
   
 

   
 

SUPPLEMENTARY MATERIALS 
 
 
SUPPLEMENTAL RESULTS 
 
Comparison between methods for defining border and ectopic variants 
 
While our original identification of variant locations is defined without reference to a hard 
parcellation (i.e., based on the continuous similarity to the group average connectivity map at 
that location), our primary method of then separating variants into border and ectopic sub-types 
is done with reference to the distance from a (hard-parcellated) canonical network map. Given 
this dependency, and that multiple distinct canonical network maps exist (e.g., (Power et al., 
2011; Yeo et al., 2011)), we developed a secondary method for defining network variants that 
did not depend on a particular network parcellation (see Supp. Fig. 2).  
 
For the most part, the results across these methods were quite consistent. Both methods identified 
a sizeable proportion of variants as ectopic (Fig. 2, Supp. Fig. 3). Both methods identified very 
similar spatial distributions of border and ectopic variants (Fig. 3, Supp. Fig 10), with more 
ectopic variants in the right lateral frontal cortex and more border shift variants near the 
temporo-parietal junction and in superior frontal cortex). Both methods also find similar shifts in 
the task activation profiles for border and ectopic variants (Fig. 5, Supp. Fig. 16), with border 
variants more strongly shifted than ectopic variants. Both methods also show a similar pattern of 
heritability across border and ectopic variants (Fig. 6, Supp. Fig. 17) and similar behavioral 
prediction results (Supp. Fig. 19-22).  
 
Some differences between the methods were present as well. These include slight differences in 
the proportion of variants defined as border and ectopic (e.g., compare Fig. 2A to Supp. Fig. 3). 
This is likely driven, at least partly, by the greater distance criteria we used in the parcellation 
free method, as the proportions found in this method are comparable to the 10 mm. distance 
results from our primary method (e.g., compare to Fig. 2B). Furthermore, while both methods 
identified similar associations for variants (Fig. 4, Supp. Fig. 14A) with most variants assigned to 
the DMN, FP, and CO networks, the ratio of border-to-ectopic variants per network varied 
somewhat across methods (Fig. 4B, Supp. Fig. 14B). Thus, future work examining this metric 
should consider including multiple methods for defining network variants to establish stability of 
the result. 
 
In general, each approach that we used has advantages and disadvantages. Parcellation-
dependent approaches tend to be easier to implement and to interpret, leading to clearer 
understanding of what border and ectopic variants represent. However, these approaches are 
dependent on the quality and resolution of the original parcellation. While the parcellation that 
we use has been extensively validated in both group averages (Power et al., 2011) and 
individuals (Gordon et al., 2017b; Laumann et al., 2015), it makes specific choices regarding the 
resolution of networks to be examined (e.g., (Gordon et al., 2020)). In contrast, parcellation-free 
approaches such as the one that we implemented here can be implemented without selecting a 



   
 

   
 

particular network definition and resolution. However, these approaches still require the 
selection of thresholds for defining border and ectopic variants (e.g., 90% peak similarity at 10 
mm.), are computationally intensive to implement, and can sometimes be more challenging to 
interpret (e.g., there may be multiple reasons for differences in peak similarity architecture). In 
practice, a combination of both approaches may prove useful in establishing robust properties of 
border and ectopic variants, as highlighted with the results from the network-affiliation analysis. 
 
 
Differences between subgroups of individuals based on border vs. ectopic variants 
 
For both border and ectopic variants, three consistent subgroups of individuals were found, each 
with high within-subject consistency. In clustering individuals via their border variants, we found 
one large subgroup of individuals whose variants were more highly correlated with the DMN and 
less highly with control and processing networks (we refer to this subgroup as B1; 57% of 
subjects, green in Fig. 7A). The second large subgroup had border variants with an intermediate 
profile, associated with control systems (CO-, DAN-, and FP-like), with a low correlation to 
sensory/motor networks and the DMN (B2; 28% of subjects, black in Fig. 7A; note this subgroup 
is distinct from ones observed in our previous analyses). A third smaller subgroup included 
participants with more CO-like variants, with stronger associations to sensory/motor networks 
and low correlation to the DMN (B3; 14% of subjects, purple in Fig. 7A; this subgroup was 
similar to our second subgroup in previous work (Seitzman et al., 2019).  
 
