
Supplementary Material for:

A Phylogenetic Framework to Simulate Synthetic

Inter-species RNA-Seq Data

Paul Bastide1,∗, Charlotte Soneson2,3, David B. Stern4,5, Olivier Lespinet6, and
Mélina Gallopin6,∗
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A Review of Methods Used to Compare Level of Expression Across
Species.

Setting and Notation

For the remainder of this work, ygi denotes the measured level of expression for gene g,
1 ≤ g ≤ p, and sample i, 1 ≤ i ≤ n. We assume that the species are partitioned into two
groups S1 and S2, that depends on the biological question at hand. Each sample is associated
to a species, and each species belongs to one of the two groups of interest.

We denote bymi the sample specific normalization factor for sample i. Several approaches
exist to compute this factor (Dillies et al., 2013), such as the Relative Log Expression (RLE)
(Anders and Huber, 2010) method or the Trimmed Mean of M-values (TMM) (Robinson
and Oshlack, 2010) method. We further denote by `gi the length of the gene g in sample i,
which need to be taken into account as a gene and sample specific normalisation factor.

All the methods described below rely on a (generalized) linear model. The design (or
model) matrix X of the experiment defines the form of this model. For differential analysis,
it contains at least a grouping information, specifying which biological replicate belongs to
S1 or S2. It can include some covariates that might influence the gene expression, such as
information about environmental or experimental conditions. The matrix X has n rows, and
as many columns as the number of coefficients in the model.

Strategy 1: Generalized Linear Model on Raw Count Data

The first option to perform differential expression analysis across species is to use a gener-
alized linear model based on the negative binomial distribution (Anders and Huber, 2010;
Robinson and Oshlack, 2010), implemented in several R packages such as DESeq2 or edgeR.
In DESeq2 (Love et al., 2014), the random variable modeling the raw level of expression Ygi
of gene g in sample i is a negative binomial with expectation µgi = cgiqgi and dispersion
αg : Ygi ∼ NB(µgi ,αg ). The coefficient cgi is a sample and gene specific normalization factor
that depends on the sample specific normalization factor mi and on the gene length `gi . The
parameter qgi is linked to the true level of expression of sample i, and includes the model

design through the relationship log2(qgi) = Xi·θg , where Xi· denotes the ith line of the design
matrix X, and the vector of coefficients θg contains the information on the log2 fold changes
between the two groups of species for gene g.

This method properly models counts and is appropriate to analyse data with low sample
size thanks to dispersion shrinkage (Anders and Huber, 2010; Robinson and Oshlack, 2010).
Sample specific and gene specific technical biases are taken into account directly into the
parametrization of the model. Unfortunately, to our knowledge, this model is not flexible
enough to account for the correlation induced by the phylogenetic tree. For this reason, this
model is usually used to perform pairwise comparison between species (Torres-Oliva et al.,
2016).

Normalization and Transformations

As we will see below, instead of using a generalized linear model on raw count data, it
is possible to use a simple linear model on normalized data. The normalization step is
essential to transform count measurements into continuous values, and to unlock the use of
linear models. The normalization should be designed to temper the sample and gene specific
technical biases, as well as to render the data homoscedastic (i.e. with homogeneous variance
across samples).

3



Three main normalization scores are used in the literature. They all rely on the normal-
ized library size Mi for sample i, defined as: Mi =

∑
g ygimi , with mi the scaling normalization

factor described above. The Count Per Million (CPM) score incorporates sample-specific
normalization only: CPMgi =

ygi
Mi /106

. The Reads (or fragments) per kilobase per million

mapped reads (RPKM) score incorporates an extra gene-specific normalization as follow:
RPKMgi =

ygi
Mi /106×`gi /103

(Mortazavi et al., 2008). Another way to include the same gene-

specific normalisation is to use the Transcripts per million (TPM) score: TPMgi =
ygi /`gi∑

g ygi /`gi /106

(Wagner et al., 2012). Compared to the RPKM, the TPM scores summed over all genes are
equal to a constant (106), which is a property that can be desirable in some settings (Musser
and Wagner, 2015).

