like
out-of-sample analysis is useful to provide an unbiased (if not conservative) estimate of
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the multivariate associations between multi-modal data. This point could be made
clearer. But the elephant in the room is that CCA/PLS analyses have no predictive
validity: they simply inform practitioners about complex multivariate associations. This
dramatically limits their interpretability, but the point is that the community does not
understand that and tends to interpret such multivariate associations as predictions
(’brain activity predicts XXX’ is a familiar, yet often ungrounded paper heading). This
has to be written clearly somewhere, at least in the discussion section.

We completely agree that canonical correlations should not be mistaken for
predictive validity. Regarding this point, and the in-sample / out-of-sample distinction,
we have have added the following sentence to the first paragraph in the discussion:

Moreover, for small sample sizes in-sample association strengths severely
over-estimate their true value, out-of-sample estimates on the other hand are
more conservative. In-sample estimates of association strenghts should also
not be taken as evidence of predictive validity of a CCA/PLS model.

Furthermore, we have rephrased recommendation 3 (Table S1), which now is

In-sample estimates for association strengths are too high.
Out-of-sample estimates are more conservative. In-sample estimates of
association strenghts should also not be taken as evidence of predictive
validity of a CCA/PLS model.

Remark 12. Second, I recommend to introduce asymmetric formulations of PLS (aka
reduced-rank regression) that are actually multivariate predictive approaches. I believe
that they may behave better in terms of convergence, but this is to be checked. If this is
the case, that strengthens the paper by opening a clear direction. Detailed experiments
could go to appendix.

We thank the reviewer for the idea to also consider reduced rank regression (RRR).
In the following, we first derive theoretically that RRR is expected to behave

similarly to CCA and PLS. We then continue to derive a generative model akin to what
we have done for CCA and PLS and end with a simulation that illustrates the
theoretical results.

RRR linearly predicts a pY -dimensional ~y from a pX -dimensional ~x, using a
rank-constrained coefficient matrix C [6, Section 6.3.2]:

~y = C~x+ Error (1)

C is then found using a least-squares approach by minimizing [6, Section 6.3.2]:

W = E
[
(~y − C~x)T Γ(~y − C~x)

]
(2)

where Γ is a positive-definite symmetric parameter matrix. Note that the choice
Γ = Σ−1

Y Y leads to an RRR method that is equivalent (in a specific sense) to CCA,
see [6, Section 6.3.2]. The C that minimizes (2) is [6, Section 6.3.2]

C = Γ− 1
2VqV

T
q Γ

1
2 ΣY XΣ−1

XX (3)

where q is the imposed rank of C, ΣAB is the (cross-)covariance matrix between ~a and ~b
(both assumed to be de-meaned), and the columns of Vq = (~v1, . . . , ~vq) are the
eigenvectors corresponding to the q largest eigenvalues (in descending order) of the
matrix

R = Γ
1
2 ΣY XΣ−1

XXΣXY Γ
1
2 . (4)

7/25



To analyze sample-size-dependence of RRR in the same way as we have done for
CCC and PLS, we need a generative model that lets us simulate ~x and ~y with known
RRR-solution. To that end, we note the following observations:

We first rewrite

C = Γ− 1
2 C̃Σ

− 1
2

XX (5)

with

C̃ = VqV
T
q Γ

1
2 ΣY XΣ

− 1
2

XX (6)

Next, we make the following coordinate substitions:

• ~x→ ~xW = Σ
− 1

2

XX~x

• ~y → ~yΓ = Γ
1
2 ~y

Then,

R = ΣYΓXW
ΣXWYΓ

. (7)

Using the singular value decomposition of ΣXWYΓ
,

ΣXWYΓ
= USV T (8)

we get

R = V S2V T . (9)

Thus, the eigenvalues of R are the diagonal entries of S2 and the corresponding
eigenvectors are V , i. e. the right singular vectors of ΣXWYΓ . Also,

C̃ = VqV
T
q ΣYΓXW

(10)

= VqV
T
q V SU

T (11)

