
In SI A we provide more details of the methods and datasets, in SI B we provide supplemental

analyses, and in SI C we provide full results of statistical models for the main results.

A Supplemental methods

A.1 Datasets

If seas are bigger than puddles, then puddles
are...
Choice: smaller than seas
Choice: bigger than seas
Answer: smaller than seas

(a) Natural language inference.

Argument:
All diamonds are gems.
Some gems are transparent things.
Conclusion: Some diamonds are transparent
things.
Answer: This argument is invalid.

(b) Syllogism validity.

A parent needs to check that their children are following the rules. The following
cards represent the children; they each have a current activity on one side and a
homework completion on their other side. The rule is that if the children are playing
games then they must have finished their homework. Which of the cards would you
need to flip over to help them to ensure that the rule is being followed?
card: playing video games
card: eating dinner
card: homework is not done
card: homework is done
Answer: You need to flip over the ones showing “playing video games” and
“homework is not done”

(c) Wason selection task.

Figure S1: Examples of the three logical reasoning tasks we evaluate, as they were presented
to the models: (a) simple single-step natural language inferences, (b) assessing the validity of
logical syllogisms, and (c) the Wason selection task. In each case, the model must choose the
answer (blue and bold) from a set of possible answer choices.

As noted in the main text, we generated new datasets for each task to avoid problems with

training data contamination. In this section we present further details of dataset generation.

A.1.1 NLI task generation

In the absence of existing cognitive literature on generating belief-aligned stimuli for this task,

we used a larger language model (Gopher, 280B parameters, from 13) to generate 100 compari-

son statements automatically, by prompting it with 6 comparisons that are true in the real world.

The exact prompt used was:
The following are 100 examples of comparisons:

1. mountains are bigger than hills
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2. adults are bigger than children

3. grandparents are older than babies

4. volcanoes are more dangerous than cities

5. cats are softer than lizards

We prompted the LLM multiple times, until we had generated 100 comparisons that fulfilled

the desired criteria. The prompt completions were generated using nucleus sampling (121) with

a probability mass of 0.8 and a temperature of 1. We filtered out comparisons that were not of

the form “[entity] is/are [comparison] than [other entity]”. We then filtered these comparisons

manually to remove false and subjective ones, so the comparisons all respect real-world facts.

An example of the generated comparisons includes “puddles are smaller than seas”.

We generated a natural inference task derived from these comparison sentences as follows.

We began with the consistent version, by taking the the raw output from the LM, “puddles

are smaller than seas” as the hypothesis and formulating a premise “seas are bigger than pud-

dles” such that the generated hypothesis is logically valid. We then combine the premise and

hypothesis into a prompt and continuations. For example:
If seas are bigger than puddles, then puddles are
A. smaller than seas
B. bigger than seas

where the logically correct (A) response matches real-world beliefs (that ‘puddles are smaller

than seas’). Similarly, we can also generate a violate version of the task where the logical

response violates these beliefs. For example,
If seas are smaller than puddles, then puddles are
A. smaller than seas
B. bigger than seas

here the correct answer, (B), violates the LM’s prior beliefs. Finally, to generate a nonsense

version of the task, we simply replace the nouns (‘seas’ and ‘puddles’) with nonsense words.

For example:
If vuffs are smaller than feps, then feps are
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Argument:
No flowers are animals.
All reptiles are animals.
Conclusion: No flowers are reptiles.

(a) Valid, consistent

Argument:
No flowers are animals.
All reptiles are flowers.
Conclusion: No reptiles are animals.

(b) Valid, violate

Argument:
No flowers are reptiles.
All reptiles are animals.
Conclusion: No flowers are animals.

(c) Invalid, consistent

Argument:
No flowers are animals.
All flowers are reptiles.
Conclusion: No reptiles are animals.

(d) Invalid, violate

Figure S2: Example syllogism cluster, showing 2× 2 design of valid (top row), invalid (bottom
row), and consistent (left column) and violate (right column) arguments.

A. smaller than vuffs
B. bigger than vuffs

Here the logical conclusion is B. For each of these task variations, we evaluate the log prob-

ability the language model places on the two options and choose higher likelihood one as its

prediction.

A.1.2 Syllogisms data generation

We generated a new set of problems for syllogistic reasoning. Following the approach of Evans

et al. (20), in which the syllogisms were written based on the researchers’ intuitions of believ-

ability, we hand-authored these problems based on beliefs that seemed plausible to the authors.

See Fig. S1b for an example problem. We built the dataset from clusters of 4 arguments that use

the same three entities, in a 2×2 combination of valid/invalid, and belief-consistent/violate. For

example, in Fig. S2 we present a full cluster of arguments about reptiles, animals, and flowers.

By creating the arguments in this way, we ensure that the low-level properties (such as

the particular entities referred to in an argument) are approximately balanced across the rele-

vant conditions. In total there are twelve clusters. We avoided using the particular negative

form (“some X are not Y”) to avoid substantial negation, which complicates behavior both for

language models and humans (cf. 122, 123). We then sampled an identical set of nonsense
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Some librarians are happy people
All happy people are healthy people
Conclusion: Some librarians are healthy people

All guns are weapons
All weapons are dangerous things
Conclusion: All guns are dangerous things

Some electronics are computers
All computers are expensive things
Conclusion: Some electronics are expensive things

All trees are plants
Some trees are tall things
Conclusion: Some plants are tall things

No flowers are animals
All reptiles are animals
Conclusion: No flowers are reptiles

All diamonds are gems
Some diamonds are transparent things
Conclusion: Some gems are transparent things

All dragons are mythical creatures
No mythical creatures are things that exist
Conclusion: No dragons are things that exist

Some politicians are dishonest people
All dishonest people are people who lie
Conclusion: Some politicians are people who lie

All whales are mammals
Some whales are big things
Conclusion: Some mammals are big things

All vegetables are foods
Some vegetables are healthy things
Conclusion: Some foods are healthy things

All famous actors are wealthy people
Some famous actors are old people
Conclusion: Some old people are wealthy people

All vehicles are things that move
No buildings are things that move
Conclusion: No buildings are vehicles

Figure S3: One argument (valid, consistent) from each of the 12 argument clusters we used for
the syllogisms tasks, showing the entities and argument forms covered.

arguments by simply replacing the entities in realistic arguments with nonsense words.

We present the arguments to the model, and give a forced choice between “The argument

is valid.” or “The argument is invalid.” Where example shots are used, they are sampled from

distinct clusters, and are separated by a blank line. We also tried some minor variations in

preliminary experiments (such as changing the prompt or prefixing the conclusion with “There-

fore:” or omitting the prefix before the conclusion), but observed qualitatively similar results so

we omit them here.

A.1.3 Wason data generation

As above, we generated a new dataset of Wason problems to avoid potential for dataset con-

tamination (see Fig. S1c for an example). The final response in a Wason task does not involve

a declarative statement (unlike completing a comparison as in NLI), so answers do not directly

‘violate’ beliefs. Rather, in the cognitive science literature, the key factor affecting human

performance is whether the entities are ‘realistic’ and follow ‘realistic’ rules (such as people

following social norms) or consist of arbitrary relationships between abstract entities such as

letters and numbers. We therefore study the effect of realistic and arbitrary scenarios in the

4



language models.

We created 12 realistic rules and 12 arbitrary rules. Each rule appears with four instances,

respectively matching and violating the antecedent and consequent. Each realistic rule is aug-

mented with one sentence of context for the rule, and the cards are explained to represent the

entities in the context. The model is presented with the context, the rule, and is asked which of

the following instances it needs to flip over, then the instances. The model is then given a forced

choice between sentences of the form “You need to flip over the ones showing “X” and “Y”.”

for all subsets of two items from the instances. There are two choices offered for each pair, in

both of the possible orders, to eliminate possible biases if the model prefers one ordering or

another. (Recall that the model scores each answer independently; it does not see all answers at

once.)

See Figs. S4 and S5 for the realistic and arbitrary rules and instances used — but note that

problems were presented to the model with more context and structure, see Fig. S1c for an

example. We demonstrate in SI B.4 that the difficulty of basic inferences about the propositions

involved in each rule type is similar across conditions.

We also created 12 rules using nonsense words. Incorporating nonsense words is less

straightforward in the Wason case than in the other tasks, as the model needs to be able to

reason about whether instances match the antecedent and consequent of the rule. We therefore

use nonsense rules of the form “If the cards have less gluff, then they have more caft” with

instances being more/less gluff/caft. The more/less framing makes the instances roughly the

same length regardless of rule type, and avoids using negation which might confound results

(122).

Finally, we created two types of control rules based on the realistic rules, which we present

here. First, we created shuffled realistic rules by combining the antecedents and consequents

of different realistic rules, while ensuring that there is no obvious rationale for the rule. For
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example, one shuffled-realistic rule is “If they are doctors, then they must have a parachute.”

We then created violate-realistic rules by taking each realistic rule and reversing its con-

sequent. For example, the realistic rule “If the clients are skydiving, then they must have a

parachute” is transformed to the violate rule “If the clients are skydiving, then they must have

a wetsuit”, but “parachute” is still included among the cards. The violate condition is designed

to make the rule especially implausible in context of the examples (viz. requiring the item

that is not a parachute to skydive), while the rule in the shuffled condition is somewhat more

arbitrary/belief neutral.

To rule out a possible specific effect of cards (which were used in the original tasks) we also

sampled versions of each problem with sheets of paper or coins, but results are similar so we

collapse across these conditions in the main analyses.

A.1.4 Differences from an earlier preprint of this paper:

Readers of an earlier preprint of this paper (https://arxiv.org/abs/2207.07051v1)

may notice some differences in task format and performance of Chinchilla, especially on the

NLI task. These differences are due to our attempts to adapt the tasks in order to present them

to human participants. In order to align comparisons between humans and the language models

(cf. 73), we then ported the human-oriented changes back into the format used for language

model evaluation.

