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Supplementary Methods: Fuzzy Initialisation and Parameter Estimation for Tracking based on 
Kalman Motion Model 
 
In this supplement, we explain the impacts of microbubble (MB) concentrations and ultrasound acquisition 
frame rates on MB tracking, giving the reasons for developing the methods and unifying concentrations and 
frame rates as one equivalent factor in tracking problem; present the method for Kalman state vector 
initialisation; and present the method for Kalman parameter estimation. 
 
1. Shannon theory in MB tracking 
 

 
Fig. M1 | Three cases to pair multiple MBs moving in one straight vessel.  a, a case where MBs are to be 
paired without prediction of motion. b, a case where MBs are to be paired by motion model with predicted 
movement less than the moving distance. c, a case where MBs are to be paired by motion model with 
predicted movement more than the moving distance. Number in each disk denotes the identity of an MB. db 
is the distance between MBs in one frame. dm is the moving distance of the MB between two frames. dp is the 
moving distance predicted by motion model for MBs. 
 
The relation between Shannon theory and the tracking can be revealed by simple cases, where multiple MBs 
move in a straight vessel, as shown in Fig. M1a. To correctly pair MB 2 by the nearest-neighbour method, 
the distance between the positions of MB 2 in two frames should be smaller than the distance between MB 2 
in the second frame and MB 3 in the first frame. 
 
𝑑! < 𝑑" − 𝑑!				𝑖. 𝑒.							𝑑! < 0.5𝑑" (1) 

 
where dm is the moving distance, the ratio of flow speed to frame rate, and db is the MB distance which is 
inverse to the MB concentration. According to the above equation, a higher frame rate is needed to track 
MBs at higher concentrations and faster speeds. Motion model can predict the MB position along the flow 
direction, as shown in Fig. M1b. To correctly pair MB 2 in this case, the distance between the MB 2’s 
predicted position and actual positions should be smaller than the distance between the MB 3’s predicted 
position and MB 2’s actual position, 

 
𝑑! − 𝑑# < 𝑑" + 𝑑# − 𝑑!				𝑖. 𝑒.							𝑑! < 0.5𝑑" + 𝑑# (2) 
 
where dp is the MB moving distance predicted by a motion model. With the motion model, tracking method 
can correctly pair faster MBs at the same frame rate and MB concentrations, compared to the nearest-
neighbour method. However, it doesn’t mean the larger the dp is, the higher accuracy the tracking can 
achieve. To avoid pairing MB 2 in Frame 2 to MB 1 in Frame 1 in the case shown in Fig. M1c, dp should 
satisfy 
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𝑑# − 𝑑! < 𝑑" − 𝑑# + 𝑑!				𝑖. 𝑒.							𝑑# < 0.5𝑑" + 𝑑! (3) 
 
Combining Eq. (2) and (3), we can obtain 
 
|𝑑! 	−	𝑑#| 	< 	0.5𝑑" (4) 
 
With the frame rate f, the equation can be rewritten as 
 
$%&!'&"%

(#
< 𝑓 (5) 

 
where vm is the flow velocity and vp is the predicted velocity and vm/db can be regarded as the spatial 
repetition frequency, defined by how many times an MB passes through the positions of the other MBs in 
one second. Then, the temporal frequency, frame rate or pulse repetition frequency f, should be at least 
double the spatial repetition frequency to correctly pair the MB by nearest-neighbour. Using the motion 
model, the spatial repetition frequency of the MB movement vm/db can be reduced by vp/db. 
 
Fast-moving MBs at high concentrations can be more accurately tracked using motion model than only using 
the nearest-neighbour, especially when the frame rates are restricted by physical imaging depth and the 
number of angles used for compounding. 
 
2. Fuzzy initialization 

 
 
Fig. M2 | a, a framework combining fuzzy initialisation and graph-based assignment for MB tracking. Fuzzy 
initialisation is done for new MBs detected in frame n by using MBs in frame n, n+1 and n+2. After 
initialisation, all MBs in frame n are paired with MBs in frame n+1 by our previously proposed feature-motion-
model tracking framework. b, fuzzy initialisation diagram. Moving velocities of a newly appeared MB is 
estimated with MBs in next two consecutive frames by finding minimum of pairing cost under different 
searching window sizes. Weighted average of the velocities obtained under different searching window sizes 
is used as the velocity components in the Kalman state vector of the new MB. vm,r is measured velocity 
between the first two frames corresponding to the minimal cost found for the mth new MB under the rth 
searching window size. Innovation distance dm,r in the third frame corresponds to the minimal cost found for 
the mth new MB under the rth searching window size. 
 
