Supplementary Information to:

- Genomic and single-cell analyses reveal genetic signatures of swimming
 pattern and diapause strategy in jellyfish
- 4
- Authors: Zhijun Dong^{1,2}^{†*}, Fanghan Wang^{1,2}[†], Yali Liu^{2,3,4}[†], Yongxue Li^{1,2}[†], Haiyan
 Yu⁵, Saijun Peng^{1,2}, Tingting Sun^{1,2}, Meng Qu^{2,3,4}, Ke Sun⁶, Lei Wang^{1,2}, Yuanqing
- 7 Ma⁷, Kai Chen⁶, Jianmin Zhao^{1,2*}, Qiang Lin^{2,3,4*}

8 [†]Authors contributed equally to this work.

9 *Correspondence to: linqiang@scsio.ac.cn (Q.L.); zjdong@yic.ac.cn (Z.J.D.);
10 jmzhao@yic.ac.cn (J.M.Z)

11

12 Affiliations:

¹CAS Key Laboratory of Coastal Environmental Processes and Ecological
 Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of
 Sciences, Yantai, Shandong 264003, China.

²University of Chinese Academy of Sciences, Beijing 100101, China.

¹⁷ ³CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South

- 18 China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou19 510301, China.
- 20 ⁴Guangdong Provincial Key Laboratory of Applied Marine Biology, South China
- Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,
 China.
- ⁵College of the Environment and Ecology, Xiamen University, Xiamen 361102,
 China.
- ⁶State Key Laboratory of Primate Biomedical Research, Institute of Primate
- Translational Medicine, Kunming University of Science and Technology,
 Kunming, Yunnan 650500, China.
- ⁷Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine
- 29 Resource and Environment Research Institute, Yantai, Shandong 264006, China.

- 30 Supplementary Information
- 31
- 32 **Table of Contents**
- 33 Supplementary Notes 1-11
- 34 Supplementary Figures 1-19
- 35 Supplementary Tables 1-20 Page 31-50

Page 3-9

Page 10-30

36 Supplementary Notes

37 Supplementary Note 1. Genome sequencing and assembly

The genome sequencing information of are presented in Supplementary Table 1, 2, 38 39 and 4. We calculated and plotted the 17-mer depth distributions of T. rubra and A. 40 coerulea; the results are presented in Supplementary Figure 2 and Supplementary Table 3. The statistics for the assembly steps are listed Supplementary Table 5. 41 Benchmarking Universal Single-Copy Orthologs (BUSCOs) assessment showed that 42 43 our assembly captured 92.4% and 86.4% of the complete BUSCOs of *T. rubra* and *A.* coerulea, respectively. For Hi-C sequencing, the sequence interaction matrices are 44 shown in Supplementary Figure 3, and the statistical analysis results of the 45 chromosome assembles of T. rubra (2n=30) and A. coerulea (2n=44) with genomic 46 47 loading rates of 95.11% and 99.71%, respectively, are summarised in Supplementary Table 6 and 7 and schematic representation of the genomic characteristics are shown 48 in Supplementary Figure 4. Furthermore, the pseudo-chromosome syntenic 49 50 relationship between T. rubra and A. coerulea was analyzed (Supplementary Figure 5). 51 Evaluation of the genome for completeness based on BUSCO resulted in values of 92.4% and 86.4%, respectively, indicating the high completeness and accuracy of the 52 53 assembly (Supplementary Table 5).

54

55 Supplementary Note 2. Genome annotation

The results of genome annotation are summarized in Supplementary Table 8. We 56 identified a total of 18,746 and 32,035 genes from T. rubra and A. coerulea genomes, 57 respectively (Supplementary Table 9). In total, 90.14% and 97.13% of the predicted 58 genes were annotated using different databases in T. rubra and A. coerulea, 59 respectively (Supplementary Table 10). For annotation of non-coding RNAs 60 (ncRNAs), microRNAs (miRNAs) and snRNAs were predicted using Rfam (v14.1), 61 whereas tRNAs were screened using tRNAscan-SE (v1.3.1) and rRNA was predicted 62 using BLASTN (v2.6.0) (Supplementary Table 11). The annotation results were 63 64 evaluated using BUSCO (metazoa odb10), and the results showed that our gene set contained 93.3% and 88.4% of complete ortholog genes of T. rubra and A. coerulea, 65

respectively (Supplementary Table 12), showing that our gene annotation was highlycomplete.