For example, in the original paper we did not show the model the two possible choices

for the NLI task; we simply evaluated the model’s likelihood of each continuation. However,

because we presented the tasks multiple choice to the humans in multiple choice format, we

showed them the two possible answers. Thus, in the current version of the paper we also

included the two answer choices in the prompt when evaluating the language models, followed

by “Answer:”, and only then evaluate the model (see Fig. S1a). Likewise, in the original version
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An airline worker in Chicago needs to check passenger documents. The rule is that if the passengers are traveling outside the
US then they must have showed a passport.↪→

Buenos Aires / San Francisco / passport / drivers license

A chef needs to check the ingredients for dinner. The rule is that if the ingredients are meat then they must not be expired.
beef / flour / expires tomorrow / expired yesterday

A lawyer for the Innocence Project needs to examine convictions. The rule is that if the people are in prison then they must
be guilty.↪→

imprisoned / free / committed murder / did not commit a crime

A medical inspector needs to check hospital worker qualifications. The rule is that if the workers work as a doctor then they
must have received an MD.↪→

surgeon / janitor / received an MD / received a GED

A museum curator is examining the collection. The rule is that if the artworks are in the museum then they must be genuine.
displayed in the museum / not in the museum / genuine / forgery

An adventure trip organizer needs to ensure their clients have the appropriate gear. The rule is that if the clients are going
skydiving then they must have a parachute.↪→

skydiving / mountain biking / parachute / wetsuit

A parent needs to check that their children are following the rules. The rule is that if the children are playing games then
they must have finished their homework.↪→

playing video games / eating dinner / homework is done / homework is not done

A priest needs to check if people are ready for marriage. The rule is that if the people are engaged then they must be adults.
engaged / single / 25 years old / 7 years old

A traffic enforcement officer needs to check that people are following the law. The rule is that if the people in vehicles are
driving then they must have a driver license.↪→

driver / passenger / has a license / does not have a license

A gardener needs to take care of their plants. The rule is that if the plants are flowers then they must be fertilized.
rose / oak / fertilized / not fertilized

A farmer is getting equipment ready for the day. The rule is that if the pieces of equipment have an engine then they must
have fuel.↪→

tractor / shovel / has gasoline / does not have gasoline

A person is cleaning out and organizing his closet. The rule is that if the clothes are going to the thrift store then they
must be old.↪→

thrift store / keep / worn out / brand new

An employer needs to check that their business is following health regulations. The rule is that if the employees are working
then they must not be sick.↪→

working / on vacation / healthy / has a cold

Figure S4: Realistic Wason rules and instances used.
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The rule is that if the cards have a plural word then they must have a positive emotion.
crises / dog / happiness / anxiety

The rule is that if the cards have a soft texture then they must have a polygon.
soft / rough / hexagon / circle

The rule is that if the cards have a French word then they must have a positive number.
chapeau / sombrero / 4 / -1

The rule is that if the cards have a prime number then they must have a secondary color.
11 / 12 / purple / red

The rule is that if the cards have a European country then they must have something hot.
Germany / Brazil / furnace / ice cube

The rule is that if the cards have the name of a famous book then they must have the name of an elementary particle.
Moby Dick / Citizen Kane / neutrino / atom

The rule is that if the cards have a type of plant then they must have the name of a philosopher.
cactus / horse / Socrates / Napoleon

The rule is that if the cards have the name of a web browser then they must have a type of pants.
Internet Explorer / Microsoft Word / jeans / sweatshirt

The rule is that if the cards have a beverage containing caffeine then they must have a material that conducts electricity.
coffee / orange juice / copper / wood

The rule is that if the cards have something electronic then they must have a hairy animal.
flashlight / crescent wrench / bear / swan

The rule is that if the cards have a verb then they must have a Fibonacci number.
walking / slowly / 13 / 4

The rule is that if the cards have a text file extension then they must have a time in the morning.
.txt / .exe / 11:00 AM / 8:00 PM

Figure S5: Arbitrary Wason rules and instances used.

of the paper we did not provide instructions before the tasks; in this version we attempted to

match the relevant portions of the human instructions.

These changes mean that the results in the current version of the paper cannot be directly

compared to the results in the earlier version.

A.2 Evaluation

DC-PMI correction: We use the DC-PMI correction (120) for the syllogisms and Wason tasks;

i.e., we choose an answer from the set of possible answers (A) as follows:

argmaxa∈A p(a | question)− p(a | baseline prompt)

Where the baseline prompt is the task instruction prompt, followed by “Answer:” and p(x | y)

denotes the model’s evaluated likelihood of continuation x after prompt y.

Instruction prompt: We prefixed each question with a two-part instruction prompt that

attempted to match the human generic and task-specific instructions (see below). We began
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each of these prompts with the performance relevant generic instructions that preceded our

human experiment:
In this task, you will have to answer a series of questions. You will have to choose the best answer to complete a sentence,

paragraph, or question. Please answer them to the best of your ability.\n\n↪→

After two linebreaks, a task-specific instruction was appended:

NLI:
Please choose the best completion for the following sentence:\n

Syllogisms:
Please assume that the first two sentences in the argument are true. Determine whether the argument is valid, that is, whether

the conclusion follows from the first two sentences:\n'↪→

Wason:
Please answer the following question carefully:\n

Finally, the question was appended to this prompt.

A.3 Human experiments

The exact text seen by the participants before each question was as follows:
NLI DEFAULT PREFACE = (

” P l e a s e choose t h e b e s t c o m p l e t i o n f o r t h e f o l l o w i n g s e n t e n c e : ” )
SYLLOGISMS DEFAULT PREFACE = (

” P l e a s e assume t h a t t h e f i r s t two s e n t e n c e s i n t h e argument a r e t r u e . ”
” De te rmine whe the r t h e argument i s v a l i d , t h a t i s , whe the r t h e

c o n c l u s i o n ”
” f o l l o w s from t h e f i r s t two s e n t e n c e s : ” )

WASON DEFAULT PREFACE = (
” P l e a s e answer t h e f o l l o w i n g q u e s t i o n c a r e f u l l y : ”

)
WASON BONUS PREFACE = (

” P l e a s e answer t h e f o l l o w i n g q u e s t i o n c a r e f u l l y ; <f o n t c o l o r = '# bb0044 '>
we ”

” w i l l pay you an a d d i t i o n a l p e r f o r m a n c e bonus o f 0 . 5 GBP i f you answer
”

” t h i s q u e s t i o n c o r r e c t l y </ f o n t >: ”
)
PRIOR AGREEMENT PREFACE = (

” P l e a s e r a t e how much you a g r e e wi th t h e f o l l o w i n g s t a t e m e n t , on a
s c a l e ”

” from 0% ( d i s a g r e e c o m p l e t e l y ) t o 50% ( n e i t h e r a g r e e nor d i s a g r e e ) t o
100% ”

” ( a g r e e c o m p l e t e l y ) . ”
)
WASON BELIEVABLE PREFACE = (
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” P l e a s e r a t e how b e l i e v a b l e t h e f o l l o w i n g r u l e i s , on a s c a l e from 0% ”
” ( c o m p l e t e l y u n b e l i e v a b l e ) t o 50% ( n e i t h e r b e l i e v a b l e nor u n b e l i e v a b l e )

t o ”
”100% ( c o m p l e t e l y b e l i e v a b l e ) . ”

)

Due to infrastructure restrictions in the framework used to create the human tasks, we as-

signed participants to conditions and items randomly rather than with precise balancing. Fur-

thermore, a few participants timed out on some questions, and there were a handful of instances

of data not saving properly due to server issues. Thus, the exact number of participants for

which we have data varies slightly from task to task and item to item.

A.4 Language Models

In Table S1, we provide a detailed comparison of the language models that we evaluated. Note

that some details are not publicly available; thus, the information is unfortunately incomplete.

Name Citation Architecture Training Data Pretraining
Objective

Instruction tuned? # Parame-
ters

Chinchilla Hoffmann et al. (45) Decoder-only
+ RMSNorm
+ Relative
Positions.

MassiveText
(13), for 1.4
trillion tokens

Causal lan-
guage mod-
eling

No 70 billion

PaLM 2-M Anil et al. (47) * * Mixed
(119)

No *

PaLM 2-L Anil et al. (47) * * Mixed
(119)

No *

Flan-PaLM 2 Anil et al. (47) Same as PaLM 2-L Yes Same as
Palm 2-L

GPT-3.5-turbo-instruct (46) * * * Yes *

Table S1: Comparing attributes of the different language models we evaluated in this work. (*
denotes information that has not been publicly disclosed.)

evaluate several different families of language models. First, we evaluate several base LMs

that are trained only on language modeling: including Chinchilla (45) a large model (with 70

billion parameters) trained on causal language modeling, and PaLM 2-M and -L (47), which

are trained on a mixture of language modeling and infilling objectives. We also evaluate two

instruction-tuned models: Flan-PaLM 2, which is an instruction-tuned version of Palm 2-L, and
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GPT-3.5-turbo-instruct (46), which we generally refer to as GPT-3.5 for brevity. We note that

Flan-PaLM 2 is fine-tuned on NLI tasks (cf. 124), but with the more standard NLP formulation;

however, since even the base PaLM 2-L model performs extremely well at the NLI tasks we do

not believe this substantially influences the results.

B Supplemental analyses

B.1 Believability of the propositions and rules

In order to assess the validity of our new datasets, we collected believability ratings from each

human subject, after they had completed the three tasks tasks, on one stimulus from each task

type (not the version they had seen). Specifically, we asked the participants how believable a

Wason rule was, and how much they agreed or disagreed with a proposition. In Fig. S6 we

show that participants found Consistent and Realistic stimuli much more believable than those

in other conditions.
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Figure S6: Our datasets align with human beliefs. When participants were asked how much they
believed propositions or rules from our three tasks (a-c), they rated the Consistent or Realistic
conditions as much more believable than the Violate ones, with Nonsense in between.

Chinchilla: We similarly evaluated the likelihood (log-probability) of the key propositions,
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conclusions, and rules from each task according to the Chinchilla language model. This eval-

uation is an attempt at a manipulation check that the model priors over the stimuli accord with

the human ones; however, note that it is difficult to interpret the raw likelihood comparisons

as direct measures of believability, because sequences composed of more tokens will tend to

have lower likelihood. For this reason, the Nonsense sentences tend to score much lower than

the other conditions (because the nonsense words are composed of many tokens in an unlikely

sequence, while the real words we use are common and thus generally are a single token).

However, we do find that the model tends to assign higher log-probabilities to stimuli from

the Consistent or Realistic conditions than the others, consistent with our argument that these

statements fit the model’s priors.
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Figure S7: Our datasets align with Chinchilla’s expectations over text. When the likelihood of
propositions or rules from each of the three tasks were evaluated, the model assigned higher
likelihood to Consistent or Realistic rules than the other conditions (a-c).

B.2 Robustnesss of the main language model results to raw-likelihood
scoring and few-shot prompting

In this section, we show that the content effects we observe are robust to various manipulations

of the evaluation context.
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B.2.1 Removing instruction prompts

In the main text experiments, we provided models with an instruction prompt that roughly

matched the human instructions (cf. 73). However, it is unclear how substantial a role this

prompt played in performance, and human-likeness of the content effects. In Fig. S8 we show

performance of a subset of the models when removing this instruction prompt; in most cases,

results are similar, with a few notable exceptions. In particular Chinchilla shows much stronger

content effects on the NLI tasks without instructions.

B.2.2 Using raw likelihoods rather than Domain-Conditional PMI on the Syllogisms and
Wason tasks

In the main results for the Syllogisms and Wason tasks, we scored the model using the Domain-

Conditional PMI (120). However, it is also common to score language models using raw likeli-

hood comparisons. Would we observe the same content effects in that case?

In Fig. S9 we show the results of raw-likelihood scoring. On the syllogisms tasks, this

scoring method results in substantially more answer bias — several of the models say valid in

response to every problem, regardless of the content or logical structure. Thus, performance

is much worse overall. However, for the models that do show any variability with content, the

content effects are broadly similar to those observed in the main text: the models are more likely

to say an argument is valid if the conclusion is belief-consistent than if the conclusion violates

beliefs. Furthermore, if the instruction prompt is removed, the bias is substantially reduced, and

stronger content effects are revealed.