In addition to the normalization, an extra transformation is often needed to make the
data behave closer to a homoscedastic Gaussian. Two transformations are widely used:
the log2 transformation (Law et al., 2014) and the square root transformation (Musser and
Wagner, 2015).

For inter-species differential expression analysis, the choice of the right normalization and
transformation to perform is not clearly established. Some studies use the log2-transformed
RPKM (Mortazavi et al., 2008; Brawand et al., 2011; Catalán et al., 2019) or CPM (Blake
et al., 2018) scores. Other studies advocates for the use of the log10 (Chen et al., 2019) or
square-root (Musser and Wagner, 2015; Stern and Crandall, 2018) transformed TPM.

In the remainder of this work, ỹgi denotes the normalized and transformed level of ex-
pression for gene g and sample i.

Strategy 2: Linear Model on Normalized Data

Assuming the data has been normalized and transformed properly, it can be modelled, for
each gene g, using a simple linear regression:

Ỹg = Xθg +Eg , (1)

where Ỹg is the vector of the n normalized measurements for gene g, Eg is a vector of Gaussian
independent and identically distributed residuals, and, as previously, X is the design matrix
and θg the associated vector of coefficients. This model is implemented in the popular R
package limma (Smyth, 2004; Smyth et al., 2005), that uses an empirical Bayes moderated
statistic to test whether the coefficient of θg associated with the group segregation is signif-
icantly different from zero. This method is appropriate to analyze datasets with low sample
size, but a large number of genes that are pooled in a hierarchical model to get a better
estimation of the variance.

It can be applied directly to RNA-Seq data, normalized using the previous methods. If
the data presents mean-variance trends, which is typically the case in classical intra-species
RNA-Seq data due to the presence of a high number of highly variable small counts, this can
be taken into account through a weighting method (voom), or through the direct inclusion
of the trend in the hierarchical empirical Bayes model (the trend method) (Law et al., 2014).

This method does not take the phylogenetic correlations into account, and has been used
to performed pairwise comparisons (Blake et al., 2018, 2020; Torres-Oliva et al., 2016). This
model is flexible and can be extended to a linear mixed model that accounts for the correlation
between replicates of the same species (Breschi et al., 2016), using the duplicateCorrelation
function from limma. However, correlations between species, encoded by the phylogenetic
tree, cannot be directly taken into account using this approach.
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Strategy 3: Phylogenetic Regression on Normalized Data

One way to include the phylogenetic structure with within-species variation, in statistical
analyses is to use a Phylogenetic Mixed Model (Grafen, 1989, 1992; Lynch, 1991; Housworth
et al., 2004), where the vector Ỹg of the n normalized and transformed measurement for a
given gene g is seen as the sum of a fixed effect, a random phylogenetic effect, and a random
independent effect:

Ỹg = Xθg +Ephy
g +Eiid

g , (2)

with X and θg the design matrix and associated vector of coefficients as in Eq. (1), Ephy
g a

vector of phylogenetically correlated residuals, with correlations given by the chosen process
on the tree (see Section Phylogenetic Comparative Methods) and Eiid

g independent and iden-
tically distributed (iid) residuals, that can capture any non-phylogenetic source of variation
of the data, such as within-species variation as described above.

Several methods for gene expression analysis based on models related to the PCM frame-
work have been described in the literature, with different versions of the BM or the OU
process, and with or without within-species variation (Khaitovich et al., 2004; Gu, 2004;
Gu and Su, 2007; Bedford and Hartl, 2009; Rohlfs et al., 2014; Rohlfs and Nielsen, 2015;
Gu et al., 2019), and in particular have been used to detect differences in gene expression
across species (Brawand et al., 2011; Rohlfs et al., 2014; Rohlfs and Nielsen, 2015; Stern and
Crandall, 2018; Catalán et al., 2019; Chen et al., 2019).