68

69 Supplementary Note 3. Phylogenetic analysis

70 To determine the phylogenetic positions of T. rubra and A. coerulea, phylogenetic analysis was conducted using whole-genome protein datasets of 17 cnidarians and one 71 72 ctenophore as the outgroup. A stringent set of orthologues was identified. Alignment 73 of these individual orthologous groups, followed by concatenation, resulted in amino acid alignment. Model prediction revealed that the JTTF model was the best-suited 74 substitution model for concatenated alignment. RAxML was used to generate an ML 75 tree for alignment using the best-fit model. The phylogenetic relationships between 76 77 anthozoans, hydrozoans, cubozoans, and scyphozoans were consistent with those reported in previous studies based on molecular datasets. Our phylogenomic analysis 78 also placed T. rubra within Hydrozoa and appeared to be a sister to C. hemisphaerica. 79 80 The divergence times were estimated using the Markov chain Monte Carlo (MCMC) 81 tree in PAML with calibration. Concatenated supergenes and species trees were used as input files. 82

83

84 Supplementary Note 4. Expansion and contraction of gene families

Gene expansion and contraction results for each branch of the phylogenetic tree were estimated. *T. rubra* harbored 81 significantly expanded and 278 significantly contracted gene families (Supplementary Figure 6, Supplementary Data 10). GO and KEGG enrichment analysis of contracted gene families in *T. rubra* were conducted by the GOseq R package and KOBAS software, respectively. A full list of the significantly enriched pathways is shown in Supplementary Data 11.

91

92 Supplementary Note 5. Gene loss

The lost gene families found in *R* language and manually searched are presented in Supplementary Data 12. A broader comparison of four vertebrates was conducted to confirm the number of genes or families associated with statocyst/otolith formation, cilia, and nerves in compared species. GO and KEGG enrichment analysis of lost
gene families in *T. rubra* were conducted by the GOseq R package and KOBAS
software, respectively. All significantly enriched pathways are listed in
Supplementary Data 13.

100

101 Supplementary Note 6. Positive selection of genes

A total of 548 PSGs were identified in *T. rubra* (FDR < 0.05) (Supplementary Data 1). 102 103 The dN/dS valve was provided in the Supplementary Data 2. Notably, among these 104 genes, we found several genes that play important roles in the statolith morphogenesis, ciliary movement, ciligenesis and some modulators that have been reported to be 105 important for the statolith formation process (Supplementary Table 14). Genes 106 107 involved in the nervous and muscular systems were also identified. GO and KEGG enrichment analyses were also conducted by the GOseq R package and KOBAS 108 software. GO enrichment of positive selected genes (PSGs) in T. rubra is shown in 109 Supplementary Data 3. Comparison of the amino acid substitutions of PSGs shown in 110 111 Fig. 3b in different species were performed using MEGA-X v10.1.8, and sequences of four vertebrate species were obtained from NCBI, the GenBank accession numbers of 112 113 these genes are listed in Supplementary Table 14.

114

115 Supplementary Note 7. Transcriptome analyses

The RNA sequencing information of two tissues (sensory organs and bell margins as 116 controls) of four species (C. quinquecirrha, R. esculentum, A. coerulea, and T. rubra) 117 is listed in Supplementary Data 4. Principal-component analysis (PCA) based on four 118 119 species normalization genes of combined 32 transcriptomes suggested that there were more variations between species than between tissues (Supplementary Figure 7). 120 DEGs in the tentacle bulbs of T. rubra with the rhopilia of the other three jellyfish 121 were obtained using cross-species transcriptome comparisons of sensory organs 122 (Supplementary Figure 8, Supplementary Data 5). GO and KEGG enrichment 123 124 analysis of downregulated DEGs in T. rubra were conducted by the GOseq R package and KOBAS software, respectively. All significantly enriched pathways are listed in 125

126 Supplementary Data 6, and the top 20 significantly enriched GO terms for the 127 downregulated DEGs in the tentacle bulb of *T. rubra* are shown for biological 128 processes (BPs) and cellular components (CCs) in Supplementary Figure 9.

The DEGs information of the sensory organs compared with the control samples in each species is shown in Supplementary Figure 10, and 11, Supplementary Table 15 and Supplementary Data 7. The full list of significantly enrichment gene ontologies of the upregulated and downregulated DEGs in the sensory organs in each species (P-value <0.05) is shown in Supplementary Data 8. KEGG enrichment of cilium-related DEGs in the four jellyfish species (P-value<0.05) is shown in Supplementary Data 9.