In the Wason tasks, the effects on accuracy are more complex. While some models perform

worse without the prior correction (e.g. Chinchilla), others perform much better. In particular,

PaLM-2 L achieves over 75% performance in every condition (including Arbitrary and Non-

sense). However, all models that perform above chance show the same content effects observed
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Figure S8: Performance of a subset of the models when evaluated without an instruction prompt.
Overall results and content effects are similar; however, in a few cases performance is noticeably
impaired, particularly for Chinchilla on the Violate condition of NLI.
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in the main text: better performance on Realistic than Arbitrary rules. (In SI B.2.3 we also

explore the effect of scoring with raw likelihoods on the individual card choices on the Wason

task.)
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Figure S9: Scoring using the raw answer likelihoods — rather than the Domain-Conditional
PMI prior correction — for the Syllogisms and Wason tasks. (a) On the syllogisms tasks, re-
moving the prior correction results in substantial answer biases for many models: much greater
likelihood to say “valid” than “invalid.” Overall performance is much worse due to this bias; in-
deed, several models answer “valid” for every argument in every condition. However, for those
that do not — Flan-PaLM 2 and GPT-3.5 — the direction of the content effects is as in the main
text: the models are more likely to answer “valid” if the conclusion is belief-consistent. Note
that the left and right sub-panels are invalid and valid arguments, respectively. (b) However,
the answer bias on the syllogisms with raw-likelihood scoring seems to be strongly driven by
the instruction prompt; without the prompt, the raw likelihoods yield less biased responses, and
strong overall content effects. (c-d) On the Wason tasks, with or without the instruction prompt,
removing the prior correction improves performance from some models, but hurts performance
from others. Regardless, all models show the same pattern of content effects: facilitation in
the Realistic rules compared to Arbitrary. (Compare to Figs. 4 and 5, respectively, which use
DC-PMI scoring.))
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B.2.3 Effects of scoring method and answer order on the Wason answer choices

In Fig. S10 we show the effect of scoring method (DC-PMI vs. raw likelihoods) and the order in

which the cards were presented (antecedent cards first or consequent cards first) on the models’

answer choices on the Wason task. Scoring method does affect the error distribution fairly

substantially, even where accuracy is similar; answer order has smaller effects.
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Figure S10: Effect of scoring method (DC-PMI in the top two rows vs. raw likelihoods in
the bottom two) and ordering of the cards (antecedent cards first or consequent cards first;
respectively in rows 1 and 3, and 2 and 4) on model choices. The DC-PMI prior correction does
shift error patterns somewhat, and the models commit relatively more of the AT,AF answers
with raw likelihood scoring, while with the DC-PMI scoring, the humans commit more of
these errors than the models. The ordering of the cards does not have too substantial an effect,
particularly with DC-PMI scoring. Generally, content effects — that is, the advantage of the
Realistic rules over arbitrary ones — persists regardless of scoring method or order.
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Figure S11: Chinchilla evaluated 5-shot on the syllogisms task, with different types of prompt
examples. Content effects are very slightly reduced relative to the original experiments, but
remain robust. The particular type of problems used in the prompt examples do not strongly
affect performance. (The “Realistic: mixed” condition includes realistic examples from both
the consistent and violate subsets.)

B.2.4 Few-shot prompting of Chinchilla

In all the main text experiments, we evaluated the models zero-shot, with only instructions.

However, language model performance is generally improved by few-shot prompting (e.g. 7).

We therefore evaluated whether few shot prompting with different kinds of prompt examples

would alter the content effects we observed. (Note that, for computational reasons, we restrict

these analyses to the Chinchilla model.) When we present a few-shot prompt of examples of

the task to the model, the examples are presented with correct answers, and each example (as

well as the final probe) is separated from the previous example by a single blank line.

In Fig. S11 we show 5-shot prompting results for Chinchilla on the Syllogisms tasks. Con-

tent effects are slightly weaker than without the examples, but remain robust.

In Fig. S12 we show 5-shot prompting results for Chinchilla on the Wason selection tasks.

Content effects are exaggerated with the 5-shot prompts, because the model improves noticeably

at Realistic rules, but improves less (if at all) on Arbitrary ones. We also see a noticeable effect

of the type of examples used in the prompt, with Realistic examples offering optimal benefits.
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Figure S12: Chinchilla evaluated 5-shot on the Wason task, with different types of prompt
examples. Again, content effects remain strong — or are even amplified — with few-shot
prompts. Realistic prompt examples appear to be most beneficial overall, but especially for
realistic and shuffled realistic probes, thus they actually enhance content effects. Other types
of prompts are generally helpful in a more limited set of conditions; there may be an overall
benefit to prompts matching probes.

B.3 Gemini & Gemma models and Chain-of-Thought prompting benefits

In this section, we evaluate the Gemini Pro & Ultra models (66), along with their smaller open-

source counterpart Gemma 7B (67) on the Syllogisms and Wason tasks. This serves to validate

that our results hold with these newer models, and whether the smaller open-sourced Gemma

7B model shows similar patterns. These models are also respectively accessible through public

APIs, and open-source. Moreover, we explore several chain-of-thought (65) prompting styles,

to see whether the models can use logic more reliably if they generate intermediate thinking

steps before the answer.

We first evaluated the models with No CoT, as in all other experiments in this papaer. Both

Gemini models show significant content effects on the Syllogisms and Wason tasks. Gemma

7B shows significant content effects on the Syllogisms task, but not on the Wason task, perhaps

because it shows relatively little ability to solve more complex reasoning tasks overall—larger

models may be necessary.
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Figure S13: Detailed results of evaluating Gemini & Gemma models on the syllogism tasks,
with chain-of-thought prompts for the larger models. Gemma 7B shows strong content biases,
but little effect of logic. The effects of chain-of-thought prompting are relatively small.
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Figure S14: Detailed results of evaluating Gemini & Gemma models on the Wason tasks, with
chain-of-thought prompts for the larger models. Gemma shows few content effects, and low
performance overall. There are, however, noticeable effects of chain-of-thought prompting,
particularly with examples and for the larger Gemini Ultra model.
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Figure S15: Evaluating Gemini & Gemma models on the Wasons and syllogisms tasks, includ-
ing chain-of-thought prompts for the larger models. The larger models show strong content
effects, and perform comparably or better than humans. Gemma 7B shows strong content ef-
fects on the syllogism task, but performs fairly poorly overall. Chain-of-thought prompting can
in some cases push the models to use logic more and content less, yielding higher accuracy on
conflict/arbitrary trials, but sometimes slightly reducing accuracy on realistic tasks (i.e., shift-
ing performance rightward and slightly downward on these plots). The clearest demonstration
of this is on the Wason tasks, where models given an example chain-of-thought demonstrating
correct reasoning on an arbitrary Wason task shows greatly improved performance on Arbitrary
tasks, along with moderate improvements on the Realistic tasks. Gemini Ultra shows little effect
of prompting on the syllogisms tasks, but Gemini Pro does show a more modest shift rightward
and down.
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We then explored chain of thought prompting. In these experiments, we give the human-

matched instructions, then a chain-of-thought prompt, then present the problem, then allow the

model to freely generate text until an end of response token. We append these generations to

the prompt and question, and then prompt with “Answer:” and score the answers as in other

experiments.

We explored several types of chain-of-thought prompts. The simplest is a zero-shot chain-

of-thought prompt (cf. 10), where we simply add “explain your reasoning process before giving

your answer” between the instructions and the question. We also consider two one-shot chain-

of-thought prompts, either giving an example of the same task (with a handwritten chain of

thought detailed below), or an example of the other task — i.e., prompting with an example of

the Wason task for syllogisms, and vice versa. The idea with the latter is that it may help to

just demonstrate correct logical reasoning, without needing to give away too much about the

task-specific strategies.

We show the results of the chain-of-thought experiments in Figs. S13 and S14, along with

a summary in Fig. S15. On the Wason selection task, chain-of-thought prompting with an

example—and especially a Wason task examples—shifts the models noticeably towards more

logic-driven responses, with correspondingly boosted performance on the Arbitrary and Non-

sense conditions. We note that this is in contrast to some of the original human experiments of

Wason (1) in which he found that teaching people how to reason about the task-specific strat-

egy of falsification before giving them the Wason task did not substantially boost performance.

On the syllogisms tasks, the effect of chain-of-thought is relatively small, though some of the

prompts do have significant benefits on performance, particularly for the smaller Gemini Pro

model. We quantify these results below using mixed-effects logistic regressions (Tables S3 &

S4), and show some examples of generated reasoning traces in Table S2.

In summary, at least in some cases chain-of-thought prompting can push models to rely on
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logic more, and increase accuracy in difficult conditions.

The exact chain-of-thought prompts we used are included below for reference.
c o t p r o m p t s = {
' Zero − sho t − e x p l a i n − r e a s o n i n g ' : (
' I n t h i s t a s k , you w i l l have t o answer a s e r i e s o f q u e s t i o n s . You w i l l have

↪→ t o choose t h e b e s t answer t o c o m p l e t e a s e n t e n c e , p a r a g r a p h , o r
↪→ q u e s t i o n . P l e a s e answer them t o t h e b e s t o f your a b i l i t y , and e x p l a i n
↪→ t h e r e a s o n i n g p r o c e s s b e f o r e g i v i n g your answer .\ n\ n P l e a s e answer
↪→ t h e f o l l o w i n g q u e s t i o n c a r e f u l l y :\ n ' ) ,

' Sy l log i sm − sho t − e x p l a i n − r e a s o n i n g ' : (
' I n t h i s t a s k , you w i l l have t o answer a s e r i e s o f q u e s t i o n s . You w i l l have

↪→ t o choose t h e b e s t answer t o c o m p l e t e a s e n t e n c e , p a r a g r a p h , o r
↪→ q u e s t i o n . P l e a s e answer them t o t h e b e s t o f your a b i l i t y , and e x p l a i n
↪→ t h e r e a s o n i n g p r o c e s s b e f o r e g i v i n g your answer .\ n\ n Q u e s t i o n #1 :\
↪→ n P l e a s e assume t h a t t h e f i r s t two s e n t e n c e s i n t h e argument a r e t r u e .
↪→ Dete rmine whe the r t h e argument i s v a l i d , t h a t i s , whe the r t h e
↪→ c o n c l u s i o n f o l l o w s from t h e f i r s t two s e n t e n c e s :\ nArgument :\ nAl l
↪→ g r o s p a r e c r a n d .\ nNo t h r e c k a r e g r o s p .\ n C o n c l u s i o n : No t h r e c k a r e
↪→ c r a n d . \ nReason ing : The f a c t t h a t a l l g r o s p a r e c r a n d does n o t
↪→ n e c e s s a r i l y imply t h a t a l l c r a n d a r e g r o s p . Thus , t h e r e c o u l d be some
↪→ t h r e c k t h a t a r e c r a n d b u t n o t g r o s p . So t h e c o n c l u s i o n does n o t
↪→ f o l l o w l o g i c a l l y from t h e argument . \ nAnswer : The argument i s i n v a l i d
↪→ .\ n\ n Q u e s t i o n #2 :\ n '