In our previous work [1], we proposed a feature-motion-model framework to achieve accurate and efficient 
MB tracking, which combined MB image feature and Kalman motion model in a cost function and paired MBs 
by finding the total minimum cost in a graph-based assignment. The Kalman motion model’s state vector x, 
translation matrix F and observation matrix H is defined as 
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where x and z are the lateral and depth location of MBs in the image; vx and vz are the MB moving speeds 
along the corresponding directions. vx and vz, i.e. vp, were set to 0 for the newly appeared MBs as we could 
not get the MB velocity before pairing. As demonstrated in the last section, wrong pairing is still likely to 
happen for new MB with this initialisation where motion model does not take effect by assuming new MB to 
be static. Therefore, we proposed fuzzy initialisation and combined it with our previous framework in the way 
shown in Fig. M2a. The fuzzy initialisation was done for the newly appeared MBs using three consecutive 
frames, as shown in Fig. M2b. The fuzzy initialization was done with the below steps. 
 
Cost matrix construction. To initialise the M new MBs in the first frame, a 3D cost matrix for paring the M 
new MBs with the MBs in the following two frames was built. Various information can be used for calculating 
the cost. In this study, the cost consisted of three components: innovation of motion model, intensity 
differences, and intensity variances along the candidate tracks. 
 
We estimated vx and vz for each new MB in the first two frames, and therefore the innovation of motion model 
could be calculated by the distance between the observed MB locations and the predicted MB locations in 
third frame 
 
𝑑!,*,+ = .(𝑥+ + 𝑥! − 2𝑥*)$ + (𝑧+ + 𝑧! − 2𝑧*)$  (7) 
 
where the superscripts, m ≤ M, n ≤ N and q ≤ Q, denote the MB indexes in the three frames. When giving a 
search window, model innovations for pairs out of the searching window were given as infinity. 
 
The intensity difference dI among MBs in three frames was calculated as 
 
𝑑,
!,*,+ = |𝐼+ + 𝐼! − 2𝐼*| (8) 

 
where I is the MB image intensity. 
The maximum intensity projection (MIP) of contrast enhanced ultrasound (CEUS) sequence presents the 
vasculature in a low resolution. While pairing two MBs, the trajectory can be along or across two vessels. It 
can be assumed that pixel intensities on the trajectory along one vessel have smaller variance than those on 
trajectories across vessels. Therefore, the intensity variances of MIP pixels on each trajectory can be used 
for calculating the cost of pairing and defined as 
 
σ#
!,*,+ = -"$

."$
  (9) 

 
where the numerator is the standard deviation of pixel intensities on a trajectory and the denominator is the 
average. To save computation, the trajectory between one pair was defined as a straight line; seven points 
were equidistantly sampled on the trajectory between MB pairs in the first two frames and then assigned to 
candidate pairs among three frames which shared the same pairing between the first two frames; the pixel 
intensity of the points on each trajectory was obtained from the nearest MIP pixel. 
Three components were in the same size of 3D matrix and combined to a 3D matrix by the first-order 
principal components of the principal components analysis (PCA). 
 
Finding the minimum. The minimal cost was found for each new MB independently, instead of finding the 
total minimum of all the pairs to save the computation. The innovation distance dm and velocity vector vm 

between MBs in the first two frames corresponding to the minimal cost were saved for each new MB. 
 