= VqSqU
T
q (12)

and

C =
(

Γ− 1
2Vq

)
Sq

(
Σ

− 1
2

XXUq

)T
(13)

where Sq is the top left q × q submatrix of S and Uq represents the first q columns of U .
In summary, to solve RRR, we calculate the singular value decomposition of

ΣXWYΓ = Σ
− 1

2

XXΣXY Γ
1
2 = U (RRR)S(RRR)

(
V (RRR)

)T
, restrict U (RRR), S(RRR) and

V (RRR) to the first q components, obtain the RRR ”weights” W
(RRR)
Y = Γ− 1

2V
(RRR)
q

and W
(RRR)
X = Σ

− 1
2

XXUq, and then the RRR prediction matrix

Cq = W
(RRR)
Y S

(RRR)
q

(
W

(RRR)
X

)T
.

Compare this to

• PLS, where we obtained the weight vectors W
(PLS)
X and W

(PLS)
Y from the singular

value decomposition of IΣXY I = U (PLS)S(PLS)
(
V (PLS)

)T
as W

(PLS)
X = IU

(PLS)
q

and W
(PLS)
Y = IV

(PLS)
q

• CCA, where we obtained the weight vectors W
(CCA)
X and W

(CCA)
Y from the

singular value decomposition of Σ
− 1

2

XXΣXY Σ
− 1

2

Y Y = U (CCA)S(CCA)
(
V (CCA)

)T
as

W
(CCA)
X = Σ

− 1
2

XXU
(CCA)
q and W

(CCA)
Y = Σ

− 1
2

Y Y V
(CCA)
q
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Thus, Γ = ΣY Y leads to an RRR-method with the same sampling properties as
CCA. Γ = I provides a hybrid between PLS and CCA in which the X variables are
internally whitened (as in CCA), but the Y variables are not (as in PLS), and the
sampling properties are therefore again not different from CCA and PLS.

To illustrate this with simulations, we next derive a generative model. As we did for
CCA and PLS, we will work in the coordinate system in which the within-set covariance
matrices are diagonal and assume that the diagonal entries follow a power-law. The
between-set covariance matrix, ΣXY , is

ΣXY = Σ
1
2

XXΣXwYΓ
Γ− 1

2 (14)

= Σ
1
2

XXU
(RRR)S(RRR)

(
V (RRR)

)T
Γ− 1

2 (15)

= Σ
1
2

XX

(
Σ

1
2

XXW
(RRR)
X

)
S(RRR)

(
Γ

1
2W

(RRR)
Y

)T
Γ− 1

2 (16)

As U (RRR) and V (RRR) are, respectively, left and right singular vectors, we also need
to take into account the following constraints:(

U (RRR)
)T

U (RRR) = I ⇔
(
W

(RRR)
X

)T
ΣXXW

(RRR)
X = I (17)(

V (RRR)
)T

V (RRR) = I ⇔
(
W

(RRR)
Y

)T
ΓW

(RRR)
Y = I (18)

We will now make the following further assumptions:

1. ΣXY has rank one, such that U (RRR), V (RRR), W
(RRR)
X and W

(RRR)
Y all have one

column

2. Γ = I

We can then choose W
(RRR)
Y to be any arbitrary unit vector, set W

(RRR)
X to be

~wX/
√
~wT
XΣXX ~wX for any arbitrary vector ~wX , and calculate ΣXY from eq. (16).

For CCA, the diagonal entries of S(CCA) were the between-set correlations. For PLS,
the diagonal entries of S(PLS) were the between-set covariances, and, to compare PLS
with CCA, we have expressed these between-set covariances as a function of the
corresponding between-set correlation. This was done by multiplication with the
corresponding standard deviations. To compare RRR (with Γ = I) to CCA and PLS,
recall that the X and Y variables turn out to be treated similar as in CCA and PLS,
respectively. Thus, by analogy, we will set the diagonal entry of S(RRR) to be the given
between-set correlation multiplied by the y-standard deviations (as is done for PLS),
but not by the x-standard deviations (as in CCA, the between-set correlation is not
multiplied by the standard deviation, to obtain the diagonal of S).