) ,
' Wason− sho t − e x p l a i n − r e a s o n i n g ' : (
' I n t h i s t a s k , you w i l l have t o answer a s e r i e s o f q u e s t i o n s . You w i l l have

↪→ t o choose t h e b e s t answer t o c o m p l e t e a s e n t e n c e , p a r a g r a p h , o r
↪→ q u e s t i o n . P l e a s e answer them t o t h e b e s t o f your a b i l i t y , and e x p l a i n
↪→ t h e r e a s o n i n g p r o c e s s b e f o r e g i v i n g your answer .\ n\ n Q u e s t i o n #1 :\
↪→ nThe f o l l o w i n g c a r d s each have a word on one s i d e and a number on
↪→ t h e i r o t h e r s i d e . The r u l e i s t h a t i f t h e c a r d s have a French word
↪→ t h e n t h e y must have a p o s i t i v e number . Which of t h e c a r d s would you
↪→ need t o f l i p ove r t o e n s u r e t h a t t h e r u l e i s b e i n g f o l l o w e d ?\ n c a r d :
↪→ −1\ n c a r d : 4\ n c a r d : sombrero \ n c a r d : chapeau \ nReason ing : Th i s i s an i f −
↪→ t h e n r u l e , w i th two c a r d s showing v a l u e s r e l a t i n g t o t h e a n t e c e d e n t (
↪→ words i n French or S p a n i s h ) , and two c a r d s r e l a t i n g t o t h e c o n s e q u e n t
↪→ ( a p o s i t i v e and a n e g a t i v e number ) . Each s e t has one c a r d t h a t
↪→ matches t h e c o r r e s p o n d i n g p r o p o s i t i o n , and one t h a t does n o t . F i r s t ,
↪→ we need t o check t h e c a r d t h a t matches t h e a n t e c e d e n t ( ” chapeau ” ) ,
↪→ b e c a u s e i f i t has a n e g a t i v e number on t h e back i t would v i o l a t e t h e
↪→ r u l e . We a l s o need t o check t h e c a r d t h a t does n o t match t h e
↪→ c o n s e q u e n t ( ” −1” ) , b e c a u s e i f i t had a f r e n c h word o n t h e o t h e r s i d e
↪→ i t would v i o l a t e t h e r u l e . We do n o t need t o f l i p ove r t h e o t h e r two
↪→ c a r d s , b e c a u s e r e g a r d l e s s o f what i s on t h e o t h e r s i d e , t h e y w i l l be
↪→ c o m p a t i b l e wi th t h e r u l e .\ nAnswer : You need t o f l i p ove r t h e ones
↪→ showing ”” chapeau ”” and ”” −1”” t o e n s u r e t h a t t h e r u l e i s b e i n g
↪→ f o l l o w e d .\ n\ n Q u e s t i o n #2 :\ n ' ) ,

}
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Reasoning: To check if the rule is being followed, we need to check if
passengers traveling outside the US have passports. Therefore, we need
to flip over the cards with destinations outside the US and those with
driver's licenses (which are not passports).

↪→

↪→

↪→

Answer: The cards with ""Buenos Aires"" and ""driver's license""

(a) Realistic, correct
Reasoning: To ensure the rule is being followed, we need to check if

passengers traveling outside the US have a passport. So, we need to
flip over the cards with destinations outside the US and check if they
have a passport on the other side.

↪→

↪→

↪→

Answer: The cards with San Francisco and Buenos Aires destinations should
be flipped over↪→

(b) Realistic, incorrect
Reasoning: To ensure the rule is followed, we need to check if any cards

with a beverage containing caffeine do not have a material that
conducts electricity on the other side. Therefore, we need to flip over
the ""coffee"" card (which contains caffeine) and the ""wood"" card
(which does not conduct electricity).

↪→

↪→

↪→

↪→

Answer: The ""coffee"" and ""wood"" cards.

(c) Arbitrary, correct
Reasoning: The rule states that cards with plural words must have a

positive emotion. Therefore, we need to flip over the card with the
plural word ""crises"" to check if it has a positive emotion on the
other side.

↪→

↪→

↪→

Answer: The card with ""crises"".

(d) Arbitrary, incorrect
Reasoning: Similar to the previous question, we need to check the card that

matches the antecedent (""more pron"") and the card that does not match
the consequent (""less stope"").

↪→

↪→

Answer: You need to flip over the ones showing ""more pron"" and ""less
stope"" to ensure that the rule is being followed.↪→

(e) Nonsense, correct
Reasoning: Similar to the previous question, we need to check the sheet

that matches the antecedent (""less gluff""), because if it has less
caft on the back it would violate the rule. We also need to check the
sheet that does not match the consequent (""more caft""), because if it
had more gluff on the other side it would violate the rule.

↪→

↪→

↪→

↪→

Answer: You need to flip over the ones showing ""less gluff"" and ""more
caft"" to ensure that the rule is being followed.↪→

(f) Nonsense, incorrect

Table S2: Example correct and incorrect/incomplete reasoning traces generated by Gemini Ul-
tra on the Wason tasks. Note that the model almost always generates an answer in the reasoning
trace, before being scored for afinal answer. Common errors include only considering the for-
ward direction, or stating the principles correctly but getting the propositions wrong (f).
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent * (valid_readable_f +
chain_of_thought_condition) + (1 | syllogism_name)
Data: gemini_syllogism_model_df %>% filter(subject == "Gemini Pro")

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 50000))

AIC BIC logLik deviance df.resid
672.4 723.4 -325.2 650.4 755

Scaled residuals:
Min 1Q Median 3Q Max

-9.6520 -0.3947 0.2053 0.4234 3.4274

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 1.338 1.157

Number of obs: 766, groups: syllogism_name, 60

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.56608 0.29849 5.247 1.55e-07 ***
logic_belief_consistent 2.32628 0.39829 5.841 5.20e-09 ***
valid_readable_f1 2.57791 0.29158 8.841 < 2e-16 ***
chain_of_thought_conditionZero-shot CoT -0.17035 0.32000 -0.532 0.59449
chain_of_thought_conditionWason CoT shot -0.81261 0.31247 -2.601 0.00931 **
chain_of_thought_conditionSyllogism CoT shot 0.09995 0.32589 0.307 0.75907
logic_belief_consistent:valid_readable_f1 -0.65688 0.34896 -1.882 0.05978 .
logic_belief_consistent:chain_of_thought_conditionZero-shot CoT -1.20966 0.49096 -2.464 0.01375 *
logic_belief_consistent:chain_of_thought_conditionWason CoT shot -1.44160 0.47467 -3.037 0.00239 **
logic_belief_consistent:chain_of_thought_conditionSyllogism CoT shot -1.33061 0.49845 -2.669 0.00760 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Gemini Pro
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent * (valid_readable_f +
chain_of_thought_condition) + (1 | syllogism_name)
Data: gemini_syllogism_model_df %>% filter(subject == "Gemini Ultra")

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 50000))

AIC BIC logLik deviance df.resid
314.5 365.5 -146.2 292.5 755

Scaled residuals:
Min 1Q Median 3Q Max

-6.5914 -0.0892 0.0000 0.1057 7.8037

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 10.04 3.169

Number of obs: 766, groups: syllogism_name, 60

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.4296 68.2699 0.153 0.87858
logic_belief_consistent 11.7653 68.2690 0.172 0.86317
valid_readable_f1 24.0916 136.5340 0.176 0.85994
chain_of_thought_conditionZero-shot CoT 0.8052 0.4904 1.642 0.10062
chain_of_thought_conditionWason CoT shot 1.3307 0.5129 2.594 0.00948 **
chain_of_thought_conditionSyllogism CoT shot 0.3528 0.4849 0.728 0.46686
logic_belief_consistent:valid_readable_f1 15.4874 136.5409 0.113 0.90969
logic_belief_consistent:chain_of_thought_conditionZero-shot CoT -0.4130 0.6780 -0.609 0.54246
logic_belief_consistent:chain_of_thought_conditionWason CoT shot 0.1981 0.7266 0.273 0.78510
logic_belief_consistent:chain_of_thought_conditionSyllogism CoT shot -0.2020 0.6599 -0.306 0.75953
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(b) Gemini Ultra

Table S3: Chain-of-thought prompting effects on the Syllogism tasks.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition * chain_of_thought_condition +
(1 | wason_name)
Data: gemini_cot_regression_df %>% filter(subject == "Gemini Pro")

Offset: offset_wason_prior_log_odds
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 5000))

AIC BIC logLik deviance df.resid
891.2 953.5 -432.6 865.2 876

Scaled residuals:
Min 1Q Median 3Q Max

-3.0114 -0.4882 -0.1471 0.5387 5.7853

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 2.63 1.622

Number of obs: 889, groups: wason_name, 37

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.38115 0.35046 1.088 0.27679
wason_conditionrealistic_vs_arbitrary_nonsense 4.43213 1.06723 4.153 3.28e-05 ***
wason_conditionarbitrary_vs_nonsense -1.87560 0.77993 -2.405 0.01618 *
chain_of_thought_conditionZero-shot CoT 0.22848 0.27740 0.824 0.41013
chain_of_thought_conditionSyllogism CoT shot 0.08235 0.27556 0.299 0.76507
chain_of_thought_conditionWason CoT shot 1.81717 0.28392 6.400 1.55e-10 ***
wason_conditionrealistic_vs_arbitrary_nonsense:chain_of_thought_conditionZero-shot CoT -2.31584 0.87977 -2.632 0.00848 **
wason_conditionarbitrary_vs_nonsense:chain_of_thought_conditionZero-shot CoT -0.08993 0.58581 -0.154 0.87800
wason_conditionrealistic_vs_arbitrary_nonsense:chain_of_thought_conditionSyllogism CoT shot -2.82748 0.87494 -3.232 0.00123 **
wason_conditionarbitrary_vs_nonsense:chain_of_thought_conditionSyllogism CoT shot 0.63881 0.58097 1.100 0.27153
wason_conditionrealistic_vs_arbitrary_nonsense:chain_of_thought_conditionWason CoT shot -4.06606 0.89740 -4.531 5.87e-06 ***
wason_conditionarbitrary_vs_nonsense:chain_of_thought_conditionWason CoT shot 0.76847 0.59222 1.298 0.19442
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Gemini Pro
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition * chain_of_thought_condition +
(1 | wason_name)
Data: gemini_cot_regression_df %>% filter(subject == "Gemini Ultra")

Offset: offset_wason_prior_log_odds
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 5000))