Clustering individuals via ectopic variants resulted in three subgroups as well, but these differed 
in their specific characteristics. The first subgroup included people with ectopic variants that 
associated more strongly with FP and DMN and lower correlation to other control networks (E1; 
28% of all subjects, light green in Fig. 7B; while similar to B1, note the less prominent DMN 
profile). A small intermediary subgroup had ectopic variants strongly associated with DMN, 
auditory and somatomotor networks, and less strongly with control networks (E2; 12% of 
subjects, gray in Fig. 7B; distinct from any of the border subgroups). The final and largest 
subgroup had strong associations to the CO, DAN, and PON networks (E3; 60% of subjects, 
pink in Fig. 7B; most similar to subgroup B3). Thus, our previously published two-subgroup 
result may have been confounded by distinctions between border and ectopic variants. 
 
We next evaluated the consistency of the subgrouping result relative to two null model tests and 
relative to the community detection method. When randomizing each subject’s network 
similarity vector prior to generating the subject-to-subject adjacency matrix, Infomap identified 
only a single outcome cluster across participants, resulting in significantly higher modularity for 
the true data relative to 1000 random permutations (p<0.001). When the subject-so-subject 
adjacency matrix was randomized but preserved strength, degree, and weight distributions (using 
the null_model_und_sign function from the Brain Connectivity Toolbox; www.brain-
connectivity-toolbox.net), still the modularity of the true Infomap solution was significantly 
higher than across Infomap results across 1000 random matrix permutations (p<0.001). 
 
 
  



   
 

   
 

SUPPLEMENTAL FIGURES 
 
 

 
 
Supp. Fig. 1: Refining of inhomogeneous pre-variants. Pre-variants were flagged to be divided if 
either of two criteria indicated high heterogeneity (a PCA “homogeneity” measure (Gordon et 
al., 2016)) and a measure of network territory in the subject’s network map - see Methods). For 
example, the pre-variant in this panel included two sub-regions, one with relatively high 
affiliation to the DMN and one with high affiliation to the language network. Flagged pre-
variants were then divided along their network map sub-divisions, resulting in a set of final 
variants for each subject.  
  



   
 

   
 

 

 
 
Supp. Fig. 2: Secondary method for classifying border and ectopic variants. To classify variants 
as border or ectopic without relying on a specific group parcellation of functional networks, a 
parcellation-free method was implemented. First, (1) a variant’s location was isolated using the 
methods described in Fig. 1A. (2) We then generated the average seedmap for the variant 
(averaged across vertices within the variant). (3) The variant’s seedmap was compared via spatial 
correlation to group-average seedmaps of brain locations within 150 mm (edge-to-edge distance) 
from the variant. The schematic shows similarity between each displayed vertex (in the group 
average) and the variant location; in this image the variant location in question appears to show 
highest similarity to nearby locations within the group-average (i.e., the nearby dACC). (4) The 
similarity was quantified across a range of distances up to 150 mm; at each distance the 
maximum variant-to-group R value was calculated. A variant was classified as a border shift if it 
achieved at least 90% peak similarity to the group by 10 mm, and as an ectopic intrusion if 90% 
of peak similarity was not reached by 10 mm. Peak similarity was defined as the maximal 
correlation between the variant seedmap and the (group-average) seedmap of any vertex located 
within a distance of 150 mm.  Note that this approach does not require a pre-set definition of 



   
 

   
 

canonical networks (e.g., default mode, frontoparietal, etc.), bypassing differences between 
common group parcellations (e.g., Yeo (Yeo et al., 2011) vs. Gordon (Gordon et al., 2017a)) and 
resolutions (Yeo 7 vs. 17 (Yeo et al., 2011)).  



   
 

   
 

 

 
 
Supp. Fig. 3: Proportion of border and ectopic variants in the MSC dataset using the 
parcellation-free classification method. As in the primary method (Fig. 1A), we identified 
examples of both border-shift and ectopic variants in each MSC participant. The parcellation-
free method was slightly more conservative in identifying ectopic variants than the primary 
method, probably due to the larger distance criteria (i.e., both this method and the primary 
method at 10 mm. identified roughly a third of variants as ectopic). 
 