Fig. R2 shows results of a simulation. We have assumed that the between-set
correlation is 0.3 and that the dimensionalities of the X and Y feature spaces are both
16. We have also assumed that the within-set covariances decay with a power-law with
exponent -1 for both X and Y . We have then generated a random X and a random Y
weight vector. For RRR we normalized these vectors according to eqs. (17) and (17),
and then constructed the between-set covariance matrix according to (16). Analogously,
for PLS, we normalized both of these vectors to have length one and constructed the
between-set covariance matrix according to eq. 4 in the Methods. For CCA, on the
other hand, we normalized both of these vectors according to the scheme of eq. (17)
and constructed the between-set covariance matrix according to eq. 6 in the Methods.

We have then drawn a given number of samples (see x-axis of panels in Fig. R2)
from the associated joint normal distribution, estimated S, WX and WY for PLS, CCA
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and RRR, and calculated a corresponding error metric. This was repeated 100 times
and Fig. R2 shows the mean of the error metrics across these 100 repetitions. Note the
similarity between the convergences of PLS, CCA and RRR.
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Figure R2. Convergence of PLS, CCA and RRR. Panels show an example
simulation with details described in the main text. Note the similarity between PLS,
CCA and RRR. A) The relative association strength error is calculated as (ŝ−strue)/strue,
where ŝ is the estimated diagonal entry of S and strue is the true value that was assumed
when constructing the generative model. B, C) The weight error is calculated as
1− | cossim(ŵ, wtrue)|, where cossim denotes cosine-similarity, ŵ is the estimated weight
vector and wtrue is the true value that was assumed when constructing the generative
model.

We have added the response to this remark to the Supplementary Information.

Remark 13. I think that the proposed data generation approach makes a lot of
assumptions that are somewhat arbitrary. For instance, the variance decay model, that
the association between hetero-modal variables is driven by mainly one component, and
that the associations involve only the high-variance components of the data (”Weight
vectors were chosen randomly and constrained such that the X and Y scores explain at
least half as much variance as an average principal component in their respective sets.”).
There is no reason why this should hold on any dataset. For this reason, I think that the
simulation-based results are less conclusive than the one based on data resampling, that
do not suffer from unfulfilled hypotheses. This should be discussed more seriously.

We have expanded the Discussion paragraph acknowledging limitations of our
approach. It now is:

For simplicity and tractability it was necessary to make a number of
assumptions in our study. For convenience, we have chosen to represent all
data generated by the generative model in each set’s principal component
coordinate system. This does not affect the validity of the simulations.
Moreover, our synthetic data were normally distributed, which is typically
not the case in practice. We have assumed a power-law decay model for the
within-set variances in each data set, which we confirmed in a number of
empirical data sets (Fig. S1), although this might not hold in general. We
then assumed the existence of a single cross-modality axis of association,
whereas in practice several might be present. In that latter case, theoretical
considerations suggest that even larger sample sizes are needed [10].
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Additionally, we assumed that the axis of cross-modal association for both
the X and Y sets, also explain a notable amount of variance within each
respective set. While this need not be the case in general, an axis that
explains little variance in a set would often not be considered relevant and
might not be distinguishable from noise. Importantly, despite these
assumptions, empirical brain-behavior datasets yielded similar sample-size
dependencies as synthetic datasets.

Remark 14. This being said, I find it intriguing that ”the reported canonical
correlation could be well predicted simply by the number of samples per feature alone (R2
= 0.83)”. This hints at universal scaling laws which would be worth investigating.

In the following we derive, under certain assumptions, a scaling law for the square of
the canonical correlation.

When the true population canonical correlations are non-zero, the density of the
observed canonical correlations is extremely complicated, following a hypergeometric
function of two matrix arguments [2, Section 12.4.2].