AIC BIC logLik deviance df.resid
795.6 857.8 -384.8 769.6 875

Scaled residuals:
Min 1Q Median 3Q Max

-6.3063 -0.4423 0.1485 0.4384 4.5047

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 1.279 1.131

Number of obs: 888, groups: wason_name, 37

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.03813 0.29194 3.556 0.000377 ***
wason_conditionrealistic_vs_arbitrary_nonsense 3.18763 0.82559 3.861 0.000113 ***
wason_conditionarbitrary_vs_nonsense -4.97592 0.73262 -6.792 1.11e-11 ***
chain_of_thought_conditionZero-shot CoT 0.04652 0.28492 0.163 0.870315
chain_of_thought_conditionSyllogism CoT shot 0.51338 0.27927 1.838 0.066013 .
chain_of_thought_conditionWason CoT shot 2.60611 0.32480 8.024 1.02e-15 ***
wason_conditionrealistic_vs_arbitrary_nonsense:chain_of_thought_conditionZero-shot CoT 0.64221 0.82950 0.774 0.438804
wason_conditionarbitrary_vs_nonsense:chain_of_thought_conditionZero-shot CoT 2.91659 0.67872 4.297 1.73e-05 ***
wason_conditionrealistic_vs_arbitrary_nonsense:chain_of_thought_conditionSyllogism CoT shot -0.48386 0.77861 -0.621 0.534315
wason_conditionarbitrary_vs_nonsense:chain_of_thought_conditionSyllogism CoT shot 2.11020 0.69390 3.041 0.002357 **
wason_conditionrealistic_vs_arbitrary_nonsense:chain_of_thought_conditionWason CoT shot -1.60966 0.86292 -1.865 0.062130 .
wason_conditionarbitrary_vs_nonsense:chain_of_thought_conditionWason CoT shot 2.72734 0.82288 3.314 0.000918 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(b) Gemini Ultra

Table S4: Chain-of-thought prompting effects on the Wason tasks.
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B.4 The Wason rule propositions have similar difficulty across conditions

One possible confounding explanation for our Wason results would be that the base propo-

sitions that form the antecedents and consequents of the rules have different difficulty across

conditions—this could potentially explain why the realistic rules and shuffled realistic rules are

both easier than abstract or nonsesnse ones. To investigate this possibility, we tested the diffi-

culty of identifying which of the options on the cards matched the corresponding proposition.

Specifically, for the antecedent of the rule “if the workers work as a doctor then they must have

received an MD” we prompted Chinchilla with a question like:

Which choice better matches "work as a doctor"?

choice: surgeon

choice: janitor

Answer:

And then gave a two-alternative forced choice between ‘surgeon’ and ‘janitor’. To avoid order

biases, we repeated this process for both possible answer choice orderings in the prompt, and

then aggregated likelihoods across these and chose the highest-likelihood answer.

By this metric, we find that there are no substantial differences in difficulty across the rule

types (Fig. S16)—in fact, arbitrary rule premises are numerically slightly easier, though the

differences are not significant. Thus, the effects we observed are not likely to be explained by

the base difficulty of verifying the component propositions.

B.5 Additional recombined realistic conditions for the Wason tasks

The Wason task rules can be realistic or unrealistic in multiple ways. For example, the com-

ponent propositions can be realistic even if the relationship between them is not. We therefore

generate two variations on realistic rules:

Shuffled realistic rules, which combine realistic components in nonsensical ways (e.g. “if the
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Figure S16: The component propositions (antecedents and consequents) of the Wason rules
have similar difficulty across conditions. This plot shows Chinchilla’s accuracy on forced
choices of which instance matches a proposition, across conditions. (Note that the shuffled
realistic rules use the same component propositions as the realistic rules.)

passengers are traveling outside the US, then they must have received an MD”).

Violate realistic rules, which directly violate the expected relationship (e.g. “if the passengers

are flying outside the US, then they must have shown a drivers license [not a passport]”).

We also evaluated models and humans on these rules. For shuffled rules, results are well

above chance. Surprisingly, one family of models (PaLM 2) even perform better at shuffled

realistic than realistic rules. For violate rules, by contrast, performance is generally close to

chance. It appears that the model reasons more accurately about rules formed from realistic

propositions, particularly if the relationships between propositions in the rule are also realistic,

but even to some degree if they are shuffled in nonsensical ways that do not directly violate ex-

pectations. However, if the rules strongly violate beliefs, performance is low. Humans generally

perform poorly on either rule variant.
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Figure S17: Evaluating models and humans on shuffled realistic and violate versions of the
Wason rules. Humans

B.6 Human performance on the Wason tasks, in our original sample &
replication

As mentioned in the main text, after collecting our original sample on the Wason task, we

recruited an additional set of participants to whom we offered a performance bonus on this task,

in an attempt to increase performance. We present the results broken down by sample in Fig.

S18. We performed mixed-effects logistic regressions (Table S5) to test for an improvement

in performance in the sample with a performance bonus; this effect was marginally significant.

However, performance remains low overall, and we do not observe a significant difference in

the content effect.
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Figure S18: Breakdown of human results in our original experiment, and our replication (where
we also added a performance bonus of 0.5 GPB for the Wason question). We observe a signifi-
cant advantage for the slower humans in the Realistic condition in each case. The performance
bonus does not seem to clearly improve performance.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + replication_experiment +
(1 | wason_name)
Data: wason_human_correct_df

AIC BIC logLik deviance df.resid
476.1 493.5 -234.0 468.1 570

Scaled residuals:
Min 1Q Median 3Q Max

-0.7247 -0.4879 -0.3449 -0.2718 3.9974

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.1704 0.4127

Number of obs: 574, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6190 0.3029 -8.646 < 2e-16 ***
wason_conditionRealistic 0.8261 0.3066 2.694 0.00706 **
replication_experimentTRUE 0.5274 0.2695 1.957 0.05034 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Additive model.
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition * replication_experiment +
(1 | wason_name)
Data: wason_human_correct_df

AIC BIC logLik deviance df.resid
477.7 499.5 -233.9 467.7 569

Scaled residuals:
Min 1Q Median 3Q Max

-0.7198 -0.4788 -0.3544 -0.2523 4.3184

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.1762 0.4197

Number of obs: 574, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value

(Intercept) -2.7723 0.4162 -6.662
wason_conditionRealistic 1.0550 0.5078 2.078
replication_experimentTRUE 0.7380 0.4606 1.602
wason_conditionRealistic:replication_experimentTRUE -0.3262 0.5673 -0.575

Pr(>|z|)
(Intercept) 2.71e-11 ***
wason_conditionRealistic 0.0378 *
replication_experimentTRUE 0.1091
wason_conditionRealistic:replication_experimentTRUE 0.5653
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(b) Interaction model.

Table S5: Mixed-effects linear regressions for differences in human performance on the replica-
tion sample on the Wason task. We do observe a marginally-significant effect of the experiment
in the additive model (top). However, we do not observe significant differences in the content
effect in an interaction model (bottom).
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B.7 Human response time distributions on the Wason tasks

In Fig. S19 we show the distribution of response times for humans in the Wason tasks. There

is a mean difference in response times, with participants spending about 12 seconds longer

on Realistic questions on average. This difference may be due to the time needed to read the

extra sentences giving the realistic context, or to the participants engaging more deeply with

the problems that seem more sensible. However, in SI C.3.1 we show that this difference alone

does not explain the advantage of the Realistic conditions.
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Figure S19: Human response time distributions on the Wason tasks. The Realistic condition
results in significantly longer response times. The vertical dashed line indicates the cutoff for
“slow” subject group; 85% of the subjects were faster than this in the original experiment.

B.7.1 Response time effects on NLI and syllogisms

Given the strong effect of response time on Wason task performance, we also analyzed the

effects on the NLI and Syllogism tasks (Figs. S20 & S20; Table S6). In these tasks we do not

see clear effects, though there are hints of an interesting potential interaction in the syllogisms

task.
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Figure S20: There is little effect of response time on accuracy in the NLI tasks.
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Figure S21: Effects of response time on accuracy on the syllogisms task.

B.8 Item-level effects

In this section, we perform item level analyses for each task.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent * (scale(log(rt)) +
consistent_plottable) + (1 | syllogism_name)
Data: syllogism_model_df %>% filter(subject == "Human")

AIC BIC logLik deviance df.resid
693.4 724.6 -339.7 679.4 631

Scaled residuals:
Min 1Q Median 3Q Max

-4.5854 -0.6137 0.3423 0.6457 2.1597

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0.08975 0.2996

Number of obs: 638, groups: syllogism_name, 12

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.61895 0.19140 3.234 0.00122 **
logic_belief_consistent1 3.16927 0.33673 9.412 < 2e-16 ***
scale(log(rt)) -0.08297 0.09858 -0.842 0.39998
consistent_plottableViolate 0.20829 0.21271 0.979 0.32746
logic_belief_consistent1:scale(log(rt)) -0.35038 0.19413 -1.805 0.07109 .
logic_belief_consistent1:consistent_plottableViolate -2.40845 0.42012 -5.733 9.88e-09 ***

Table S6: Mixed-effects regression examining the continuous effect of RT on the Syllogism
tasks. There is no main effect, but there is a marginally-significant interaction with the content
effect, such that slower responses are more helpful on problems where content contradicts logic.

B.8.1 NLI

First, for the NLI task, we plot the item-level correlations in accuracy in Fig. S22. Surprisingly

(given the close-to-ceiling performance), we find that Human success rates are significantly

predictive of LM success rates, even when controlling for condition (Table S7).
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Figure S22: Association of human and average model accuracy on the NLI task.

Linear mixed model fit by REML ['lmerMod']
Formula: LM ˜ Human + consistent_plottable + (1 | model)

Data: nli_item_level_df

REML criterion at convergence: -404.8

Scaled residuals:
Min 1Q Median 3Q Max

-5.2460 0.0661 0.1428 0.2724 1.6139

Random effects:
Groups Name Variance Std.Dev.
model (Intercept) 0.0008882 0.0298
Residual 0.0350993 0.1873

Number of obs: 845, groups: model, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.73890 0.07288 10.139
Human 0.24681 0.07077 3.488
consistent_plottableViolate -0.02879 0.01560 -1.846
consistent_plottableNonsense -0.02429 0.01649 -1.473

Table S7: Mixed-effects linear regression for item-level association of human and model accu-
racy on the NLI task, controlling for consistency.

B.8.2 Syllogisms

For the Syllogisms task, we plot the item-level correlations in accuracy in Fig. S22. We again

find a significant relationship between human success rates and language model success (t =

4.98, p < 0.001 when controlling for task variables; Table S8).
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Figure S23: Association of human and average model accuracy on the Syllogisms task.

