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1 Sum of tensor product formulations

Here we provide formulas for the transition rate matrices Qo, Qp, @n, @s as sums of tensor products. We

use “” to denote 0.
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Here we additionally provide formulas for the diagonal matrices Up and Uy, that hold the observation rates,

as sums of tensor products:
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2 Parameter recovery

We conducted a simulation study to investigate how well metMHN can recover model parameters from
observational data. We first generated a ground truth model (shown in Figure S1) to use for all subsequent
simulations. For this we inferred a metMHN-model on the LUAD-dataset. We did not use the full set
of events, instead we restricted ourselves to the set of events containing only the 20 point mutations. We
simulated 100 different datasets according to the ground truth model using the stochastic simulation algorithm
[4]. Each synthetic dataset contained 5000 data points. As outlined in the main text’s data preparation
section, only a small fraction of metastasized tumors in the LUAD dataset have known profiles for both
primary tumor and metastasis. Therefore, in order to test metMHN’s capabilities in a more realistic scenario
we discarded either the primary tumor profile or the metastasis profile in 90% of the metastasized samples.
Specifically, we discarded the primary tumor profile in 50% of the metastasized samples, and additionally
excluded the metastasis profile in 40% of the remaining metastasized samples. Thus we kept both profiles in
only 10% of the metastasized cases. Then we fit an metMHN-model on each synthetic dataset. We used the
same penalty weight each time, which we determined beforehand once in a 5 fold-cross validation. Figure S2
shows the average of all inferred models and Figure S3 shows the variance over all inferred effects.

A comparison between the ground truth model Figure S1 and the averaged Figure S2 shows that overall
metMHN can recover the ground truth parameters quite well. Notably, metMHN model demonstrates high
accuracy in recovering the most prominent inter-genomic effects, such as the interactions between EGFR and
KRAS or between KEAP1 and STK11. However, the recovery performance declines when it comes to less
prominent inter-genomic effects. In these cases, the model tends to underestimate the effect strengths, as
evidenced by the effect of STK11 on SMARCA4 and the effect of KEAP1 on the Seeding event. Particularly
challenging are weak pairwise effects between mutations occurring at low base rates, as observed in the effects
between PTPRT and PTPRD, as well as PTPRT and EPHA3. Curiously the inferred logarithmic base rates
appear to be globally shifted by an offset of around 0.4 — 0.5 as compared to the ground truth models.
Additionally the variance of the effects of the inferred models (shown in Figure S3) are small compared
to the effect strengths, demonstrating consistent estimators with low variability. Overall we conclude that
metMHN can (at least) approximately recover most of the ground-truth effects in this realistic simulation
setting.
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Figure S1: Ground truth model with logarithmic entries used for simulations in the parameter recovery
analysis. The effects of mutations on the observation of the primary tumor and the effects of mutations on
the observation of the metastasis are plotted in the first two rows, the remaining matrix shows the interaction
effects among mutations. The base rates are extracted and plotted separately on the right.



N
S S «?@ Q”@\ “9\\ ‘b&‘\ & & o ) é‘\@ o“'v@\ & & ) \\, S &
FEFTE ST ETETEELSTE S
S S S S S S S S
Obs-PT - 0.24 05 0.38 0.41 0.08 | 0.81 0.07 0.36
Obs-MT 0.43
™53 (M) -0.72 -0.95| -0.2 |-0.55 -0.38 0.2
KRaS (M) -0.83 267 0.16 017 |-034 -0.88 -0.13| -06
EGFR (M) -:. -1.55|-1.14| 0.14 |-0.06 -0.84|-0.38-0.17(-0.13|-0.76 | 0.07 |-0.33|-0.18 -0.24 0.21
STK11 (M) 4-0.96 0.19 |-1.31 1.26 |-0.08| 0.13 -0.15 -0.05
KEAPL (M) 4-0.18 -1.0 {151 -0.08| 0.41 0.07 -0.05
RBM10 (M) |-0.61 0.11 |-0.09|-0.08 -0.05 -0.15 .
SMARCA4 (M) 0.17 | 0.49 0.16 -0.57
ATM (M) {-0.37| 017 -0.05 0.06 -0.38
NF1 (M) - -0.3 [-0.63 -0.37
PTPRD (M) - -0.31 -0.5
PTPRT (M) -0.14 -0.68
ARID1A (M) - 0.1 -0.85
BRAF (M) -0.84(-0.63 -0.51
PIK3CA (M) 0.07 [-0.15 0.06 -0.67
EPHA3 (M) -0.25 -0.11 -0.73
FATL (M) -0.13 -0.88
SETD2 (M) { -0.2 -0.06 -0.71
RB1 (M) 4 0.36 |-0.14 1.2
MET (M) 4-0.14|-0.67-0.22 -0.72
KMT2C (M) - -1.05
Seeding 4 0.38 | 0.05 | 0.86 0.11|-019| 0.19 -0.05 -0.13 -0.06 .
e [ .
-3-2-10 1 2 3 -1 0 1 2

Figure S2: Average of inferred models, estimated from 100 repetitions of randomly generated datasets con-
taining 5000 data points each. All effects are logarithmic. The inferred effects of mutations on the observation
of the primary tumor and the effects of mutations on the observation of the metastasis are plotted in the first
two rows, the remaining matrix shows the interaction effects among mutations. The base rates are extracted
and plotted separately on the right.
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Figure S3: Variance of inferred models, estimated from 100 repetitions of randomly generated datasets

containing 5000 data points each. The variances of the inferred effects of mutations on the observation of

the primary tumor and on the observation of the metastasis are plotted in the first two rows, the remaining
matrix shows the variances of the inferred interaction effects among mutations. The variances of the inferred
base rates are extracted and plotted separately on the right.