Assuming ΣXY = 0, i.e. that all population canonical correlations are 0, the density
for the squares of the observed canonical correlations is given by Anderson [2, Section
13.4]. While this density is still rather complicated in general, some insight can be
gained in the special case where one of the feature spaces, say X, has only 1 dimension,
i.e. pX = 1.

Let p = pX + pY and let n be the number of available samples. Then, the density d
for the squares of the observed canonical corrlation, ρs, is [2, Section 13.4]

d(ρs) =
Γ[ 1

2 (n− 1)]

Γ[ 1
2 (n− p)]Γ[ 1

2 (p− 1)]
ρ

1
2 (p−3)
s (1− ρs)

1
2 (n−p−2) (19)

From this, we find the expected value of ρs as

Eρs =

∫ 1

0

ρsd(ρs) dρs (20)

=
p− 1

n− 1
(21)

Empirically, we find this scaling law for the first (highest) observed canonical
correlation to hold well for ”small” n, even when pX > 1, and even when the true
population canonical correlation is > 0 (Fig. R3). pX > 1 leads to a vertical offset in
the observed relationship, while the scaling as such appears unchanged.

The scaling law suggests to use (n− 1)/(p− 1) rather than the quantity ”samples
per feature”, n/p (which we have used in multiple places throughout the manuscript).
However, we do not know whether the theoretical scaling with (n− 1)/(p− 1) would
generalize to other quantities like various error metrics, beyond E r2. In fact, we have
tried to re-plot Fig. R14 as a function of (n− 1)/(p− 1) instead of n/p and this did not
universally make the curves co-incide more. Moreover, ”samples per feature” is
conceptually simpler than (n− 1)/(p− 1). For these reasons, we have chosen to continue
to use ”samples per feature” throughout the manuscript instead of (n− 1)/(p− 1).

We have added the response to this remark to the Supplementary Information.

Remark 15. The figures are overall, but there are several issue:

1. Fig.2 should have error bars.

2. I really don’t see the point of plotting error in log scale. this makes sense when
you study the convergence of an algorithm, but it is not the case here.

11/25



101

(n-1)/(p-1)

10 1

Er
2

pX=1, pY=15

101

(n-1)/(p-1)

pX=2, pY=14

101

(n-1)/(p-1)

pX=4, pY=12

101

(n-1)/(p-1)

pX=8, pY=8

scaling law 0.0 0.1 0.3

Figure R3. Scaling of observed canonical correlation. The expected value for
the square of the observed canonical correlation, E r2, largely follows the scaling law
(21). Colored lines represent simulation results with different assumed true population
canonical correlations. We assumed in the simulations 1 component for the between-set
covariance, i.e. one true population covariance 6= 0. While the scaling law (black dashed
curve) was derived assuming a true between-set correlation of rtrue = 0 as well as
assuming a dimensionality for the X feature space of pX = 1, simulations show that it
holds approximately for ”small” n for other rtrue (shown are rtrue = 0.1 (orange) and 0.3
(green)). pX 6= 1 leads to a vertical offset, while the scaling as such remains constant.

3. Many figures are too cluttered, with two many sub-figures. For instance Fig.3
Reduce this by half, so that one can parse them more easily and put additional
figures in suppmat. The 2-dim analysis is completely useless, it sounds toyish and
does not bring any useful information.

4. Fig 4 sounds useless, as it repeats fig. 3.

5. Fig.5 has too many sub-figures with heterogeneous quantities displayed. Each
quantity displayed has to be defined by an equation in the main text.

1. We have added 95% confidence intervals to Fig. 2. To be able to still discern
different curves, we are now only showing rtrue=0.1 and 0.5. See Fig. R4.

2. We are now plotting Fig. 2 using linear (instead of log) x and y scales. See Fig.
R4.

3. We have reorganized Fig 3, keeping 3 of the previous 6 rows. We have moved the
heatmaps in the previous submission’s Fig. 3 to the supplementary material. We
have dropped the 2-dim analysis. We have also removed the row that showed
”Weight PC similarity” as the corresponding point can also be made referring to
the first row of this figure. In addition, we have added 95% confidence intervals to
the curves in the last row and, to be able to still discern different curves, have
opted to remove the curve for permuted data (this does not affect any of the
arguments we make). The description of the figure in the Results section has been
updated to reflect these changes. See Figs. R5 and R6.