Linear mixed model fit by REML ['lmerMod']
Formula: LM ˜ Human + logic_belief_consistent * consistent_plottable +

(1 | model)
Data: syl_item_level_df

REML criterion at convergence: 313.7

Scaled residuals:
Min 1Q Median 3Q Max

-2.5622 -0.5048 0.2668 0.6984 2.8012

Random effects:
Groups Name Variance Std.Dev.
model (Intercept) 0.004978 0.07056
Residual 0.131391 0.36248

Number of obs: 355, groups: model, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.23822 0.07538 3.160
Human 0.51089 0.10262 4.978
logic_belief_consistent 0.24473 0.04505 5.432
consistent_plottableViolate 0.14737 0.04827 3.053
consistent_plottableNonsense 0.09873 0.04806 2.054
logic_belief_consistent:consistent_plottableViolate -0.27191 0.05281 -5.148

Table S8: Mixed-effects linear regression for item-level association of human and model accu-
racy on the Syllogisms task, controlling for content and logic.
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B.8.3 Wason

For the Wason task, we plot the item-level correlations in accuracy in Fig. S22. Perhaps because

human performance is low overall, we do not observe a significant relationship between human

success rates and language model success (Table S9).

Due to the item-level effects observed in some of the main regressions, we also plot per-

formance of each model or human group on each of the Wason rules in Fig. S25. Overall, the

variability seems mostly as expected. However, there are some interesting patterns, including

one arbitrary rule that most subject perform well on. That particular rule is:
The rule is that if the cards have a French word then they must have a positive number.
chapeau / sombrero / 4 / -1

It is not particularly apparent to us why this rule might be easier.
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Figure S24: Association of human and average model accuracy on the Wason task. Note the
vertical axis scale—human performance is low overall.

B.9 Visualizing the correlation of human response times with model log-
probs

In Fig. S26 we show the relationship between human response times and model log-probabilities

for each of the models we considered.

37



Realistic

marriage_adult

Realistic

museum_genuine

Realistic

skydiving_parachute

Realistic

thrift_store_donations

Realistic

working_healthy

Realistic

food_expiry

Realistic

gardener_fertilizer

Realistic

homework_playing

Realistic

innocence_project_prison

Realistic

international_travel_passports

Arbitrary

texture_shape

Arbitrary

verbs_fibonacci

Realistic

doctor_degrees

Realistic

driving_licensed

Realistic

farmer_gasoline

Arbitrary

french_positive

Arbitrary

plant_philosopher

Arbitrary

plural_valence

Arbitrary

prime_color

Arbitrary

textfile_time

Arbitrary

book_particle

Arbitrary

browser_pants

Arbitrary

caffeinated_conductive

Arbitrary

electronic_hairy

Arbitrary

european_hot

Hum
an

 (f
as

t)

Hum
an

 (s
low

)

Chin
ch

illa

PaL
M

 2
−M

PaL
M

 2
−L

Flan
−P

aL
M

 2

GPT−3
.5

Hum
an

 (f
as

t)

Hum
an

 (s
low

)

Chin
ch

illa

PaL
M

 2
−M

PaL
M

 2
−L

Flan
−P

aL
M

 2

GPT−3
.5

Hum
an

 (f
as

t)

Hum
an

 (s
low

)

Chin
ch

illa

PaL
M

 2
−M

PaL
M

 2
−L

Flan
−P

aL
M

 2

GPT−3
.5

Hum
an

 (f
as

t)

Hum
an

 (s
low

)

Chin
ch

illa

PaL
M

 2
−M

PaL
M

 2
−L

Flan
−P

aL
M

 2

GPT−3
.5

Hum
an

 (f
as

t)

Hum
an

 (s
low

)

Chin
ch

illa

PaL
M

 2
−M

PaL
M

 2
−L

Flan
−P

aL
M

 2

GPT−3
.5

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

A
cc

ur
ac

y 
(%

)

Figure S25: Accuracy of humans and each model on each rule for the Wason tasks. Note that
due to sampling variability, the number of human participants who experienced each rule varies,
particularly for the slow subjects. There are various suggestive patterns, including an arbitrary
rule (french positive) that models and slower humans perform quite well on, and realis-
tic rules (like skydiving parachute) that all perform surprisingly poorly on. (Note that
the variation within a model comes from testing on multiple variations of each problem, with
different card orders and card names; see SI A.1.)
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Linear mixed model fit by REML ['lmerMod']
Formula: LM ˜ Human + wason_condition + (1 | model)

Data: wason_item_level_df

REML criterion at convergence: 181.3

Scaled residuals:
Min 1Q Median 3Q Max

-1.7748 -0.7994 -0.1560 0.8760 1.9239

Random effects:
Groups Name Variance Std.Dev.
model (Intercept) 0.006414 0.08009
Residual 0.145352 0.38125

Number of obs: 185, groups: model, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.20251 0.06860 2.952
Human 0.36974 0.29860 1.238
wason_conditionRealistic 0.32436 0.07148 4.538
wason_conditionNonsense 0.19533 0.06967 2.804

Table S9: Mixed-effects linear regression for item-level association of human and model accu-
racy on the Syllogisms task, controlling for content and logic.

39



Chinchilla Flan−PaLM 2 GPT−3.5 PaLM 2−L PaLM 2−M

−1 0 1 2 −2 0 2 −2 −1 0 1 2 −3 −2 −1 0 1 2 −2 −1 0 1 2

2.5

3.0

3.5

4.0

Model log−probability difference (z−score)

Lo
g 

hu
m

an
 r

es
po

ns
e 

tim
e

Consistent Violate Nonsense Right Wrong

(a) Natural language inference raw results.
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(b) Syllogisms raw results.

Figure S26: Human response times are generally negatively related to model confidence (mea-
sured as the difference in log-probabilities between the correct answer and the incorrect answer).
That is, on problems for which the model displays greater confidence, humans tend to respond
more quickly. This relationship holds on both (a) the NLI tasks, and (b) the syllogism tasks.
(Points show average response times for individual problems, broken down by whether the hu-
mans or models answered correctly or not; see SI C.4 for details.)
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B.10 Model answer log-probability distributions

In this section we plot the log-probability distributions of the models on the different tasks (Figs.

S27, S28, S29). There are a variety of interesting effects of task variables, and some striking

differences among the models.

For example, the instruction-tuned models (Flan-PaLM 2 and GPT-3.5) have numerically

much greater magnitude log-probabilities to the answers, especially GPT-3.5. This may be an

artifact of the tuning process. Furthermore, the larger models tend to show clearer separation

between the chosen answer and the others (e.g., comparing PaLM 2-L to -M).
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(a) Raw log-probabilities.
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Figure S27: Model log-probability distributions for the answer choices on the Natural Language
Inference (NLI) task. We visualize these in two ways: (a) the raw log-probabilities, and (a) the
negative log of the negative log-probabilities — this transform makes the distribution for Flan-
PaLM 2 clearer. Across both plots, there is fairly clear separation between the distributions of
chosen and unchosen answers for most models. There are various interesting effects of content
on the log-probabilities, e.g. changes in the mean and variance of the distributions. There are
also striking differences among the models, possibly hinting at the effects of different training
processes.
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Figure S28: Model prior-corrected log-probability distributions for the answer choices on the
syllogisms task. The degree of separation between the distributions depends on the model,
validity, and content. Again, there are differences among the models. For example, larger
models show more cleanly separated distributions (PaLM 2-L vs. -M), and the instruction
tuned models (Flan-PaLM 2 and GPT-3.5) show much larger magnitude prior corrected log
probabilities.
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Figure S29: Model prior-corrected log-probability distributions for the answer choices on the
Wason selection task. The degree of separation between the chosen and not-chosen answer
distributions is generally lower than in other tasks, possibly reflecting the greater difficulty of
the Wason task, or the greater problem-to-problem variability. By contrast, the separation by
content is striking for some models, e.g. GPT-3.5.
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B.11 Chinchilla can identify the valid conclusion of a syllogism from among
all possible conclusions with high accuracy

In Fig. S30 we show the accuracy of Chinchilla when choosing from among all possible pred-

icates containing one of the quantifiers used and two of the entities appearing in the premises

of the syllogism. The model exhibits high accuracy across conditions, and relatively little bias

(though bias increases few shot). This observation is reminiscent of the finding of Trippas et al.

(54) that humans exhibit less bias when making a forced choice among two possible arguments

(one valid and one invalid) rather than deciding if a single syllogism is valid or invalid.

Note that in this case scoring with the Domain-Conditional PMI (120)—which we used for

the main Syllogisms and Wason results—produces much lower accuracy than the raw likeli-

hoods, and minor differences in bias. The patterns are qualitatively similar with or without the

correction, but accuracy is lower without (around 35-40%) regardless of belief consistency.
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(b) Raw log-likelihood scoring

Figure S30: Chinchilla’s zero-shot accuracy at identifying the correct conclusion to a syllogism
among all possible conclusions. The model exhibits far above chance performance (especially
when scoring with raw log-likelihoods), and relatively weaker bias with this task design.
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C Statistical analyses

In this section, we provide the full results for all statistical analyses reported in the main text.

We generally report results from mixed-effects logistic regressions, controlling for the random

effects of the different stimuli used.3

C.1 NLI

We report statistical analyses of content effects on the NLI tasks for humans and all models

in Tables S10-S15. We generally fit mixed effects logistic regressions, but the regressions for

PaLM 2-L and Flan-PaLM 2 failed to converge due to ceiling effects. We therefore also report

χ2 tests of the difference in correct responses across conditions. In all cases, we do not find a

significant content effect on this simple task.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ consistent_plottable + (1 | name)
Data:

nli_joint_df %>% filter(subject == "Human", consistent_plottable !=
"Nonsense")

AIC BIC logLik deviance df.resid
133.2 146.8 -63.6 127.2 677

Scaled residuals:
Min 1Q Median 3Q Max

-3.5119 0.0105 0.0106 0.0282 0.4931

Random effects:
Groups Name Variance Std.Dev.
name (Intercept) 25.82 5.081

Number of obs: 680, groups: name, 122

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.082 2.072 4.384 1.17e-05 ***
consistent_plottableViolate -2.051 1.608 -1.276 0.202
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Chi-squared test for given probabilities
X-squared = 0.33937, df = 1, p-value = 0.5602

(b) χ2 test.

Table S10: Statistical analyses of human performance on the NLI tasks, using (a) a mixed-
effects logistic regression or (b) a χ2 test. There are no significant content effects.

3Unless otherwise noted, we conservatively approximate the degrees of freedom for all t-tests by treating all
random effects as though they were fixed effects (i.e. by subtracting the number of levels of each random variable
from the residual degrees of freedom), rather than using a variance-based approximation.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ consistent_plottable + (1 | name)
Data:

nli_joint_df %>% filter(subject == "Chinchilla", consistent_plottable !=
"Nonsense")

AIC BIC logLik deviance df.resid
46.6 55.8 -20.3 40.6 153

Scaled residuals:
Min 1Q Median 3Q Max

-0.084635 0.000969 0.000969 0.001903 0.001903

Random effects:
Groups Name Variance Std.Dev.
name (Intercept) 2646 51.43

Number of obs: 156, groups: name, 153

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 13.877 3.373 4.114 3.9e-05 ***
consistent_plottableViolate -1.357 3.760 -0.361 0.718
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Chi-squared test for given probabilities
X-squared = 0.34266, df = 1, p-value = 0.5583

(b) χ2 test.