Repetition within different sizes of searching windows. To increase the robustness of the initial paring, 
the above two steps were repeated for different search window sizes. In this study, the searching window 
sizes were varied between 0.3 to 1.2 times the maximum MB moving distance between adjacent frames 
(assuming maximal blood flow velocity of 150 mm/s). As a result, for the rth searching window, dm,r and vm,r 

were saved for the mth new MB. 
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Initialising Kalman state vector. An intuitive way to combine multiple vm,r into one for the new MB is 
averaging. However, the distribution of vm,r may not be Gaussian, and some extreme cases might 
significantly affect the average. As the distance dm,r can be regarded as errors of the linear motion model, the 
normalised histogram, shown in Fig. M2b, represents the probability of the certain value of errors when 
assuming linear MB movements for this data. Therefore, the velocity of the new MB can be calculated by the 
below weighted average to reduce the effect of extreme cases 
 
𝒗! = ∑ 0!,&𝒗!,&'

&()
∑ 0!,&'
&()

 (10) 
 
where wm,r is the number obtained by indexing the histogram by dm,r corresponding to the vm, and R is the 
number of searching window sizes used. A new bubble might not be paired with any other bubble in a small 
searching window. In this case, the searching window was excluded from the average in Eq. (10). Only the 
new bubbles were paired in more than two searching windows were initialised by Eq. (10), and otherwise 
were set as static. 
 
In the above initialisation, the speed components in the state vector were obtained by the weighted average 
across the different searching window sizes. As a result, a velocity vector from an initialised MB might not 
point to any MB in the next frame. Therefore, we named the above procedures as fuzzy initialisation. 
 
After being initialised, new MBs in current frame and MBs existing in previous as well as current frames were 
paired with all the MBs in the next frame by finding the total minimum of cost through the graph-based 
assignment. The cost for the graph-based assignment was defined as the ratio of MB image intensity 
difference to the probability obtained through motion model by p(ok|xk|k−1) 
 

𝑝8𝒐2|𝒙2|2'4; =
1

2𝜋|𝐒2|5.7	
exp8−0.5(𝒐2 − 𝝁)8𝐒2'4(𝒐2 − 𝝁);    

(11) 𝝁 = 𝐇𝒙D2|2'4 
where the subscript n|n’ denotes the estimate of the value in frame n given observations up to and including 
frame n’; ok is measured MB state vector, consisting of lateral and depth coordinates; Sk is the innovation 
covariance. 
 
3. Kalman motion model parameters 
 
Covariance of measurement noise R, covariance of model prediction noise Q and covariance of estimation 
noise P are parameters that need to be set for the linear Kalman motion model and sometimes can 
significantly reduce tracking accuracy with inappropriate values. R can be set by the localization uncertainty 
of the imaging system, which can be measured by in vitro experiment and estimated for in vivo acquisition. 
Although Q can be manually chosen according to user experiences, we proposed a method to estimate Q 
from data to avoid human interaction and reduce effort in tunning parameters when dealing with various 
vasculature and haemodynamics. 
 
As presented in the last section, a linear motion model is used to predict MB movement in the third frame 
using the first two frames. Steps from 1 to 3 in the last section can be used for to estimate Q for each three 
adjacent frames. Instead of saving distance between the prediction and observation for each MB, the 
discrepancies along lateral ex,m = (xq +xm −2xn) and depth ez,m = (zq +zm −2zn) were saved for each MB in the 
first of the three frames. By assuming most of pairing after these three steps are correct, the discrepancies 
can be used to approximate the measurement pre-fit residual of Kalman filtering, the distance between 
predicted and measured MB locations. Therefore, we used the variance of the discrepancies to calculate the 
pre-fit residual covariance. 
 

𝐒E = F𝜎9:
$ 0
0 𝜎9;$

H (12) 

 
where 𝜎9:$  and 𝜎9;$  are the variance across ex,m and ez,m respectively. As variance estimation becomes more 
accurate with a larger number of data, discrepancies were obtained from ten groups of three consecutive 
frames picked from the image sequence, and a variance	𝜎9$	was calculated with all the discrepancies along 
the lateral and axial directions and used for 𝜎9:$  and 𝜎9;$ . 
 