   
 

   
 

 
 
Supp. Fig. 4: Proportion of ectopic variants across subjects. The histogram shows the proportion 
of ectopic variants (out of total variants) across all subjects in the HCP dataset using the primary 
definition approach from the manuscript. Stars on top show the proportion of ectopic variants for 
each subject in the MSC dataset (labeled at right). While the proportions of border and ectopic 
variants differed across individuals (e.g., MSC02 and MSC06 had few ectopic variants whereas 
in MSC01, MSC04, and MSC05 the proportion of ectopic variants exceeded 60%), they did not 
relate significantly to the total number of variants of an individual (r = 0.15 in the MSC dataset 
and r = 0.05 in the HCP). 
  



   
 

   
 

 
 
Supp. Fig. 5: Histogram of ectopic variants’ distances from their nearest same-network 
boundary. The plot depicts a histogram of the edge-to-edge distance between each variant and 
canonical regions of a given network in the HCP dataset using the primary border/ectopic 
definition approach from the manuscript. A sizable proportion of ectopic variants are found at a 
long cortical distance for consensus locations of their network (median = 15.5 mm; N = 2499 
variants), consistent with the results of the secondary definition method (Supp. Fig. 6). 
 
  



   
 

   
 

 
 
Supp. Fig. 6: Parcellation-free variant definition: similarity-to-group curves. Implementing a 
parcellation-free method to classify border and ectopic variants reveals that ectopic variants are 
less similar to the group-average at locations nearer to the variant, and only achieve comparable 
similarity to the group at higher distances. Variant similarity data were averaged across border or 
ectopic variants within a subject, then averaged across all 374 subjects; error bars represent 
standard error across subjects. 
  



   
 

   
 

 
 
 Supp. Fig. 7: Exploration of ectopic variant sub-types in the MSC, relative to individually 
defined networks. (A) Variants are shown as outlines, with individual network maps shown in 
filled in colors in the background. Each variant was classified as an island (black arrows; regions 
isolated from major segments of their own network), island peak (gray arrows; regions isolated 
from major segments of their own network, but with the variant representing <50% of the 
region), and extensions/peninsulas (blue arrows; regions connected to larger swaths of their own 
network). See Methods for a description and notes on these variant sub-type comparisons. The 
majority of ectopic variants in the MSC were islands in the MSC (Supp. Table 1). (B) 
Distributions of network assignments of variants when including only island ectopic variants; a 
similar distribution is observed as when including all ectopic variants (e.g., compare with Supp. 
Fig. 13). (C) Within-subject proportions of border variants vs. island ectopic variants. A high 
proportion of ectopic variants remain, even when excluding island peaks and peninsulas. (D) 
Spatial distribution of islands only. Results highlight similar regions of high prevalence when 
compared with all ectopic variants (e.g., compare with Supp. Fig. 8).  



   
 

   
 

 
 
Supp. Fig. 8: Side-by-side comparison of border and ectopic variant spatial distributions 
between the HCP and MSC datasets. Both forms of variants appear in many of the same regions, 
including ectopic variants in lateral frontal regions in the right hemisphere and border variants 
around the temporoparietal junction and superior rostral frontal regions in both hemispheres. 
 
  



   
 

   
 

  

 
 
Supp. Fig. 9: Properties of ectopic variants as a function of increasing distance requirement for 
classification. When using the primary approach to define ectopic variants, the spatial 
distribution patterns observed when ectopic variants in the HCP dataset are defined at > 3.5 mm 
from network borders (i.e., Fig. 3A in the main manuscript) are largely conserved even as 
ectopic variant distance is increased through 10 mm. 
  



   
 

   
 

 
 
Supp. Fig. 10: Spatial distribution of ectopic variants in the HCP dataset using the parcellation-
free classification method. When the parcellation-independent method for classifying border and 
ectopic variants is implemented, similar spatial distribution patterns are observed relative to the 
primary classification method. 
 