For differential expression analysis, the phylogenetic ANOVA framework (Garland et al.,
1993; Grafen, 1989; Rohlfs and Nielsen, 2015; Bastide et al., 2018) is particularly relevant,
and can just be seen as the phylogenetic regression above, with the design matrix X en-
coding groups of species. This framework is for instance implemented in the popular and
computationally efficient R package phylolm (Ho and Ané, 2014a).
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B Clade Specific Differential Expression Analysis

Using the linear model, we defined the design matrix to distinguish between 4 groups: sighted
species (reference group); blind Procambarus species (pallidus, horsti and lucifugus); blind
Cambarus species (setosus, cryptodytes and hamulatus); and blind Orconectes species (aus-
tralis and incomptus). Using the same procedure as above, we tested with limma cor for the
coefficients associated to each of the three genus of blind species. We report below genes
with an adjusted p-value below 0.05.

Only one gene was found differentially expressed in all three groups: OG0002505, with
Uniprot top hit XYLA ARATH, name “Xylose isomerase”. In addition, two more genes
were common to groups Procambarus and Cambarus only: OG0000233 (RTBS DROME,
“Probable RNA-directed DNA polymerase from transposon BS”) and OG0000606 (LIN1 NY-
CCO, “LINE-1 reverse transcriptase homolog”); and two other genes were common to groups
Orconectes and Cambarus only: OG0001105 (PIPA DROME, “1-phosphatidylinositol 4,5-
bisphosphate phosphodiesterase”) and OG0001281 (OPSD PROCL, “Rhodopsin”). Among
these 5 genes, only one (OG0000606) was not found differentially expressed in the first anal-
ysis where all the blind species where merged into one single group (see Table 1).

It is not surprising for de-novo assembled transcriptomes of invertebrate species to have
a high percentage of genes that do not match any protein in reference databases (Stern
and Crandall, 2018), and function identification often comes from distantly related species,
which can make it difficult to interpret. In the differentially expressed genes presented above,
there were only 5 orthogroups that did not have a significant hit in the Uniprot/Swiss-Prot
database. This small percentage could be partly explained by the fact that only highly
expressed genes found across all the species were considered in this analysis.
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Table S1: Differentially expressed genes across blind Procambarus and all sighted Crayfish
species found by the limma cor method on log2 transformed TPM values.

Orthogroup adj. p-value Uniprot top hit Protein name

OG0002505 1.6e-04 XYLA ARATH Xylose isomerase
OG0000383 1.3e-02 POL3 DROME Retrovirus-related Pol polyprotein from transposon 17.6
OG0001902 1.3e-02 EF1A BOMMO Elongation factor 1-alpha
OG0000013 1.6e-02 YI31B YEAST Transposon Ty3-I Gag-Pol polyprotein
OG0009115 1.6e-02 TMED7 RAT Transmembrane emp24 domain-containing protein 7
OG0008389 2.2e-02 U389 DROPS UPF0389 protein GA21628
OG0000233 2.4e-02 RTBS DROME Probable RNA-directed DNA polymerase from transposon BS
OG0001073 2.4e-02 POL3 DROME Retrovirus-related Pol polyprotein from transposon 17.6
OG0003669 2.4e-02 GP107 MOUSE Protein GPR107
OG0000625 4.2e-02 TF29 SCHPO Transposon Tf2-9 polyprotein
OG0008424 4.3e-02 RL28 SPOFR 60S ribosomal protein L28
OG0008907 4.5e-02 RL44 OCHTR 60S ribosomal protein L44
OG0000606 4.7e-02 LIN1 NYCCO LINE-1 reverse transcriptase homolog
OG0000165 5.0e-02 RTJK DROFU RNA-directed DNA polymerase from mobile element jockey

Table S2: Differentially expressed genes across blind Orconectes and all sighted Crayfish
species found by the limma cor method on log2 transformed TPM values.

