
SUPPLEMENTARY METHODS 

Study Participants 

Study participants were recruited as part of ongoing studies of Alzheimer’s disease (AD) and 

related neurodegenerative diseases at the University of California, San Francisco (UCSF) 

Memory and Aging Center (MAC). All participants or their surrogates provided written informed 

consent prior to study participation, and all aspects of the studies described here were approved 

by the UCSF institutional review board (IRB). Sixteen individuals (n = 8 early-onset Alzheimer’s 

disease [EOAD] cases and n = 8 cognitively normal controls) participated in the single-cell RNA 

sequencing (scRNA-seq) study. Nineteen individuals (n = 9 EOAD cases and n = 10 cognitively 

normal controls) participated in the droplet digital (dd)PCR study. To ensure replicability across 

methodologies, a subset of 4 EOAD cases was included in both studies. EOAD cases and 

cognitively normal controls were sex-matched, and equal numbers of female and male 

participants were included in the scRNA-seq study. The EOAD group was significantly older 

than the control group in the scRNA-seq study (P = 0.0004), while ages did not significantly 

differ between cases and controls in the ddPCR study (P = 0.37), as assessed using unpaired t-

tests. Two control participants included in the studies described herein are siblings; however, 

these two controls were included separately in either the scRNA-seq study or the ddPCR study. 

No EOAD cases studied herein are related to any other included EOAD cases or controls. 

Demographic information for the scRNA-seq and ddPCR study participants is included in Table 

1. 

 

Cell Isolation 

Human peripheral blood mononuclear cells (PBMCs) were obtained from study participants at 

the UCSF MAC. Blood samples were collected in yellow-cap ACD Vacutainer tubes (BD 

Biosciences) and processed within five hours of collection, as described previously [1]. PBMCs 

were isolated by Ficoll density gradient sedimentation using Lymphosep separation medium 

(MP Biomedicals), washed with Ca2+- and Mg2+-free PBS (ThermoFisher), and treated with red 

blood cell lysis buffer (BioLegend). PBMCs were then washed again with PBS and diluted to a 

density of 1.5 x 106 cells/ml in freezing medium composed of 10% DMSO in FBS and 

immediately frozen at -80°C. Samples were transferred to liquid nitrogen for long-term storage 

after two weeks of storage at -80°C. All PBMC samples used in our primary analyses were 

cryopreserved. 

 

https://paperpile.com/c/mKw40f/7skr5


Single-Cell RNA-seq 

PBMCs were thawed and prepared for scRNA-seq using the Chromium Single Cell 3’ v3 kit 

according to the manufacturer’s instructions (10x Genomics). Samples were processed in two 

separate batches of eight samples each, with four EOAD cases and four controls included in 

each batch. To minimize the potential for batch effects, each batch contained equal numbers of 

samples from female and male participants. After sample thawing, counting, and dilution, 

PBMCs underwent standard 10x processing, 3’ gene expression library construction steps, and 

next-generation sequencing at the UCSF Genomics CoLab and Institute for Human Genetics.  

 

Sequencing Data Processing 

For each of the two batches, single-cell 3’ libraries generated from eight samples were pooled 

and sequenced on one lane of a NovaSeq S4 flow cell. Raw sequencing reads were aligned to 

GRCh38-2020-A, and feature-barcode matrices were generated using Cell Ranger version 7.1.0 

with intronic reads excluded.  

 

Quality Control 

We obtained a total of 7.4 x 109 reads and detected ~260,000 cells across the two independent 

10x and sequencing batches, yielding a moderate sequencing depth [2,3] of ~30,000 mean 

reads/cell. We detected ~5,300 median UMI counts/cell and ~1,600 median genes/cell 

(supplementary Table S1). There were no significant differences in the number of cells captured 

per sample, the number of reads per sample, or the mean read depth per sample when 

comparing the EOAD group to the control group. Subsequent quality-control (QC) and 

downstream analysis steps were performed using Seurat v4.3.0.1 [4,5]. QC filtering was applied 

to individual-sample feature-barcode matrices and consisted of the following steps: (i) genes 

detected in < 10 cells were removed; (ii) cells with ≤ 500 detected genes were removed; (iii) 

cells with ≤ 500 counts and those with ≥ 20,000 counts were removed; (iv) cells with 

mitochondrial mapping percentages ≥ 10 were removed; (v) doublets were identified and 

removed using DoubletFinder v2.0.3 [6,7] using the recommended parameter settings. After 

stringent QC filtering, ~182,000 cells remained for downstream analysis (supplementary Table 

S2). 