  



   
 

   
 

 
 
Supp. Fig. 11: Border and ectopic variant spatial overlap maps across HCP subjects, separately 
for each functional network. Note that the color scales differ for each network’s plot (maximal 
subject overlap values for each network are displayed), given different baseline rates associated 
with variants in each network. 
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Supp. Fig. 12: Network templates. (A) Network templates derived from the WashU-120 dataset 
(used for MSC analyses). (B) Network templates derived from the HCP dataset (used for HCP 
analyses). See Methods and (Seitzman et al., 2019) for further details on the generation of 
network templates.  



   
 

   
 

 
 
Supp. Fig. 13: Network distributions of border and ectopic variants in the MSC dataset. Each bar 
shows the number of variants associated with 12 common association networks in the MSC 
dataset, separated by whether variants were border shift or ectopic (similar to Fig. 4 in the main 
text). Note that in the MSC, many variants are also associated with the Language network, but 
this network template was not identified in the HCP dataset (see Methods, Supp. Fig. 12). The 
primary border/ectopic definition approach was used for these analyses.  



   
 

   
 

 
 
 
Supp. Fig. 14: Network linkages of variants using the parcellation-free classification method. 
(A) Network assignment distributions of border and ectopic variants in the HCP dataset using the 
parcellation-free classification method. When implementing the parcellation-free method for 
classifying border and ectopic variants, network assignment distributions of border vs. ectopic 
variants are comparable to those obtained using the primary classification method (i.e., compare 
this figure to Fig. 4A). (B) Permutation testing of ectopic:border ratio of variants classified using 
the parcellation-free method. While networks such as SMl, Auditory, and PON remain 
significant compared to the primary method, others exhibit trends in the opposite direction (e.g., 
CO variants are significantly more likely to be ectopic in the parcellation-free method). Thus, 
while distributions of border and ectopic classifications are comparable across methods, the 
significance of their differences is dependent on the analysis method. 
  



   
 

   
 

 

 
 
Supp. Fig. 15: Comparison of variant network assignment to consensus assignments at that 
location. For each border (left) and ectopic (right) variant, the figure displays the typical 
(canonical) network associated with a given variant’s location (rows; defined as the modal 
network across variant vertices) versus the idiosyncratic network to which the variants were 
assigned in HCP participants (columns). Values represent the raw percentage of variant “swaps” 
observed (i.e., out of all possible border or ectopic variants). (Unl.= network’s cortical territory is 
majority unlabeled in the group-average network description) 
 
  



   
 

   
 

 

 
 
Supp. Fig. 16: Average task-evoked activation by network across MSC subjects, using the 
parcellation-free classification method. (A) Average activation (z) across all task conditions in 
the MSC (N=9) for variants (red = ectopic, blue = border shift), canonical locations in the listed 
network (black), or canonical locations in other networks (gray). Error bars represent standard 
error of activation values across subjects. (B) Average activation of DMN-assigned variants in an 
individual vs. average activation in the same location in other individuals (two-tailed t-tests). 
Eight of 9 subjects with a border DMN variant and 6 of 9 subjects with an ectopic DMN variant 
were included. Notably, results are very comparable to those observed using the primary border-
ectopic classification method (see Fig. 5 in main manuscript). Colors represent different MSC 
participants. 
 
  



   
 

   
 

 
 
Supp. Fig. 17: Replication of heritability results using the parcellation-free method to classify 
variants. When using a network-independent approach to classify border and ectopic variants, 
heritability results are replicated. (A) Variants are most similar in location among monozygotic 
twins (N=88 pairs), with intermediate similarity among dizygotic twins (N=45 pairs) and siblings 
(N=137 pairs), and lowest similarity among unrelated subjects (N=122 pairs). Error bars 
represent standard error of Dice coefficients across all pairs within a given group. (B) Falconer’s 
estimates of heritability are significantly higher for both forms of variants relative to a null 
distribution (p<0.001 for both border and ectopic variants). 
 