Orthogroup adj. p-value Uniprot top hit Protein name

OG0004279 1.5e-06 RL22 CAEEL NA
OG0002505 1.5e-06 XYLA ARATH Xylose isomerase
OG0007419 2.4e-03 RS14 PROCL 40S ribosomal protein S14
OG0007471 5.7e-03 AN32A DROME Acidic leucine-rich nuclear phosphoprotein 32 family member A
OG0001081 6.4e-03 MDC1 MACMU Mediator of DNA damage checkpoint protein 1
OG0001105 6.6e-03 PIPA DROME 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase
OG0002942 8.1e-03 K0100 HUMAN Protein KIAA0100
OG0000083 1.0e-02 NA NA
OG0000885 1.2e-02 NA NA
OG0005282 1.2e-02 ALF DROME Fructose-bisphosphate aldolase
OG0007052 1.3e-02 PGK DROME Phosphoglycerate kinase
OG0000698 2.3e-02 LIAT1 HUMAN Protein LIAT1
OG0005096 2.3e-02 E2AK4 RAT eIF-2-alpha kinase GCN2
OG0009037 3.1e-02 RS3A BIPLU 40S ribosomal protein S3a
OG0000069 3.3e-02 DNJC5 DROME DnaJ homolog subfamily C member 5 homolog
OG0001175 3.3e-02 EAA3 RABIT Excitatory amino acid transporter 3
OG0002503 3.4e-02 TPRGL MOUSE Tumor protein p63-regulated gene 1-like protein
OG0005913 3.4e-02 EIF3B HUMAN Eukaryotic translation initiation factor 3 subunit B
OG0002556 3.8e-02 NFKB2 XENLA Nuclear factor NF-kappa-B p100 subunit
OG0003284 3.8e-02 WDR48 CHICK WD repeat-containing protein 48
OG0004914 3.8e-02 CDN1B HUMAN Cyclin-dependent kinase inhibitor 1B
OG0001281 4.3e-02 OPSD PROCL Rhodopsin
OG0001546 4.4e-02 ZBT49 HUMAN Zinc finger and BTB domain-containing protein 49
OG0001058 4.8e-02 RTJK DROME RNA-directed DNA polymerase from mobile element jockey
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Table S3: Differentially expressed genes across blind Cambarus and all sighted Crayfish
species found by the limma cor method on log2 transformed TPM values.

Orthogroup adj. p-value Uniprot top hit Protein name

OG0002505 2.7e-07 XYLA ARATH Xylose isomerase
OG0008934 4.9e-05 RS30 ORYLA 40S ribosomal protein S30
OG0000233 6.0e-03 RTBS DROME Probable RNA-directed DNA polymerase from transposon BS
OG0002370 6.0e-03 ARRH LOCMI Arrestin homolog
OG0000346 1.8e-02 JERKY HUMAN Jerky protein homolog
OG0009062 1.8e-02 RL10 BOMMA 60S ribosomal protein L10
OG0009021 2.1e-02 NDKA PONAB Nucleoside diphosphate kinase A
OG0001281 2.6e-02 OPSD PROCL Rhodopsin
OG0001008 3.0e-02 RTJK DROME RNA-directed DNA polymerase from mobile element jockey
OG0007035 3.8e-02 RL19 DROME 60S ribosomal protein L19
OG0000606 3.9e-02 LIN1 NYCCO LINE-1 reverse transcriptase homolog
OG0001279 3.9e-02 ARRH HELVI Arrestin homolog
OG0001750 3.9e-02 RTN4 MOUSE Reticulon-4
OG0005269 3.9e-02 TCPA DROME T-complex protein 1 subunit alpha
OG0009626 3.9e-02 RL18 TIMBA 60S ribosomal protein L18
OG0009633 3.9e-02 RL6 CHILA 60S ribosomal protein L6
OG0009642 3.9e-02 NACA DROME Nascent polypeptide-associated complex subunit alpha
OG0000081 4.1e-02 NA NA
OG0001678 4.1e-02 GNAQ HOMAM Guanine nucleotide-binding protein G(q) subunit alpha
OG0004085 4.1e-02 RS11 RAT 40S ribosomal protein S11
OG0007915 4.1e-02 H5 CHICK General transcription factor IIH subunit 5
OG0000025 4.2e-02 DPOL HHBV Protein P
OG0007885 4.2e-02 NA NA
OG0001105 4.6e-02 PIPA DROME 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase
OG0000017 4.8e-02 NA NA
OG0003210 4.8e-02 ELOA1 DROME Transcription elongation factor B polypeptide 3
OG0003970 4.8e-02 GTD2A HUMAN General transcription factor II-I repeat domain-containing protein 2A
OG0005931 4.8e-02 7B2 HUMAN Cytochrome c oxidase subunit 7B2, mitochondrial
OG0006265 4.8e-02 AT1B1 ARTSF Sodium/potassium-transporting ATPase subunit beta
OG0009074 4.8e-02 PFD1 DANRE Prefoldin subunit 1