The S in one frame was defined by 
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𝐒2 	= 	𝐇𝐏2|2'4𝐇8 + 𝐑 
𝐏2|2'4 = 	𝐅𝐏2'4|2'4𝐅8 +𝐐 (13) 
 
where Pk−1|k−1 and Pk|k−1 are the updated and predicted estimation covariance matrices respectively. Using 
optimal Kalman gain, Pk−1|k−1 is independent from the measurements and can achieve an asymptotic value as 
 
𝐏< 	= 	𝐅(𝐏< − 𝐏<𝐇8(𝐇𝐏<𝐇8 	+ 	𝐑)'𝟏𝐇𝐏<)𝐅8 	+ 	𝐐 (14) 
 
Therefore, 𝐏< is determined by the defined R and Q and used for Pk-1|k−1 to make MB Kalman filter 
independent from how many frames the MB have appeared in the imaging plane. The time continuous noise 
model [2] was used and thus 

Q 

 

(15) 

where q is the variance of error when assuming constant velocity in the linear Kalman motion model. As 
analytical solution of Eq. (14) was not found, Q was estimated using Eq. (15) while q was calculated by the 
bisection method in Algorithm 1. 
 
Algorithm 1 Find q  
Require: R, M𝑺OM, [𝑞" , 𝑞>] searching range of q  

while 𝑞> − 𝑞" > 𝜖	  do  
q ←(𝑞" + 𝑞>)/2  
Calculate 𝐏< with Q and R  
Calculate S with Eq. (13)  
if |𝑺| 	> 	 |𝑺O| then Ø |𝑺| increases with q in the searching range 

𝑞> ← q  
else  

𝑞" ← q  
end if  

end while  
Return q  
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Supplementary figures 
 

 
Supplementary Fig. 1 | Diameter distribution of Sonovue microbubbles. PDF: probability density function 
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Supplementary Fig. 2 | CEUS image generation and processing. a, AM was done to remove linear tissue 
signals. b, moving average subtraction was done to remove remaining nonlinear tissue signals. c, image in 
polar coordinate was generated for each angle and each channel. d, images were summed across channels 
corresponding to each angle. e, MB shifts during steering angles were estimated by the Doppler-based 
method. f, MB motions in each channel images were corrected by the phase shifts estimated from the 
corresponding steering angles. g, CEUS images were reconstructed with the coherence to variance (CV) 
beamforming, where the variance was calculated across channels and steering angles for each pixel. 
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Supplementary Fig. 3 | Probe sensitivity map. The map was obtained by summing all the element 
directivities to each pixel. The element sensitivity can be described as 𝑠𝑖𝑛𝑐 Z?

@
𝑠𝑖𝑛(𝜃)\ × 𝑐𝑜𝑠(𝜃), where 𝐿 is 

the element width; 𝜆 is the wavelength; 𝜃 is the angle between the vertical direction and the line connecting 
the element centre and pixel. 
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Supplementary Fig. 4 | Saturation curve of the short-axis data of Patient 1 versus the acquisition time. 
Maps with pixel size of half or a quarter wavelength (𝜆) were filled by localizations. Saturation was calculated 
by the ratio of filled area to all the area in the myocardium.  The figure demonstrates that the curves do not 
reach a plateau and the SR images are not fully saturated.  
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Supplementary Fig. 5 | Pressure measured at different depths in a water tank along the central line of the 
GEM5 ScD probe. The ultrasound pulses centred at 2.4 MHz was transmitted at 7 V, and the pulses centred 
at 1.7 MHz was transmitted at 8.2 V when acquiring data.  Pressure was measured by a needle hydrophone 
(0.2 mm, Precision Acoustic, UK). The measured pressure was derated by 0.3 dB/MHz/cm to get the curves 
in the figure, considering acoustic attenuation in tissues.  
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Supplementary tables 
 
Supplementary Table 1 | Parameters and components used for acquisition and processing. More details 
can be found in Methods and Supplementary Methods. 
 
  Parameter/ Component Value/ Brief Description 

Acquisition 
with GEM5ScD probe 

Transmitted entre frequency 2.4 MHz or 1.7 MHz 
Diverging wave focus -21.6 mm 
Steering angle sequence -15°, -3°, 9°, 15°, 3°, -9° 
Driving voltage 7 V or 8.2 V, measured pressures are 

shown in Fig. F10 
AM sequence 
(Half-Full-Half aperture) 

Interleaved groups with two elements, 
i.e., driving elements as (11001100…) 
or (00110011…) for half amplitude. 