 
  



   
 

   
 

 
 
Supp. Fig. 18: Within-subject consistency of sub-group assignments. When individuals’ data is 
split by session, most subjects match to the same sub-group for each portion of their data (over 
85% of subjects using border variants, and over 81% using ectopic variants; note total N is all 
371 subjects with at least one variant of each form). Sub-group profiles used to correlate with 
individuals’ network profiles are those displayed in Fig. 7A/B in the main manuscript (averaged 
across the two split-halves for each sub-group). 
  



   
 

   
 

 

 
 
Supp. Fig. 19: Prediction of behavioral phenotypes based on variant network similarities. (A) 
Accuracy for predicting a range of behavioral variables (taken from ref. (Kong et al., 2019)) 
based on the network affiliations of either ectopic variants (red), border variants (blue), or all 
variants combined (green); dashed lines = 95% boundary generated from null permutation. (B) 
Average prediction across all variables for border and ectopic variants (red dots) relative to the 
average prediction from 1000 null permutations (black dots). Both border (p=0.044) and ectopic 
(p=0.001) variant features predict behavioral measures to a greater extent than expected by 
chance. (C) Border and ectopic prediction levels for different variables (black dots) are 
contrasted with one another directly. Dashed lines represent 95% boundaries from null 
permutations (blue = border permutations; red = ectopic permutations). Predictions from border 
and ectopic variants are poorly correlated (r = -0.126), suggesting that they are linked to different 
behavioral phenotypes. 
  



   
 

   
 

 

 
 
Supp. Fig. 20: Prediction of behavioral phenotypes based on network variant locations. (A) 
Accuracy for predicting a range of behavioral variables (taken from (Kong et al., 2019)) based 
on the network variant locations of either border (blue) or ectopic (red) variants (dashed lines = 
95% boundary generated from null permutation). (B) Average prediction across all variables for 
border and ectopic variants (red dots) relative to the average prediction from 1000 null 
permutations (black dots). Only border (p=0.007) variant locations predict behavioral measures 
on average to a greater extent than expected by chance. (C) Border and ectopic prediction levels 
for different variables (black dots) are contrasted with one another directly. Dashed lines 
represent 95% boundaries from null permutations (blue = border permutations; red = ectopic 
permutations). Predictions from border and ectopic variants are poorly correlated (r = -0.090), 
suggesting that they are linked to different behavioral phenotypes. 
  



   
 

   
 

 
 
Supp. Fig. 21: Prediction of behavioral phenotypes based on parcellation-free network similarity 
measures. (A) Accuracy for predicting behavioral variables from variant network similarity (left) 
and variant location (right) of ectopic variants (red), border variants (blue), or all variants 
combined (green). (B) Border and ectopic prediction levels for different variables (black dots) 
are contrasted with one another directly based on network (left) and location (right) measures. 
Predictions from border and ectopic variants are poorly correlated with measures of network 
similarity (r = 0.09) and variant location (r = 0.073), suggesting that they are linked to different 
behavioral phenotypes. 
 
  



   
 

   
 

 
 
Supp. Fig. 22: DMN and control/processing sub-group profiles. In order to determine whether 
subjects consistently sorted into the same sub-group based on their border vs. ectopic variants, 
we matched participants into two reliable sub-groups that were identified across all variant forms 
in previous work (Seitzman et al., 2019) using the HCP dataset (N=384): (1) a sub-group of 
individuals whose variants had high affinity to the DMN and (2) a sub-group of individuals with 
variants showing higher affinity to top-down control and sensorimotor processing systems. The 
network profiles for the two subgroups are shown above. Error bars represent standard error of 
mean correlation values across subjects within a subgroup. These profiles were used as a 
template to group subjects by both their border and ectopic variants (see Methods).  
 
 



   
 

   
 

SUPPLEMENTAL TABLES 
 
 
Supp. Table 1: Ectopic variants from the MSC, classified into different sub-types based on 
individual brain network comparisons (as described in Supp. Figure 7). Percentages of variants 
of each sub-type are listed (counts in parentheses), based on three different methods used to 
classify ectopic variants in the manuscript. 