12/25



4. We have moved Fig. 4 to the supplementary material. We have also re-plotted the
first row using linear (instead of log) scales for the x axis, and have added 95%
confidence intervals for the loading error (blue). See Fig. R7.

5. We are now showing only the first and third row of the previous submission’s Fig.
5 in the main text, and have moved the other two rows to a supplementary figure.
We are now also more explicitly explaining the quantities plotted in the figure.
See Figs. R8 and R9.

In addition, to further reduce clutter, and as (per the editorial guidelines) up to 10
display items are allowed in the main text, we have split the figure ”CCAs reported in
the population neuroimaging literature might often be unstable” (previously Fig. 6)
into two parts. See Figs. R10 and R11.

Remark 16. The authors rely on preliminary 100-dim reduction by PCA. The only
justification for this is that it was done in previous work. This is not acceptable. This
modeling choice had to be justified properly. The only reasonable way I see is to run
analysis with and without this reduction and compare the outcome.

We acknowledge that, in the submitted manuscript, the justification given for
analyzing the dataset restricted to 100 PCs was a reference to previous work. There is,
however, a more fundamental reason which we explain in the following.

Some of the data matrices that we start with are extremely high dimensional, having
many thousands of features. Given that CCA / PLS stability depend critically on the
number of samples, and given that we have only 20,000 subjects in one dataset and only
≈ 1,000 subjects for others, not reducing the dimensionality would make it impossible
for us to analyze how CCA / PLS behave as a function of sample size, while also
exploring a meaningful range of sample-per-feature ratios.

The approach we take, thus, is to consider data matrices, X100 and Y100 for analysis
which are comprised of the first 100 principal components of the original
(high-dimensional) data matrices, Xorig and Yorig. Here, our goal is to learn something
about the method, and we emphasize that we make no attempt to interpret the
resulting weight or loading vectors. To learn something about the method (CCA or
PLS) we use a given empirical dataset, X100 and Y100, that is we take the point of view
that only X100 and Y100 are available and given and we disregard the fact that they
have been constructed from Xorig and Yorig. X100 and Y100 are perfectly valid data
matrices and as such can be analyzed with CCA/PLS, just like all other conceivable
data matrices. We could similarly have used any other PCA dimensionality and the
trends would be the same. Indeed, this can be seen in Fig. R12E-H (a supplementary
figure), where we performed the exact same analyses as in the main text figure but with
a smaller number of PCs (we address the question of how we chose the number of PCs
in that figure in remark 17; the point we want to emphasize here is simply that we get
the same trends with a different number of PCs).

The distinction we emphasize, is that, in a practical application of CCA/PLS, the
goal would not be to learn something about the method, but to learn something about
the data. In that case, we completely agree with the reviewer that any pre-processing to
Xorig and Yorig that results in an information loss (such as restriction to a given number
of principal components) should be considered carefully. For example, dimensionality
reduction with PCA has the practical effect of giving CCA less freedom to find the
optimal direction in feature space, and as a result the canonical correlation of a
PCA-reduced dataset must be smaller than for the original dataset. Thus, in
contemplating a dimensionality reduction before CCA, the trade-off to consider is
between a higher canonical correlation in a higher-dimensional feature space and a lower
canonical correlation in a lower-dimensional feature space, where a greater feature space
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Figure R4. Updated figure ”Sample-size dependence of CCA and PLS”.
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good weight estimates”.
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Figure R7. Updated figure ”Stability and PC similarity of weights and
loadings”.

dimensionality and a lower canonical correlation both command a greater number of
samples for stable estimates.

For these reasons, we argue that the presented empirical analyses using 100 principal
components is valid in the sense that we have described above. We completely agree
with the reviewer that, in practice, where the goal is to learn something about the data,
this approach should not be taken.