  



Clustering 

After QC, we performed the following additional processing steps: (i) we applied sctransform v2 

regularization [8,9] at the individual-sample level, including mitochondrial mapping percentage 

as a covariate [8,10], to minimize variability due to differences in sequencing depth between 

samples; (ii) the 16 individual samples were integrated with FindIntegrationAnchors and 

IntegrateData, specifying ‘sctransform’ as the normalization method and canonical correlation 

analysis (CCA) as the reduction. Subsequently, PCA was performed followed by uniform 

manifold approximation and projection (UMAP) reduction using the first 30 PCs; clustering was 

performed using a resolution parameter of 0.5. This resulted in the generation of 19 clusters that 

were annotated via multimodal reference mapping to a large, well-characterized human PBMC 

dataset [5]. After omitting two clusters (one dominated by contaminating platelets and the other 

with mixed myeloid and lymphoid markers), 17 primary clusters remained for analysis of relative 

abundance. Sub-clustering was performed by subsetting all T cells (as identified by multimodal 

reference mapping) followed by PCA, UMAP reduction using the first 30 PCs, and clustering 

using a resolution of 0.5. To integrate additional cognitively normal control samples from a 

previously published study [1] into the dataset, we performed the same analyses outlined above 

using a resolution of 0.4. 

 

Cluster Proportionality 

Cluster proportions (expressed as % of total PBMCs) were determined for individual samples by 

dividing the number of cells in a given cluster by the total number of cells in all clusters (after 

QC filtering) for each individual. To determine cluster abundance relative to all T cells or all CD4 

T cells, a similar calculation was performed, using as the denominator all cells annotated as T 

cells or CD4 T cells by multimodal reference mapping. Differences in cluster proportionality 

were initially assessed visually for all clusters according to disease status. Only the interferon 

(IFN) signaling-associated gene (ISAG)hi T-cell cluster (cluster 15) showed a clear difference in 

proportionality between cases and controls. Statistical significance for cluster 15 proportionality, 

as well as ISAGhi T-cell subcluster 11 proportionality, was determined by linear modeling, 

covarying for age and sex. To account for multiple testing across the 17 primary clusters, we 

performed false discovery rate [FDR] correction with a PFDR threshold of 0.1, striking a balance 

to avoid both type I and type II error. To test for significant differences in ISAGhi T-cell relative 

abundance in the dataset containing seven additional cognitively normal controls, the cluster 
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proportions were log2-transformed prior to analysis to minimize the effect of the single outlier 

control sample.  

 

Differential Expression Analysis 

Differential expression (DE) analysis was performed using limma [11–14] on individual clusters 

and sctransform v2-normalized data, with disease status as the contrast and age, sex and batch 

as covariates (as in [1]). The publicly available CSF dataset (GSE134577) was analyzed 

essentially in the same manner, covarying for age and sex. To account for multiple testing, a 

FDR-corrected p-value (PFDR) < 0.05 was considered statistically significant, and only genes 

with estimated absolute log2 fold-changes (LFC) > 0.1 were considered differentially expressed. 

 

CD4 T cell isolation 

CD4 T cells were isolated from PBMCs using the magnetic-activated cell sorting (MACS) human 

CD4 T cell isolation kit (Miltenyi). The purity of the isolated CD4 T cells was assessed using a 

droplet digital (dd)PCR assay that measured the enrichment of the CD4/CD8A transcript ratio 

relative to the starting PBMC population. This assay indicated an ~4,800-fold enrichment of the 

CD4/CD8A ratio in the isolated CD4 T cells relative to starting PBMCs, indicating successful 

isolation of CD4 T cells. 

 

RNA Extraction 

RNA was extracted from CD4 T cells using the RNeasy Micro Kit (Qiagen) and isolated RNA 

was quantified and its quality was assessed using the RNA 6000 Pico Bioanalyzer kit (Agilent). 

CD4 T-cell RNA samples had RNA integrity number (RIN) values ranging from 8.5–10, 

indicating high-quality RNA (supplementary Table S3) [15]. 

 

Droplet Digital (dd) PCR Cohort 

For ddPCR experiments, we isolated CD4 T cell RNA from 19 participants. In the first ddPCR 

batch, we selected 5 independent controls and 4 EOAD cases with a clear expansion of ISAGhi 

T cells, as assessed by scRNA-seq. These cases were selected to determine the suitability of 

ddPCR for assessing the ISAGhi T-cell phenotype. The second ddPCR batch consisted of an 

additional 5 independent cases and 5 independent controls.  
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ddPCR Procedure and Analysis 

For primary analyses, two ng of total RNA was used for single-tube reverse transcription (RT) 

and ddPCR using the One-Step RT-ddPCR Advanced kit (Bio-Rad). For validation of the CD4 

T-cell isolation procedure, 30 ng of RNA was used to ensure that the low CD8A signal could be 

measured over background in the isolated CD4 T cells. Droplets were generated and 

subsequently analyzed using the QX100 system (Bio-Rad) at the UCSF Center for Advanced 

Technology (CAT). Reactions were prepared and run essentially according to the 

manufacturer’s instructions. For steps in which a temperature range was specified, we used the 

following parameters: RT was performed at 50°C, annealing/extension occurred at 55°C, and 

samples were held at 12°C in the C1000 thermocycler (Bio-Rad) prior to analysis on the droplet 

reader. To confirm specificity, we ran the following control reactions: wells lacking RNA but 

containing all other components and wells lacking reverse transcriptase but containing all other 

components. PrimePCR ddPCR Gene Expression primer-probe mixes coupled to FAM or HEX 

(Bio-Rad) were used to amplify specific genes. For the analysis of ddPCR data, we performed 

linear modeling to assess whether disease status predicted differences in gene expression 

while covarying for age and sex. Log2-transformed absolute concentration data for MX1 and IFI6 

(normalized to CD4 as the reference gene) were used for analyses that assume normality, while 

non-transformed data are displayed in the plots. Differences were considered significant at p ≤ 

0.05. 

