
Protocol Capture

July 11, 2024

1 Prerequisites

1.1 Datasets

High quality datasets from [1, 2] are used for the experiments. See original
papers for details of datasets.

Datasets can be downloaded from https://figshare.com/articles/dataset/

Well-curated_QSAR_datasets_for_diverse_protein_targets/20539893

Decompress the downloaded file, to get .sdf files.

1.2 Creating BCL Features

This section will process the datasets described in the previous section into BCL
features. The output of this section is a new folder named BCL-feats and BCL
features are stored in (dataset-BCL-feat.csv) in that folder.

BCL can be downloaded at https://github.com/BCLCommons/bcl/. See https:
//www.frontiersin.org/articles/10.3389/fphar.2022.833099/full for an
introduction of BCL. The following scripts assume the bcl.exe command points
to a working BCL program.

After downloading the scripts (.py) and configuration files (.obejct) from https:

//github.com/meilerlab/gnn-descriptor/BCL, place them according to Fig.
1.

When at the BCL folder, execute the following commands step by step to gen-
erate BCL features:

1



Figure 1: In order to run the codes, the files should be named and placed accord-
ing to this diagram. The datasets (.sdf files) should be placed under raw folder.
The BCL configuration files (.object) should be placed under BCL-feature-config
folder. The BCL-scripts should be placed under BCL-scripts folder. All the
other files and folders from the github repository are placed as they are in the
gnn-descriptor folder.

1 python BCL -scripts /1 _combine_sdf.py # This combines active and

inactive SDF files into one SDF file.

1 python BCL -scripts /2 _add_id_to_sdf.py # This will add IDs to the

header of each molecule in the SDF. So it is easy to identify

which molecules are filtered out in the later steps.

1 python BCL -scripts /3 _filter.py # Add hydrogen , neutralize molecules

and filter out molecules that do not have simple atoms (C, O,

N, S, P, F, Cl, Br, I)

1 python BCL -scripts /4 _data_preparation.py # This creates the BCL

features and stores that in the BCL -feats folder.

1 python BCL -scripts /5 _count_unmatched.py # This counts how many

molecules are filtered out.

1 python BCL -scripts /6 _clean_intermediate.py # This cleans up the

generated intermediate files to save hardware space. ‘

2 Running the Codes

2.1 General Instructions

Install the following python library:

2



• pytorch 2.0.1

• torch-geometric 2.3.0

• pytorch-scatter 2.1.2

• rdkit 2023.9.1

• tqdm

• pandas 2.1.2

• numpy 1.26.1

All necessary scripts can be downloaded at https://github.com/meilerlab/
gnn-descriptor

To run the codes, the first thing is to set the running parameters as a .cfg file
in the config folder. Below, an example of a GCN configuration file is shown as
GCN.cfg

1 [GENERAL]

2 seed = 1

3 num_workers = 12

4

5 [DATA]

6 dataset_name = 1798

7 root = data

8 split_scheme = random1_IAratio100_cv0

9

10 [TRAIN]

11 num_epochs = 50

12 batch_size = 32

13 warmup_iterations = 2000

14 peak_lr = 1.4e-4

15 end_lr = 1e-9

16

17

18 [MODEL]

19 model_type = gcn # all model names should be lowercased

20 in_channels = 28

21 hidden_channels = 32

22 num_layers = 4

23 with_bcl = False

24 bcl_dim = 391

The experiments in the main texts used split scheme = [‘random1 IAratio100 cv0’,
‘random1 IAratio100 cv1’, ‘random1 IAratio100 cv2’] and mode type = [‘mlp’,
‘gcn’, ‘schnet’, ‘spherenet’]

Example command:

3



1 python main --config config/GCN.cfg --no_train_eval --test

The GCN.cfg should be replaced with a configuration file specified by the user.

–config is a required flag and it specifies the configuration file.

–no train eval is an optional flag. When the flag is added, the training evalua-
tion is skipped.

–test is an optional flag. When the flag is added, the training is skipped and a
saved model (in saved model folder) is directly evaluated at the testing set.

2.2 Use Cases

Use User-Specified Data

Place the .sdf files in the raw folder in Fig. 1. There should also be a file
specifying how the data is split into train and test. The split file is put into
split folder. The split file is a .pt file that contains a python dictionary. The
dictionary has two keys, ‘train’ and ‘test’. The value for either key is a list of
index numbers of the data.

A example split.pt file: {‘train’:[1,3,8,...2943], ‘test’:[2,4,5,6,7, 2944]}

Train a Model

To train the model scratch, first set the model.cfg configuration file and placing
that in the config folder as shown in Sec. 2.1, you can train the model with

1 python main --config config/model.cfg

*If you do not want to see the evaluation metrics during metrics, –no train eval
flag can be used to speed up the training.

Test a Pre-trained Model

First, place the pre-trained model in the saved model folder. Then the model
can be run with the test model with the following command:

1 python main --config config/model.cfg --test

The –test flag helps to skip the training process and directly evaluate the model

4



References

[1] Butkiewicz, M., Lowe Jr, E. W., Mueller, R., Mendenhall, J. L., Teixeira,
P. L., Weaver, C. D., and Meiler, J. (2013). Benchmarking ligand-based
virtual high-throughput screening with the pubchem database. Molecules,
18(1):735–756.

[2] Butkiewicz, M., Wang, Y., Bryant, S. H., Lowe Jr, E. W., Weaver, D. C.,
and Meiler, J. (2017). High-throughput screening assay datasets from the
pubchem database. Chemical informatics (Wilmington, Del.), 3(1).

5