Table S11: Statistical analyses of Chinchilla’s performance on the NLI tasks, using (a) a mixed-
effects logistic regression or (b) a χ2 test. There are no significant content effects.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ consistent_plottable + (1 | name)
Data:

nli_joint_df %>% filter(subject == "PaLM 2-M", consistent_plottable !=
"Nonsense")

AIC BIC logLik deviance df.resid
22.0 31.1 -8.0 16.0 153

Scaled residuals:
Min 1Q Median 3Q Max

-0.074976 0.000648 0.000648 0.000804 0.000804

Random effects:
Groups Name Variance Std.Dev.
name (Intercept) 3553 59.61

Number of obs: 156, groups: name, 153

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 14.2497 3.5260 4.041 5.31e-05 ***
consistent_plottableViolate 0.4323 5.5651 0.078 0.938
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr)

cnsstnt_plV -0.629

(a) Mixed-effects logistic regression.
Chi-squared test for given probabilities
X-squared = 0.0066225, df = 1, p-value = 0.9351

(b) χ2 test.

Table S12: Statistical analyses of PaLM 2-M’s performance on the NLI tasks, using (a) a mixed-
effects logistic regression or (b) a χ2 test. There are no significant content effects.
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Chi-squared test for given probabilities
X-squared = 0, df = 1, p-value = 1

Table S13: Statistical analysis of PaLM 2-L’s performance on the NLI tasks, using a χ2 test, as
the logistic regression failed to converge. There are no significant content effects.

Chi-squared test for given probabilities
X-squared = 0.0064516, df = 1, p-value = 0.936

Table S14: Statistical analysis of Flan-PaLM 2’s performance on the NLI tasks, using a χ2 test,
as the logistic regression failed to converge. There are no significant content effects.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ consistent_plottable + (1 | name)
Data:

nli_joint_df %>% filter(subject == "GPT-3.5", consistent_plottable !=
"Nonsense")

AIC BIC logLik deviance df.resid
31.3 40.5 -12.7 25.3 153

Scaled residuals:
Min 1Q Median 3Q Max

-0.078288 0.000867 0.000867 0.001145 0.001145

Random effects:
Groups Name Variance Std.Dev.
name (Intercept) 3151 56.13

Number of obs: 156, groups: name, 153

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 14.0988 3.3443 4.216 2.49e-05 ***
consistent_plottableViolate -0.5577 4.1579 -0.134 0.893
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Chi-squared test for given probabilities
X-squared = 0.027027, df = 1, p-value = 0.8694

(b) χ2 test.

Table S15: Statistical analyses of GPT-3.5-turbo-instruct’s performance on the NLI tasks, using
(a) a mixed-effects logistic regression or (b) a χ2 test. There are no significant content effects.
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C.2 Syllogisms

We report mixed effects logistic regressions for humans and all models in Tables S16-S21. We

analyze these results using a variable which corresponds to the main content effect

(logic_belief_consistent), which is 1 when the logical answer matches the believ-

ability of the conclusion — i.e. when the argument is valid and the conclusion is believable,

or the argument is invalid and the conclusion is unbelievable — and 0 when there is a mis-

match. This measure corresponds to the difference score reported in Fig. 2b. We ran three

nested models for humans and each language model — one regression only incorporating the

content effect predictor (whether the logic matches the consistency), another adding consistency

condition, and a third adding the interaction of the two.
response_correct ˜ logic_belief_consistent + (1 | syllogism_name)
response_correct ˜ logic_belief_consistent + consistent_plottable_f + (1 | syllogism_name)
response_correct ˜ logic_belief_consistent * consistent_plottable_f + (1 | syllogism_name)

For humans and each language model, we report the best-fitting regression, measured by the

BIC (and omitting models which failed to converge). However, since the interaction effect is

theoretically interesting (e.g. 53), and several of the interaction models fail to converge, we also

report two-way χ2 tests of the interactions for each model. For PaLM 2-L all regressions failed

to converge due to ceiling effects; thus we also report a χ2 test of the content effect for this

model only. All models show a significant content effect; all except Chinchilla and PaLM 2-M

show a significant interaction.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent * consistent_plottable_f +
(1 | syllogism_name)
Data: syllogism_model_df %>% filter(subject == this_subject)

AIC BIC logLik deviance df.resid
692.8 715.1 -341.4 682.8 633

Scaled residuals:
Min 1Q Median 3Q Max

-3.7130 -0.6097 0.3328 0.6018 1.9316

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0.08992 0.2999

Number of obs: 638, groups: syllogism_name, 12

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7182 0.1359 5.286 1.25e-07 ***
logic_belief_consistent1 1.9502 0.2081 9.372 < 2e-16 ***
consistent_plottable_f1 0.1863 0.2114 0.881 0.378
logic_belief_consistent1:consistent_plottable_f1 -2.4800 0.4172 -5.945 2.76e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 11.402, df = 1, p-value = 0.0007338

(b) χ2 test of interaction.

Table S16: Statistical analyses of human performance on the Syllogism tasks, using (a) a mixed-
effects logistic regression or (b) a χ2 test of the interaction effect. There is a significant content
effect and a significant interaction effect, that is, different sensitivity to logic in the Consistent
compared to Violate conditions.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent + (1 | syllogism_name)
Data: syllogism_model_df %>% filter(subject == this_subject)

AIC BIC logLik deviance df.resid
125.8 133.5 -59.9 119.8 93

Scaled residuals:
Min 1Q Median 3Q Max

-1.7321 -0.8819 0.5774 0.5774 1.1339

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0 0

Number of obs: 96, groups: syllogism_name, 12

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4236 0.2212 1.915 0.05549 .
logic_belief_consistent1 1.3499 0.4425 3.051 0.00228 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 6.0122e-31, df = 1, p-value = 1

(b) χ2 test of interaction.

Table S17: Statistical analyses of Chinchilla’s performance on the Syllogism tasks, using (a)
a mixed-effects logistic regression or (b) a χ2 test of the interaction effect. Chinchilla shows
significant content effects, but no interaction with consistency.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent + (1 | syllogism_name)
Data: syllogism_model_df %>% filter(subject == this_subject)

AIC BIC logLik deviance df.resid
102.0 109.6 -48.0 96.0 93

Scaled residuals:
Min 1Q Median 3Q Max

-2.4202 -0.6095 0.4132 0.4132 1.6408

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0 0

Number of obs: 96, groups: syllogism_name, 12

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3886 0.2611 1.488 0.137
logic_belief_consistent1 2.7581 0.5222 5.281 1.28e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 0, df = 1, p-value = 1

(b) χ2 test of interaction.

Table S18: Statistical analyses of PaLM 2-M’s performance on the Syllogism tasks, using (a) a
mixed-effects logistic regression or (b) a χ2 test. PaLM 2-M shows significant content effects,
but no interaction with consistency.

Chi-squared test for given probabilities
X-squared = 6.3913, df = 1, p-value = 0.01147

(a) χ2 test of content effect.
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 14.318, df = 1, p-value = 0.0001544

(b) χ2 test of interaction.

Table S19: Statistical analyses of PaLM 2-L’s performance on the Syllogism tasks, using (a)
a χ2 test of the content effect as none of the regressions converged, and (b) a χ2 test of the
interaction. PaLM 2-L shows both significant content effects, and a significant interaction with
consistency (as measured by the χ2 test, as the regression with an interaction failed to converge).
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent + (1 | syllogism_name)
Data: syllogism_model_df %>% filter(subject == this_subject)

AIC BIC logLik deviance df.resid
100.1 107.8 -47.0 94.1 93

Scaled residuals:
Min 1Q Median 3Q Max

-3.3166 -1.0000 0.3015 0.4761 1.0000

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0 0

Number of obs: 96, groups: syllogism_name, 12

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1989 0.2984 4.019 5.86e-05 ***
logic_belief_consistent1 2.3979 0.5967 4.019 5.86e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 17.913, df = 1, p-value = 2.312e-05

(b) χ2 test of interaction.

Table S20: Statistical analyses of Flan-PaLM 2’s performance on the Syllogism tasks, using
(a) a mixed-effects logistic regression or (b) a χ2 test. Flan-PaLM 2 shows both significant
content effects, and a significant interaction with consistency (as measured by the χ2 test, as the
regression with an interaction failed to converge).

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ logic_belief_consistent + (1 | syllogism_name)
Data: syllogism_model_df %>% filter(subject == this_subject)

AIC BIC logLik deviance df.resid
131.8 139.5 -62.9 125.8 93

Scaled residuals:
Min 1Q Median 3Q Max

-1.4832 -0.9199 0.6742 0.6742 1.0871

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0 0

Number of obs: 96, groups: syllogism_name, 12

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3107 0.2127 1.461 0.1440
logic_belief_consistent1 0.9555 0.4253 2.247 0.0247 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Mixed-effects logistic regression.
Pearson's Chi-squared test with Yates' continuity correction
X-squared = 25.507, df = 1, p-value = 4.408e-07

(b) χ2 test.

Table S21: Statistical analyses of GPT-3.5-turbo-instruct’s performance on the syl tasks, using
(a) a mixed-effects logistic regression or (b) a χ2 test. GPT-3.5 shows both significant con-
tent effects, and a significant interaction with consistency (as measured by the χ2 test, as the
regression with an interaction failed to converge).
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C.3 Wason

We report mixed-effects logistic regressions for humans (both all humans, and the fast and

slow groups individually) and all models in Tables S22-S29. We observe a significant effect

of content in most cases. However, the fast humans alone do not show a significant content

effect. Furthermore, the content effects in PaLM 2-M and Flan-PaLM 2 are only marginally

significant, due to high item level variance.

In SI C.3.1 we further analyze the human data whil incorporating response time in the

regression.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data: wason_joint_df %>% filter(subject_no_rt == "Human", wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
478 491 -236 472 571

Scaled residuals:
Min 1Q Median 3Q Max

-0.7162 -0.4629 -0.3279 -0.2881 3.4711

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.2309 0.4805

Number of obs: 574, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2951 0.2554 -8.988 <2e-16 ***
wason_conditionRealistic 0.8219 0.3235 2.541 0.0111 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S22: Statistical analysis of human performance (collapsing across fast and slow subjects)
on the Wason tasks, using a logistic regression. There is a significant content effect.