We have clarified the cited paragraph in the Results, where we now say:

We also explored reducing the data to different numbers of PCs than 100.
Multiple methods have been proposed to determine an optimal number of
PCs (see Discussion). Here, as an example, we used the max-min-detector
from [15]. This method suggested 68 brain imaging and 32 behavioral
dimensions for HCP [15], which yielded higher cross-validated association
strengths and higher stabilities of weights. [...]

Moreover, we have added the following paragraph to the Discussion:

The numbers of features are important determinants for stability. In our
empirical data analysis we have reduced the data to 100 principal
components. To be clear, here our goal was to illustrate the behavior of
CCA and PLS on a given empirical dataset (i. e. the dataset consisting of
the 100 PCs). We do not advocate that taking the first 100 (or any other
fixed number, for that matter) of principal components, is an approach that
should be taken in practice. Instead, the trade-off between
dimensionality-reduction for the purpose of reducing the number of samples
required for a stable estimate, and, on the other hand, the effect of a lower
canonical correlation as a result of dimensionality reduction requiring, in
turn, a higher sample size for stability, needs to be considered. A variety of
methods have been proposed to determine an appropriate number of
components for PCA and CCA [8,9, 11,12,15]. Applying one of these
methods to HCP data yielded slightly better convergence (Fig. R12E-H).
Alternatively, prior domain-specific knowledge could be used to preselect
features hypothesized to be relevant for the question at hand.
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Figure R8. Updated figure ”CCA and PLS analysis of empirical population
neuroimaging datasets”. For both datasets and for both CCA and PLS a significant
mode of association was detected. Association strengths monotonically decreased with
size of the subsamples (orange in column 1, green in column 3). Association strengths
for permuted data are shown in grey (with orange and green outlines in columns 1 and
3, respectively). Deviations of the orange and green curves from the grey curves occur
for sufficient sample sizes and correspond to significant p-values. Note how these curves
clearly diverge for UKB but not for HCP data where the number of available subjects is
much lower. Circle indicates the estimated value using all available data and the vertical
bar in the same color below it denotes the corresponding 95 % confidence interval obtained
from permuted data. In A) we also overlaid reported between-set correlations from
other studies that used HCP data reduced to 100 principal components. Cross-validated
association strengths are shown in red (column 1) and blue (column 3), cross-validated
estimation strengths of permuted datasets in grey with red and blue outlines in columns
1 and 3, respectively. Triangle indicates the cross-validated association strength using
all data and the vertical bar in the same color below it denotes the corresponding 95 %
confidence interval obtained from permuted data. Cross-validated association strengths
were always lower than in-sample estimates and increased with sample size. For UKB
(but not yet for HCP) cross-validated association strengths converged to the same
value as the in-sample estimate. In the second and fourth columns, weight stabilities
(calculated accoding to eq. 13) increased with sample size for UKB and slightly for the
PLS analyses of HCP datasets, while they remained low for the CCA analyses of HCP
datasets. PC1 weight similarity (calculated according to eq. 14) was low for CCA but
high for PLS. All analyses were performed with repeatedly subsampled data of varying
sizes (x-axis). For each subsample size and repetition, we created two non-overlapping
sets of subjects and calculated weight stability using these non-overlapping pairs.
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Figure R9. New supplementary figure (formerly part of the main text figure
”CCA and PLS analysis of empirical population neuroimaging datasets”).
Both PC-loadings (calculated as the correlation across observations between CCA/PLS
scores and PCs of the data matrices) and original-variable-loadings (calculated as the
correlation across observations between CCA/PLS scores and the columns of the data
matrices) show a similar pattern as weights (compare Fig. R8), with loadings being
slightly more similar to PC1 than weights. Stability and PC1 similarity were calculated
according to eqs. 13 and 14, respectively.
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Figure R10. Updated figure ”CCAs reported in the population neuroimaging
literature might often be unstable”.
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Figure R11. New figure ”Required sample sizes”.
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Remark 17. A related point on p.12 is that the authors mention ”optimizing the
number of PCs”. It is unclear what it involves. I am really worried that this amounts
choosing post-hoc the dimensionality that yields the highest association. If this is the
case, this is overfit, and should absolutely be removed, since you want by all means not
to do that.