3 Comparison between metMHN inferences and phylogenetic or-
derings

3.1 Methods

We aimed to compare trends in driver mutational event orderings derived from metMHN with those obtainable
from phylogenetic analyses. For the phylogenetic side of the comparison, we obtained the results on 214 TCGA
LUAD primary tumors published in [5]. In this work, PhyloWGS [2] was used to infer clonal phylogenetic trees
of single-sample whole-exome sequenced primary tumors. For each of the 214 samples for which phylogenetic
inferences were available, we chose the one PhyloWGS run that produced the output with the greatest
likelihood. Considering those 214 phylogenetic trees, we next focused on the 190 pairs of mutational (driver)
events which we also included in our analysis. For each of these pairs, we analysed each tree whether both
events were present, and if so, whether they had been assigned to the same clone or not. If both were present
but in different clones, we checked for parent-child relationships while discounting cases where the two clones
did not arise sequentially. Thus, for each of the 190 event pairs, we counted the instances in which event
A was inferred to be in a clone with a parental relationship to the clone with event B (i.e., A was acquired
before B) and vice versa (B was acquired before A). We further counted how often A and B were assigned
to the same clone. We then restricted the 190 event pairs to those 14 event pairs in which a parent-child
relationship was inferred at least 4 times (in different patients). Of those 14 pairs, we assessed ordering trends
by comparing the counts of ‘A before B’ with ‘B before A’ and ‘both in the same clone’.

To assess trends in pairwise event ordering encoded in the metMHN model, we first simulated the progres-
sion of 1,000,000 synthetic patients. Of those patients, we only considered the event orderings in the primary
tumor part (analogous the PhyloWGS analysis). For each event pair we then assessed the percentage of event
orderings in which A was acquired before B and vice versa.

For each of the 14 comparable event pairs, we present here the more frequent ordering as indicated by
PhyloWGS, the counts of discordant orderings and same-clone relationships as inferred by PhyloWGS, and
compare these to the percentage of metMHN-derived event orderings which are in concordance with the
ordering in question (see Figure S4).

3.2 Results and Discussion

The inferences made by PhyloWGS roughly align with metMHN, in particular for multiple event pairs where
TP53 mutations are followed by relatively rare secondary driver mutations, such as KMT2C and PTPRD.
Interestingly, although TP53 mutation is the most frequent event in the analysis, both methods agree in
that they are usually preceded by substantially rarer mutations in KRAS and EGFR. However, there is
also disagreement between the orderings inferred by PhyloWGS and metMHN, particularly in cases where
PhyloWGS places a relatively rare event such as PIK3CA mutations before TP53 mutations, or in cases
where both events are relatively rare (e.g., KEAP1-KMT2C) (see Figure S4).

Note that the interpretability of this comparison is limited for several reasons: Firstly, most phylogenetic
methods such as PhyloWGS do not try to generalise trends in event orderings to datasets of many patients but
rather infer orderings for individual samples only. Secondly, metMHN is designed to model the progression
of simplified mutational profiles and does not claim to fully resolve evolutionary dynamics. The nuances that
differentiate these related concepts are partly discussed in [3] and [1]. Furthermore, in general, phylogenetic
methods can only temporally resolve relative timings between events that happened after clonal fixation of
the most recent common ancestor. Thus, the signal they can provide is strongly driven by the most recent
stages of progression before observation, while metMHN aims to equally give attention to orderings in early
progression stages. Lastly, we have compared here inferences on two datasets which differ in qualities that
might affect the comparison - such as the sequencing method and enrollment criteria.
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Figure S4: Trends in pairwise driver mutational event orderings as inferred by PhyloWGS and metMHN.
For the 14 event pairs we analyse here, we have plotted the ordering that was more frequently observed in
the PhyloWGS analyses of TCGA data. Line widths scale with the count of concordant phylogenies. In the
respective text boxes, we further show the count of discordant and same-clone phylogenies as well as the
ordering probability as derived from metMHN.



4 Supplementary plots
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Figure S5: Most probable event orderings for observed metastases genotypes as inferred by metMHN, strat-
ified by TP53 (M) (left), KRAS (M) (bottom) and EGFR (M) (right) as their first event. Each branch
extending out from a tree’s root represents a group of metastases for which the events were inferred to occur
in the order of the branch. Edge widths scale proportionally to the dataset’s count of metastases commencing
with that particular sequence of events, and branches are trimmed at an edge threshold of 3. Black-bordered
nodes indicate observed genotypes.
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Figure S6: Metastasis pre-seeding probabilities for each mutational event, plotted against the average variant
allele frequencies in copy number neutral cases for the respective event. A linear regression model was fit to
evaluate the association, with an adjusted R-squared value of 0.27 and a p-value of 0.01.
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