52



Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
305.1 317.4 -149.6 299.1 442

Scaled residuals:
Min 1Q Median 3Q Max

-0.5732 -0.3620 -0.3034 -0.2709 3.7157

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.273 0.5225

Number of obs: 445, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4740 0.2948 -8.393 <2e-16 ***
wason_conditionRealistic 0.4570 0.3877 1.179 0.239
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S23: Statistical analysis of human (fast subjects only) performance on the Wason tasks,
using a logistic regression. We do not observe a significant content effect

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
156.8 165.4 -75.4 150.8 126

Scaled residuals:
Min 1Q Median 3Q Max

-0.8934 -0.7468 -0.4277 1.1193 2.3380

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.1906 0.4365

Number of obs: 129, groups: wason_name, 24

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6534 0.4303 -3.842 0.000122 ***
wason_conditionRealistic 1.1518 0.5009 2.299 0.021495 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S24: Statistical analysis of human (slow) performance on the Wason tasks, using a logistic
regression. There is a significant content effect.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
136.9 146.0 -65.5 130.9 147

Scaled residuals:
Min 1Q Median 3Q Max

-1.9739 -0.2756 -0.1256 0.4490 2.6782

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 6.068 2.463

Number of obs: 150, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.584 1.154 -3.106 0.00190 **
wason_conditionRealistic 3.576 1.354 2.640 0.00828 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S25: Statistical analysis of Chinchilla’s performance on the Wason tasks, using a logistic
regression. There is a significant content effect.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
115.5 124.6 -54.8 109.5 147

Scaled residuals:
Min 1Q Median 3Q Max

-2.14109 -0.13581 -0.04492 0.15813 1.50757

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 30.12 5.488

Number of obs: 150, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.842 2.296 -2.544 0.0110 *
wason_conditionRealistic 5.122 2.777 1.844 0.0651 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S26: Statistical analysis of PaLM 2-M’s performance on the Wason tasks, using a logistic
regression. There is a marginally-significant content effect, due to high item-level variance.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
142.6 151.6 -68.3 136.6 147

Scaled residuals:
Min 1Q Median 3Q Max

-2.2846 -0.1708 0.1686 0.2894 2.2759

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 9.488 3.08

Number of obs: 150, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.921 1.182 -1.625 0.1043
wason_conditionRealistic 3.908 1.759 2.222 0.0263 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S27: Statistical analysis of PaLM 2-L’s performance on the Wason tasks, using a logistic
regression. There is a significant content effect.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
129.1 138.1 -61.6 123.1 147

Scaled residuals:
Min 1Q Median 3Q Max

-1.4634 -0.2275 -0.1330 0.1271 2.2738

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 18.14 4.259

Number of obs: 150, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.143 1.591 -1.347 0.1778
wason_conditionRealistic 4.539 2.551 1.779 0.0752 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S28: Statistical analysis of Flan-PaLM 2’s performance on the Wason tasks, using a logis-
tic regression. There is a marginally-significant content effect, due to high item-level variance.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + (1 | wason_name)
Data:

wason_joint_df %>% filter(subject == this_subject, wason_condition %in%
c("Arbitrary", "Realistic"))

AIC BIC logLik deviance df.resid
154.3 163.3 -74.1 148.3 147

Scaled residuals:
Min 1Q Median 3Q Max

-2.1094 -0.4257 -0.1980 0.3909 2.3489

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 5.008 2.238

Number of obs: 150, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.105 0.867 -2.428 0.01517 *
wason_conditionRealistic 3.092 1.188 2.603 0.00923 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S29: Statistical analysis of GPT-3.5-turbo-instruct’s performance on the Wason tasks,
using a logistic regression. There is a significant content effect.

C.3.1 Human analyses incorporating response time

Here we present two regression analyses of the human results that incorporate the response

time. In Table S30 we show a mixed-effects logistic regression controlling for log response

time; the content effect remains significant. Thus, the content effects are not solely driven by

the differences in response time noted above (SI S19).

However, it is also possible to conceive of the shift in response time as a part of the content

effect. We can analyze the data this way by z-scoring response time within each condition; thus,

the effect of the mean difference in response time will be included in the condition predictor. We

present these results in Table S31. Both content and z-scored response time remain significant

predictors of success.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + scale(log(rt)) + (1 | wason_name)
Data: wason_human_correct_df

AIC BIC logLik deviance df.resid
459.5 476.9 -225.8 451.5 570

Scaled residuals:
Min 1Q Median 3Q Max

-1.0996 -0.4417 -0.3265 -0.2246 4.5293

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.2539 0.5039

Number of obs: 574, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3248 0.2655 -8.755 < 2e-16 ***
wason_conditionRealistic 0.6659 0.3350 1.988 0.0468 *
scale(log(rt)) 0.5637 0.1269 4.442 8.89e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S30: Statistical analysis of human (both fast and slow) performance on the Wason tasks,
using a logistic regression and also controlling for (log) response time. The content effect
remains significant.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )

Formula: response_correct ˜ wason_condition + zscored_rt_by_condition +
(1 | wason_name)
Data: wason_human_correct_df

AIC BIC logLik deviance df.resid
459.5 476.9 -225.8 451.5 570

Scaled residuals:
Min 1Q Median 3Q Max

-1.1002 -0.4417 -0.3265 -0.2247 4.5269

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 0.254 0.504

Number of obs: 574, groups: wason_name, 25

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4329 0.2700 -9.011 < 2e-16 ***
wason_conditionRealistic 0.8793 0.3349 2.626 0.00865 **
zscored_rt_by_condition 0.5540 0.1247 4.443 8.87e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table S31: Statistical analysis of human (both fast and slow) performance on the Wason tasks,
using a logistic regression and also controlling for (log) response time, but z-scored within
condition. Again the content effect is significant.
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C.3.2 Multinomial regression of the response patterns on the Wason tasks

In Table S32 we present the results of a multinomial logistic regression predicting which of the

six possible subsets of answers the humans and language models chose on the Wason task. This

regression quantitatively supports the claim that the behavior is nonrandom, and more generally

quantifies the qualitative observations of response patterns made in the main text.

A matrix: 5 × 9 of type dbl
(Intercept) Realist Nonsense humanslow chinchi palm2_m palm2_l flanpalm2 gpt3.5

AT,CF (correct) -2.64 1.43 0.75 1.20 2.31 2.31 3.17 3.19 2.34
AT,AF -1.24 -1.35 -2.16 0.32 0.08 -0.21 -0.06 0.53 -0.59
AF,CT -2.65 0.06 0.32 0.02 2.75 2.81 2.72 2.29 2.29
AF,CF -2.45 0.64 0.21 0.22 2.31 1.38 2.05 2.27 1.13
CT,CF -2.47 0.30 -1.07 0.97 -1.16 -0.60 -12.95 -12.33 -13.45

(a) Coefficients.
A matrix: 5 × 9 of type dbl

(Intercept) Realist Nonsense humanslow chinchi palm2_m palm2_l flanpalm2 gpt3.5
AT,CF (correct) 0.18 0.17 0.17 0.25 0.24 0.23 0.25 0.25 0.22
AT,AF 0.16 0.29 0.44 0.35 0.44 0.46 0.51 0.41 0.49
AF,CT 0.22 0.20 0.19 0.50 0.28 0.27 0.30 0.33 0.28
AF,CF 0.20 0.20 0.21 0.38 0.27 0.30 0.31 0.29 0.31
CT,CF 0.26 0.33 0.56 0.35 1.03 0.75 0.00 306.59 0.00

(b) Standard errors.

Table S32: Results of a multinomial logistic regression predicting the answer choices (refer-
ence level is AT,CT — the matching bias) from participants and language models based on
condition (reference level is the Arbitrary condition), and participant group (reference level is
fast humans). The regression was performed with dummy coding, so coefficients represent the
difference in log odds relative to the reference level in each case. We present both the (a) coeffi-
cients estimated by the regression and (a) their standard errors. There are a variety of noticeable
effects, including the overall matching bias in the fast humans (the fact that the intercept coef-
ficients are all negative), the basic content effect that Realitic problems are more likely to yield
correct answers, and the finding that language models and slow humans tend to give correct
answers more often than fast humans. Additionally, many qualitative patterns reported in Fig.
8 are statistically borne out by this analysis. Note that due to some models rarely giving some
responses, certain coefficient estimates are unstable, particularly in the CT,CF row.

C.4 Response time and model log-probability differences

In this section we present the mixed-effects linear regressions comparing human response times

and model log-probabilities on the NLI and syllogisms tasks, in Tables S33 and S34, respec-

tively. In order to make these comparisons, we breakdown each problem into cases where both

humans and models got it correct, and cases where both got it wrong, and only compare log-
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probabilities and response times within these cases. This breakdown is necessary to control

for accuracy in these models, as it is a significantly related to both response times and log-

probabilities. Note, however, that this means that problems where a model answered correctly

but humans never answered correctly, or vice versa, are omitted.

In both tasks, we see significant effects of the content on the model log-probability differ-

ences; even controlling for these we see significant relationships to the human response times,

such that on items on which the humans respond more slowly, the models show smaller differ-

ences in log-probabilities.

Linear mixed model fit by REML ['lmerMod']
Formula:
zscored_logprob_diff ˜ log(Human) + consistent_plottable + response_correct +

(1 | model) + (1 | name)
Data: nli_logprob_rt_corr_df

REML criterion at convergence: 2074.8

Scaled residuals:
Min 1Q Median 3Q Max

-2.7422 -0.6124 0.0099 0.6353 3.8258

Random effects:
Groups Name Variance Std.Dev.
name (Intercept) 0.2772 0.5265
model (Intercept) 0.0000 0.0000
Residual 0.5468 0.7394

Number of obs: 831, groups: name, 171; model, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.7544 0.5353 1.409
log(Human) -0.5392 0.1590 -3.392
consistent_plottableConsistent 0.6136 0.1345 4.563
consistent_plottableNonsense -0.1841 0.1427 -1.291
response_correctTRUE 0.7889 0.2383 3.311

Table S33: Statistical analysis of the relationship between human response times and language
model log-probability differences on the NLI tasks, using a mixed-effects regression controlling
for the task variables and answer correctness, as well as random effects of the item and LM.
Note that the model log-probabilities are significantly affected by the content, even though the
model accuracy is not.

59



Linear mixed model fit by REML ['lmerMod']
Formula: zscored_logprob_diff ˜ log(Human) + logic_belief_consistent +

consistent_plottable + response_correct + (1 | model) + (1 |
syllogism_name)
Data: syllogism_logprob_rt_corr_df_2

REML criterion at convergence: 1077

Scaled residuals:
Min 1Q Median 3Q Max

-2.33241 -0.73009 -0.02953 0.61543 2.99660

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0.055391 0.23535
model (Intercept) 0.005615 0.07493
Residual 0.829587 0.91082

Number of obs: 394, groups: syllogism_name, 36; model, 5

Fixed effects:
Estimate Std. Error t value

(Intercept) 1.18573 0.70847 1.674
log(Human) -0.41458 0.20342 -2.038
logic_belief_consistent 0.08477 0.05899 1.437
consistent_plottableviolate -0.27369 0.07090 -3.860
consistent_plottablenonsense -0.10094 0.09245 -1.092
response_correctTRUE 0.49560 0.10421 4.756

Table S34: Statistical analysis of the relationship between human response times and language
model log-probability differences on the Syllogisms tasks, using a mixed-effects regression
controlling for the task variables and answer correctness, as well as random effects of the item
and LM.
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