 
Classification method Islands Island peaks Extensions/peninsulas 
3.5mm from network* 57%  (34) 18%  (11) 25%  (15) 
10mm from network 72%  (26) 19%  (7) 8%  (3) 
Parcellation-free# 60%  (26) 19%  (8) 21%  (9) 

 
* Primary method used in paper 
# Secondary method (90% of peak at 10mm) 
 
 
  



   
 

   
 

Supp. Table 2: Contrasts used in analysis of HCP task activations and the tasks to which they 
belong.  
 
Task Contrast name 
Emotion faces-shapes 
Emotion faces 
Emotion shapes 
Gambling punish-reward 
Gambling punish 
Gambling reward 
Language math-story 
Language math 
Language story 
Motor lf-avg 
Motor lh-avg 
Motor rf-avg 
Motor rh-avg 
Motor t-avg 
Motor avg 
Relational match-rel 
Relational match 
Relational rel 
Social random-tom 
Social random 
Social tom 
Working Memory 2bk-0bk 
Working Memory body-avg 
Working Memory face-avg 
Working Memory place-avg 
Working Memory tool-avg 
Working Memory 2bk 
Working Memory 0bk 

  



   
 

   
 

Supp. Table 3: Variables used for behavioral prediction analysis with official HCP variable 
names.  
 
HCP variable name Variable description 
MMSE_Score Cognitive status (MMSE) 
PSQI_Score Sleep quality (PSQI) 
PicSeq_Unadj Visual Episodic Memory 
CardSort_Unadj Cognitive flexibility (DCCS) 
Flanker_Unadj Inhibition (Flanker task) 
PMAT24_A_CR Fluid Intelligence (PMAT) 
ReadEng_Unadj Reading (pronunciation) 
PicVocab_Unadj Vocabulary (picture matching) 
ProcSpeed_Unadj Processing Speed 
DDisc_AUC_40K Delay Discounting 
VSPLOT_TC Spatial orientation 
SCPT_SEN Sustained Attention - Sens. 
SCPT_SPEC Sustained Attention - Spec. 
IWRD_TOT Verbal Episodic Memory 
ListSort_Unadj Working Memory (list sorting) 
ER40_CR Emot. Recog. - Total 
ER40ANG Emot. Recog. - Angry 
ER40FEAR Emot. Recog. - Fear 
ER40HAP Emot. Recog. - Happy 
ER40NOE Emot. Recog. - Neutral 
ER40SAD Emot. Recog. - Sad 
AngAffect_Unadj Anger - Affect 
AngHostil_Unadj Anger - Hostility 
AngAggr_Unadj Anger - Aggression 
FearAffect_Unadj Fear - Affect 
FearSomat_Unadj Fear - Somatic Arousal 
Sadness_Unadj Sadness 
LifeSatisf_Unadj Life Satisfaction 
MeanPurp_Unadj Meaning & Purpose 
PosAffect_Unadj Positive Affect 
Friendship_Unadj Friendship 
Loneliness_Unadj Loneliness 
PercHostil_Unadj Perceived Hostility 
PercReject_Unadj Perceived Rejection 
EmotSupp_Unadj Emotional Support 



   
 

   
 

InstruSupp_Unadj Instrument Support 
PercStress_Unadj Perceived Stress 
SelfEff_Unadj Self-Efficacy 
Emotion_Task_Face_Acc Emotional Face Matching 
Language_Task_Story_Avg_Difficulty_Level Story comprehension 
Language_Task_Math_Avg_Difficulty_Level Arithmetic 
Relational_Task_Acc Relational processing 
Social_Task_Perc_Random Social Cognition - random 
Social_Task_Perc_TOM Social Cognition - interaction 
WM_Task_Acc Working Memory (n-back) 
Endurance_Unadj Walking endurance 
GaitSpeed_Comp Walking Speed 
Dexterity_Unadj Manual dexterity 
Strength_Unadj Grip strength 
NEOFAC_A Agreeableness (NEO) 
NEOFAC_O Openness (NEO) 
NEOFAC_C Conscientiousness (NEO) 
NEOFAC_N Neuroticism (NEO) 
NEOFAC_E Extraversion (NEO) 
Odor_Unadj Odor identification 
PainInterf_Tscore Pain Interference Survey 
Taste_Unadj Taste intensity 
Mars_Final Contrast Sensitivity 
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