Finally, for comparison, Table S4 presents the list of genes found when applying the limma
cor method on the log2 transformed RPKM values, instead of TPM, for the global analysis.
This table is to be compared with Table 1 from the main text.

Table S4: Differentially expressed genes across blind and sighted Crayfish species found by
the limma cor method on log2 transformed RPKM values (adjusted p-values below 0.05).

Orthogroup adj. p-value Uniprot top hit Protein name

OG0002505 9.2e-08 XYLA ARATH Xylose isomerase
OG0000233 9.5e-03 RTBS DROME Probable RNA-directed DNA polymerase from transposon BS
OG0000083 4.9e-02 NA NA
OG0000383 4.9e-02 POL3 DROME Retrovirus-related Pol polyprotein from transposon 17.6
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C Supplementary Simulation Figures

In this Supplementary Section, we present the same results as in the Result section of the
main text, but showing for each plot all the same three scores (MCC, FDR and TPR) for a
uniform presentation.
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Figure S1: The base scenario (pPLN (real tree), right) had empirical moments drawn from
(Stern and Crandall, 2018), with an effect size of 3, a BM model of evolution with added
intra-species variation accounting for 20% of the total variance, on the maximum likelihood
tree, with the observed “sight” groups (see Fig. 1). It is compared to a pPLN model with
the same parameters, but in a case where all samples were independent (pPLN (star tree),
middle), and to a NB model with the same moments and effect size (NB, left). The DESeq2
(black) and limma (light orange) inference methods were applied to each scenarios.The black
dashed line represents the nominal rate of 5% used to call positives. For limma, the counts
were normalized using log2(TPM) values. Boxplots are based on 50 replicates.
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Figure S2: Results in terms of MCC (top), FDR (middle) and TPR (bottom) scores of the
five selected statistical methods (x axis) on the pPLN base scenario, that has an effect size
of 3, a BM model of evolution with added intra-species variation accounting for 20% of the
total variance, on the maximum likelihood tree (Stern and Crandall, 2018), with the observed
“sight” groups (dark purple line, see Fig. 1). The “alt” (light orange line) and “block” (black
line) groups were also tested, with the same parameters. For the FDR, the black dashed line
represents the nominal rate of 5% used to call positives. When required, the counts were
normalized using log2(TPM) values. Boxplots are based on 50 replicates.
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Figure S3: Results in terms of MCC (top), FDR (middle) and TPR (bottom) scores of the
three correlation aware statistical methods (x axis) on the pPLN base scenario (effect size
of 3, intra-species variation accounting for 20% of the total variance), with a BM (dark
purple line) or an OU (light orange line) model of evolution on the maximum likelihood
tree (Stern and Crandall, 2018), with the observed “sight” (middle), “block” (left) and “alt”
(right) groups. The counts were normalized using log2(TPM) values. Boxplots are based on
50 replicates. Simulating with an OU weakens the phylogenetic signal (Ho and Ané, 2014b).
For the“sight”and“alt”design (dapaESSn > 1), it makes the differential expression detection
problem more difficult, while for the block design (dapaESSn < 1), it makes it easier. In the
limiting case where the selection strength α goes to infinity, the underlying tree becomes a
star tree ans species are no longer correlated (although samples inside a species are). The
group design then does not matter in this limiting case, and we expect that the “sight”, “alt”
and “block” designs converge to the same difficulty (dapaESSn = 1)
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Figure S4: Results in terms of MCC (top), FDR (middle) and TPR (bottom) scores of the
three correlation aware statistical methods (x axis) on the pPLN base scenario with an effect
size of 3, a BM model of evolution on the maximum likelihood tree (Stern and Crandall,
2018), with the observed “sight” groups, and intra-species variation accounting for 40% (light
orange line), 20% (dark purple line), or 0% (black line) of the total variance). The counts
were normalized using log2(TPM) values. Boxplots are based on 50 replicates.
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Figure S5: Results in terms of MCC (top), FDR (middle) and TPR (bottom) scores of the
phylolm (BM) method on the pPLN base scenario (effect size of 3, BM model of evolution on
the maximum likelihood tree (Stern and Crandall, 2018), with the observed “sight” groups,
and added intra-species variation accounting for 20% of the total variance). The counts were
length-normalized (x axis) using CPM (length not taken into account, none), RPKM or TPM,
and transformed using the square root (light orange) or the log2 (dark purple) functions.
Boxplots are based on 50 replicates.
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D Comparison of NB and pPLN Datasets