Frame rate 305 Hz 
Duration 10 second 

M
ul

ti-
le

ve
l M

ot
io

n 
Co

rre
ct

io
n  

CEUS reconstruction 
with MB MoCo 
(Diagram shown in Fig. 
F5) 

Polar grid 67.8 µm and 0.5o 

Doppler window size 1 mm and 3.5o 

Intra-cycle tissue MoCo 
(two-stage registration: 
affine + B-spline-based 
non-rigid) 

Image difference metric Sum of square pixel intensity difference 
MB signal reduction Keep 5% largest singular values of SVD 

for reconstruction 
B-mode image dynamic range 50 dB after log compression 
Cartesian grid  Depth: 67.8 µm. Lateral: 135.0 µm 
B-spline grid Depth: 2.17 mm. Lateral: 4.32 mm 

Solver 
Affine: 
Levenberg–Marquardt algorithm 
Non-rigid: 
Steepest decent algorithm 

Maximum iteration steps 500 

Stopping criteria  
Image difference between two adjacent 
iterations changed less than 0.001% for 
20 times. 

Inter-cycle tissue MoCo 
(Rigid registration) 

Averaged CEUS dynamic 
range 100 dB after log compression 
The other parameters were same with the affine registration used for the 
intra-cycle motion correction 

Localization 
Cartesian grid 13.5 µm in both directions 
Threshold on normalised 
cross-correlation coefficient 
map 

0.5 

Tracking 
Searching window size 150 mm/s 
Kalman parameters Estimated from the data. Details can be 

found in the supplementary method. 
MB persistence filtering >3 frames 
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Supplementary Table 2 | Localization uncertainty measurements with in vitro experiments. A wire target 
was fixed under three different distances from the probe and imaged for 600 frames per depth using the 
same acquisition settings of the in vivo experiments. Localization uncertainties were quantified by the 
variance of localised positions at each depth.  Both transmission frequencies, i.e., 1.7 and 2.4 MHz, used in 
in vivo acquisition were tested. 
 

Depth 
(mm) 

1.7 MHz 2.4 MHz 
Lateral uncertainty 
(um) 

Axial uncertainty 
(um) 

Lateral uncertainty 
(um) 

Axial uncertainty 
(um) 

30 1.94 1.23 7.66 9.09 
80 4.80 2.48 3.29 3.02 
120 9.40 1.84 15.54 1.17 
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Captions for the Supplementary Videos 
 
Supplementary Video 1 | Short-axis view B-mode frames of Porcine 1 before (left) and after (right) motion 
correction. Dynamic range: 50 dB.  
 
Supplementary Video 2 | Short-axis view B-mode frames in one diastole phase of Patient 1 before (left) 
and after (right) motion correction. Dynamic range: 50 dB.  
 
Supplementary Video 3 |Long-axis view B-mode frames in one diastole phase of Patient 1 before (left) and 
after (right) motion correction. Dynamic range: 50 dB.   
 
Supplementary Video 4 |Demonstration of localization and tracking on short-axis view CEUS frames of 
Porcine 1. Red lines denote trajectories of microbubbles detected on current frames. Dynamic range of 
CEUS images: 100 dB.   
 
Supplementary Video 5 | Demonstration of localization and tracking at the top-left region on short-axis view 
CEUS frames of Patient 1. Right: red crosses denote localised positions of MBs. Left: Flow speed map with 
temporally accumulated MB trajectories after persistence filtering.  Dynamic range of CEUS images: 100 dB 
 
Supplementary video 6 | Image/video sequence in Supplementary video 6 in the sequence of appearance: 
1) Acquisition position demonstration. 2) B-mode frames of two consecutive cardiac cycles. 3) CEUS frames 
of the two consecutive full cardiac cycles obtained with moving-average subtraction and DAS beamforming. 
4) CEUS frames in four consecutive diastoles obtained with angle MoCo and CV beamforming. 5) SR 
density maps. 6) Comparison with CTCA. 7) Microcirculation visualisation. Microcirculation visualisation was 
done by moving localised microbubbles along their trajectories. Each scatter in the visualisation represents 
one localised microbubble. 