In principle, we could remove Fig. R12E-H (a supplementary figure) without
affecting any of our conclusions. We included Fig. R12E-H to illustrate the potential
benefits of PCA before CCA. This is not guaranteed to work in general: if the axis of
the between-set association co-incides with the PC that explains the least amount of
variance, a dimensionality reduction with PCA would result in the loss of this
dimension, and a CCA could no longer discover this dimension. Thus, our intention for
Fig. R12E-H is to demonstrate that a pre-CCA PCA, with the number of components
chosen by an available method from the literature, can be beneficial.

The particular method we have used in Fig. R12E-H is the ”max-min-detector”
from [15]. This particular method internally exploits, based on certain assumptions,
known properties about the sampling distribution of canonical correlations, but other
methods have been proposed [8, 9, 11,12], e.g. based on information theory or
cross-validation. We don’t want to advocate for one of these methods here, as it is not
obvious how these methods behave in comparison. Indeed, we think that such a
comparison could be an interesting future direction.

We do acknowledge that we have applied this method to the complete dataset, got
the number of components that the method found, restricted the dataset to this number
of components, and then created Fig. R12E-H, again using the complete dataset. In
practice, when the goal is to learn something about the data instead of the method, we
would estimate the number of components in subset of the data, and then estimate the
CCA weights on the other part (e.g. in a cross-validation loop).

Remark 18. It is good that the paper ends with practical recommendations.

1. However, I disagree about recommendation 1 if the authors do not indicate a clear
procedure to *optimize the number of components* that would not overfit the data.

2. I also strongly disagree with recommendation 3, average in-sample and
cross-validated correlation. First I don’t see any valid reason why cross-validated
scores would be negatively biased (besides the sample reduction, but we cannot do
much about that). Having pessimistic estimates is better than optimistic ones.
Validity is more important than sensitivity.

We have removed the notion of dimensionality reduction from recommendation 1, it
now is:

Sample size and the number of features in the dataset are of critical
importance for the stability of CCA and PLS.

We have rephrased recommendation 3 to be:

In-sample estimates for association strengths are too high.
Out-of-sample estimates are more conservative. In-sample estimates of
association strenghts should also not be taken as evidence of predictive
validity of CCA/PLS model.

Correspondingly, we have updated the supplementary figure showing cross-validation
results. We have removed the curves for the average of in-sample and cross-validation
results. Additionally, we have added 95% confidence intervals to the curves in the first
two rows. To be able to still discern different curves, we have opted to remove the
curves for rtrue=0.3, and for 20x5-fold CV (which was practically indistinguishable from
5-fold CV). See Fig. R13 for the updated figure.
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Figure R12. Additional CCA and PLS analyses of HCP data.
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Figure R13. Updated supplementary figure: ”Cross-validated estimation of
association strength”.
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2.2 Minor

Remark 19. Introduction: I find it weird to call ”neural features” the features that are
commonly used in neuroimaging population studies, such as Cortical thickness, GM
density etc. It is quite unclear whether how these features actually relate to neural
characteristics. I would thus call those ”brain imaging features”.

We have renamed ”neural features” to ”brain imaging features”.

Remark 20. It should be made clear in the introduction than CCA/PLS do not come
with confidence intervals on the loadings or associations, so that one has to resort to
some bootstrap approach to get such CIs.

We have added the following to the second paragraph of the introduction:

Also, while some theoretical results for the sampling properties of CCA
are available under normality assumptions [2], one generally needs to resort
to resampling approaches to calculate uncertainty estimates like confidence
intervals.

Remark 21. Introduction: The methods section should indicate clearly how the
out-of-sample analysis is performed (references are not enough).