In this section, we reproduce and comment some of the results of the countsimQC (Sone-
son and Robinson, 2018) analysis on the comparison of datasets produced by our sim-
ulation schemes. The full analysis is available as an html file in the associated GitHub
repository https://github.com/i2bc/InterspeciesDE/ (see analysis file R_scripts/06_

simulations_data_check.R and associated result file 2021-12-01_simulations_stern2018/
all_with_lengths_3_0.8_1_countsim_report.html). In this comparison, we considered
four different datasets:

• “Original” is the original dataset of Stern and Crandall (2018), that was used as a basis
for the calibration of our simulation scheme.

• “pPLN (real tree)” is a dataset produced by our pPLN base scenario, that had empirical
moments drawn from the original dataet, with an effect size of 3, a BM model of
evolution with added intra-species variation accounting for 20% of the total variance,
on the maximum likelihood tree, with the observed sight groups.

• “pPLN (star tree)” is a dataset produced with the same parameters as the previous
one, but using a star tree instead of the empirical tree, keeping only one sample per
species. All the samples are hence drawn independently in this dataset.

• “NB” is a dataset produced with the classical NB of compcodeR, with parameters set
up to match the first two moments of the previous dataset.

Note that we chose to keep only one replicate per species for the star-tree and NB simulation
in order to avoid any species structure effect in the data. The first dataset hence had 14
species and 34 samples (with species replicates highly correlated), while the last two only
had 14 independent samples. The fact that the “pPLN (real tree)” had more samples than
the“pPLN (star tree)”and“NB”datasets makes the failure of DESeq2 and limma to correctly
handle the structured dataset even more appreciable (see Fig. 2 and S1).

Dispersion Plot

Figure S6 shows a plot of the dispersion versus the base mean for the four datasets, with
the scatter plot replaced with a density plot for better legibility. The dispersion is the final
dispersion estimate of DESeq2. Visually, the original dataset has more concentrated base
mean values and more dispersed distribution values than all the simulated datasets. The
NB and pPLN (star tree) distributions look alike, and seem less diffuse than the pPLN (real
tree) one.

Expression Distributions

Figure S7 shows a plot of the distribution over the genes of the sample-wise average log CPM
values. As previously, visually, the original dataset has more concentrated mean values than
all the simulated datasets, which in turn all look alike.

The Kolmogorov-Smirnov test between the distribution rejected the null hypothesis of
equal distribution in pairwise comparisons between any model and the original data, indicat-
ing that all models are relatively poor in representing the distibution, NB and pPLN alike
(see Table S5). However, we could not reject the null hypothesis when comparing the NB
and the pPLN on star tree distribution.