 

Secondary Analysis of Publicly Available CSF Leukocyte Dataset 

Publicly available human CSF leukocyte scRNA-seq data were downloaded from GEO 

(accession GSE134577) [16]. The original cohort consists of samples from 18 individuals (n = 9 

healthy older controls, n = 5 participants with mild cognitive impairment (MCI), and n = 4 

participants with AD). For additional information, see Gate et al., 2020 [16] and supplementary 

Table S6. The downloaded counts data was processed and analyzed as described above for 

our PBMC scRNA-seq data. We used the marker genes MX1, IFI6, CD3E, and CD4 to identify a 

CSF leukocyte cluster corresponding to ISAGhi T cells. For our analyses, in order to focus on 

the cases with late onset, we excluded three cases that had ages at collection below 65 years. 

DE analysis was performed as described above for the EOAD PBMC dataset, except that cases 

were defined as samples with diagnoses of either MCI or AD. Genes significantly upregulated in 

MCI/AD with PFDR < 0.05 and LFC > 0.1 from any CSF CD4 T-cell cluster (expressing CD3E 

and CD4; clusters 0, 1, 5, 6, 7, 8, 9, 12, and 15; see Figure 3) were pooled and submitted for 
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gene ontology (GO) analysis via g:Profiler [17]. We queried the GO biological process (BP) [18] 

and reactome databases [19] and selected for display significantly enriched terms related to IFN 

and antiviral responses. For the functional enrichment analysis of individual CSF cell clusters, 

we submitted upregulated DEGs from each cluster that had at least 10 upregulated genes; all 

such clusters, except cluster 11, showed significant enrichment for the reactome terms 

‘interferon signaling’ and ‘interferon alpha/beta signaling’. 

 

Secondary Analysis of Mouseac Dataset 

To further evaluate the expression of ISAGhi T-cell marker genes in a mouse model of AD-like 

amyloidosis, we examined genes implicated by our prior analyses in an AD model compared to 

wild type (WT) mice. In particular, we queried the most significantly overlapping set of ISAGhi 

marker genes between our ISAGhi T-cell cluster and the CSF antiviral CD4 T-cell cluster from 

Heming et al., 2021 [20]. Data for these analyses was obtained from the Mouseac project, which 

has been described in detail elsewhere [21,22]. Briefly, the Mouseac project is a study of murine 

brain tissue at varying ages (i.e., 8, 16, 32, and 72 weeks) in models of neurodegeneration. 

Samples were collected from cortex, hippocampus, and cerebellum using the TASTPM model of 

AD (TAS10 × TPM AD mouse models; APPswe × PS1.M146V) and WT mice [23]. Of note, both 

heterozygous and homozygous TASTPM mice were included in our analyses. Gene expression 

was measured using Illumina Ref8 v2 microarray with processing completed by the Mouseac 

project as previously described [21]. Briefly, expression data was log2 normalized with quantile 

normalization. Individual probes were excluded if the detection p-value was > 0.05 in > 50% of 

samples. A total of 16 ISAGhi marker genes were available for analysis in the downloaded 

dataset. ANOVA was used to analyze gene expression in comparing across age groups, gene 

status, and brain region. Following this, comparisons by TASTPM status were repeated within 

the hippocampus and cortex, the results of which are shown in supplementary Figure S7A. 

Differences by TASTPM status were considered significant for the hippocampus and cortex at P 

= 3.1 x 10-3, accounting for 16 genes being tested. 

 

Additional Information 

Analyses were performed in R and plots were generated using Seurat and ggplot2. For the 

statistical analysis of overlap between marker gene lists, we used DynaVenn [24]. 
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Availability of Data 

The scRNA-seq dataset described here has been posted to the FAIR Data Sharing Portal within 

the Alzheimer’s Disease Workbench, which is supported by the Alzheimer’s Disease Data 

Initiative, and is accessible at: https://fair.addi.ad-

datainitiative.org/#/data/datasets/single_cell_rna_seq_data_derived_from_early_onset_ad_case

s_and_controls. The familial tauopathy scRNA-seq dataset is also available on the FAIR Data 

Sharing Portal and can be accessed at: https://fair.addi.ad-

datainitiative.org/#/data/datasets/single_cell_rna_seq_data_derived_from_mapt_carriers_and_c

ontrols. 
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