We have added the following to the Methods section:

Cross-validated CCA/PLS analyses were performed in the following
way [4]: For each fold, we first estimated the CCA / PLS weights from the
given training data. Second we computed CCA/PLS scores for the test data
of the fold by applying these estimated weights to the test data, that is we
calculate the matrix-matrix product between the estimated weights and the
test-data matrix, separately for both X and Y . The between-set association
in the test set is then given by the correlation or covariance of these
resulting scores. We used 5-fold cross-validation.

Remark 22. Discussion: please do not start with ”**Our** generative modeling
framework”.

We have rephrased the first sentence in the discussion to

We have used a generative modeling framework to reveal how stability of
CCA/PLS solutions depends on dataset properties.

Remark 23. Fig S2 should include a legend with px values I think. Fig.S2 carries an
essential message I think, hence it should be part of the main text.

We added a legend annotating the pX values to this figure. See Fig. R14. We have
also moved this figure to the main text.

Remark 24. I did not understand the following paragraph, please rephrase ”Loadings
are calculated by correlating scores with data matrices. All synthetic data matrices in
this study are based in the principal component coordinate system. In practice, however,
this is not generally the case. Nonetheless, as the transformation between principal
component and original coordinate system cannot be constrained, here we do not
consider this effect.”

We have rephrased this as follows:
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Figure R14. Updated figure: ”Samples per feature is a key effective parame-
ter”.
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Loadings are calculated by correlating a score vector with a column of a
data matrix (this is a correlation across samples). When a coordinate
transformation (like a PCA) is applied to the original data matrix, the score
vector remains invariant (geometrically, CCA/PLS find a specific optimal
direction in feature space, and this direction remains the same independent
of in which coordinate system it is expressed in). The data matrix, on the
other hand, will be affected by a coordinate transformation. Thus, loadings
depend on whether they are calculated with an original data matrix or a
PCA-transformed data matrix. The generative model we use generates data
in the principal component coordinate system and we do not consider
calculating any of the loadings in a different coordinate system.

3 Additional changes

1. Following the editorial guidance that the abstract should be no longer than 150
words, we have slightly shortened it. It now is:

Associations between datasets can be discovered through
multivariate methods like Canonical Correlation Analysis (CCA) or
Partial Least Squares (PLS). A requisite property for interpretability
and generalizability of CCA/PLS associations is stability of their
feature patterns. However, stability of CCA/PLS in high-dimensional
datasets is questionable, as found in empirical characterizations. To
study these issues systematically, we developed a generative modeling
framework to simulate synthetic datasets. We found that when sample
size is relatively small, but comparable to typical studies, CCA/PLS
associations are highly unstable and inaccurate; both in their magnitude
and importantly in the feature pattern underlying the association. We
confirmed these trends across two neuroimaging modalities and in
independent datasets with n≈1000 and n=20000, and found that only
the latter comprised sufficient observations for stable mappings between
imaging-derived and behavioral features. We further developed a power
calculator to provide sample sizes required for stability and reliability of
multivariate analyses.

2. We have made a number of minor edits to improve the manuscript, none of which
affect the conclusions.
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REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have done a great job at addressing this reviewer's comments. 

 

Danilo Bzdok MD Phd 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have done a great job addressing my comments. The paper is good for publication; it 

presents an interesting and useful contribution. Let me simply outline a few minor details: 

 

* Caption of Fig. 2 " betweewn-set" 

* Caption of Fig. 5: "Triangle indicates" -> "Triangles indicate" or "The triangle indicates" 

* " reducing the number of measures to 226." I guess 

* In the **Behavioral and demographic data** paragraph, I miss why the authors need to compute 

the covariance matrix (with statmodel's cov_nearest function). While this does not look wrong, the 

motivation is unclear to me. 

* Eq (3) you probably want to add parntheses R^{(pX +pY) × (pX +pY)} 

* In the **Sample-size calculator for CCA and PLS** paragraph, I am missing what the authors mean 

with the $aX = c(aX + aY )$ equation. This defines obviously a relationship between aX and aY, but 

what is the purpose ? 

* Fig. S1 the figure overlaps the caption a little bit. 
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