Both comparison tend to show that, with similar parameters, the pPLN (star tree) does
mimic the classical NB model, as intended.
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Figure S6: Plot of the average abundance against the dispersion, as calculated by DESeq2
(Love et al., 2014). The final dispersion estimates distribution for the 3560 genes is shown
as a tile plot, with deeper blues representing regions with a high density of points. The
red curve is the fitted mean-dispersion relationship. Both axis are on the log10 scale. The
Original dataset is the one from (Stern and Crandall, 2018). The base scenario (pPLN (real
tree), right) had empirical moments drawn from (Stern and Crandall, 2018), with an effect
size of 3, a BM model of evolution with added intra-species variation accounting for 20%
of the total variance, on the maximum likelihood tree, with the observed sight groups. It
is compared to a pPLN model with the same parameters, but in a case where all samples
were independent (pPLN (star tree), middle), and to a NB model with the same moments
and effect size (NB, left).

Table S5: Pairwise comparison of the expression distribution of the four samples, using the
Kolmogorov–Smirnov test.

dataset1 dataset2 K-S statistic K-S p-value

pPLN (real tree) pPLN (star tree) 0.03 0.04
pPLN (real tree) NB 0.03 0.03
pPLN (real tree) Original 0.31 0.00
pPLN (star tree) NB 0.01 0.98
pPLN (star tree) Original 0.28 0.00

NB Original 0.28 0.00
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Figure S7: Plot of the distribution of the average abundance values for the genes. The
Original dataset is the one from (Stern and Crandall, 2018). The base scenario (pPLN (real
tree), right) had empirical moments drawn from (Stern and Crandall, 2018), with an effect
size of 3, a BM model of evolution with added intra-species variation accounting for 20%
of the total variance, on the maximum likelihood tree, with the observed sight groups. It
is compared to a pPLN model with the same parameters, but in a case where all samples
were independent (pPLN (star tree), middle), and to a NB model with the same moments
and effect size (NB, left).
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E Surrogate Variable Analysis

Setting

Surrogate variable analysis (SVA) can be used as a pre-processing step before a differential
analysis, to detect for hidden heterogeneity in the data, such as batch effects (Leek and
Storey, 2007; Leek, 2014). The phylogenetic structure could be seen as a hidden variable, and
a SVA step might help in correcting for the tree-induced structure. To test this hypothesis,
we ran a limma sva analysis, that uses package sva (Leek, 2014) to first detect surrogate
variables, and the proceed with a classic limma framework, with the added variables in the
design. We tested two configurations for the SVA analysis: limma sva (one) was forced to
detect only one surrogate variable, while limma sva (auto) used the asymptotic approach to
estimate the number of surrogate variables to include (Leek, 2011). In both cases, the control
probes were empirically estimated (method=”irw”). The general setting was the same as the
one used in our base scenario.

Results

The limma sva (one) method performed similarly as the vanilla limma method, while perform-
ing significantly worse than the limma cor method (Fig. S9). The limma sva (auto) method
had a very high variance, and its best performances matched those of the vanilla limma
method.

The high variance of the limma sva (auto) can be linked with the high variance of the
number of surrogate variable selected, that goes from 1 to 26, with a median of 10 (Fig. S8).
Interestingly, this number almost did not vary for the block design, wich is also the design
for which the performance of limma sva (auto) relative to limma is the worse.
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Figure S8: Number of surrogate variables selected in limma sva (auto), for the three designs
(x axis) on the pPLN base scenario, that has an effect size of 3, a BM model of evolution
with added intra-species variation accounting for 20% of the total variance, on the maximum
likelihood tree (Stern and Crandall, 2018), with counts normalized using log2(TPM) values.
Boxplots are based on 50 replicates.
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Figure S9: Results in terms of MCC (top), FDR (middle) and TPR (bottom) scores of the
five selected statistical methods (x axis) on the pPLN base scenario, that has an effect size
of 3, a BM model of evolution with added intra-species variation accounting for 20% of the
total variance, on the maximum likelihood tree (Stern and Crandall, 2018), with the observed
“sight” groups (dark purple line, see Fig. 1). The “alt” (light orange line) and “block” (black
line) groups were also tested, with the same parameters. For the FDR, the black dashed line
represents the nominal rate of 5% used to call positives. When required, the counts were
normalized using log2(TPM) values. Boxplots are based on 50 replicates.
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