136

137 Supplementary Note 8. RNAi experiment and RT-qPCR

The sequences of RNAi are provided in Supplementary Table 16. At the end of the 138 RNAi experiment, polyps were observed, and the number of individuals at each stage 139 of strobilation was recorded. The result is shown in Supplementary Figure 13a. The 140 141 expression of target genes was assessed using RT-qPCR analysis, and the si-OM and si-LRR groups exhibited significant downregulation of gene expression, validating the 142 efficacy of the siRNA treatment (Supplementary Figure 13b, p < 0.001; 143 Supplementary Data 14). The RT-qPCR primer sequence of select gene are shown in 144 145 Supplementary Table 17.

146

Supplementary Note 9. Variation of the transcriptional expression profile of hair, neural, and muscle cells between *T. rubra* and *A. coerulea*.

The sc-RNA sequencing information of *T. rubra* and *A. coerulea* medusa is listed in Supplementary Table 18. We generated cell atlas of medusa *T. rubra* and *A. coerulea* contain 22245 cells and 18936 cells, respectively, and the number of RNA detected and UMI per cell are shown in Supplementary Figure 14. The 18 putative cell clusters (associated markers in parentheses) with a resolution of 0.2 were assigned to 10 broad partitions and were annotated manually by combining analysis of underlying

molecular profiles and prior knowledge (Supplementary Figure 15; Supplementary 155 Data 15). Stem/germ cells (PCNA and NANOS) were dominant in T. rubra, whereas 156 glands (trypsin, chitinase, and MUC2) and nematoblasts (nematogalectin and DKK3) 157 were dominant in A. coerulea. Gene expression in the hair cells of T. rubra and A. 158 coerulea was compared and species-specific gene sets were clearly visualised. The 159 DEGs in hair cells from T. rubra and A. coerulea are shown in Supplementary Data 160 16. GO enrichment analysis of the DEGs was conducted using the GOseq R package, 161 162 and the full list of enriched terms is shown in Supplementary Data 17.

163 The list of different expressed genes (DEGs) in neural s and striated muscle between 164 *T. rubra* and *A. coerulea* is shown in Supplementary Data 18 and 20, and GO 165 enrichment terms are shown in Supplementary Data 19 and 21.

166

167 Supplementary Note 10. Single-cell transcriptional profiles of cyst (Cy) 168 formation in *T. rubra*.

169 ScRNA-seq analysis was conducted on single cells sampled across five crucial life stages: medusa (Me), four-leaf structure (Ff), cyst (Cy), polyp (Po), and planula (Pl) 170 171 (Supplementary Table 19). To facilitate comparative analyses across different 172 developmental stages, we integrated the expression data from all libraries into a unified dataset and utilized the Harmony package (fast, sensitive, and accurate 173 integration of single-cell data with Harmony) to mitigate batch effects. In total, we 174 obtained a high-quality dataset comprising 44954 cells expressing 15478 genes, with 175 a median of 668 genes per cell and 1521 unique molecular identifiers (UMIs) per cell, 176 177 representing five critical stages of development. To construct a cell atlas, we performed a clustering analysis on the gene expression matrix, resulting in the 178 identification of 36 distinct cell clusters. The cellular landscape was visualized using 179 180 the uniform manifold approximation and projection (UMAP) technique. The 36 181 clusters were confidently assigned to six broad (associated markers in parentheses) cell types based on known markers and prior annotations (Fig. 5a), including 182 stem/germ cells (CNIWI, NANOS and PCAN), gastroderm (CTSZ and CTSB), 183

epidermal/muscle cells (*MYHCKB* and *MYH2*), nematocytes (minicollagen and nematogalectin), neural cells (*SYT16* and neuocalcin), gland cells (chitinase 2 and *CELA3B*), and hair cell (myosin-VI, *MYO7A*, *PO4F3*). DEGs of *T.rubra* across different life stages are shown in Supplementary Data 25. The KEGG and GO enrichment analysess of cysts and planula in *T. rubra* (P-value < 0.05) are shown in Supplementary Data 23 and Supplementary Data 24, respectively.

190

191 Supplementary Note 11. Whole-mount in situ hybridisation protocol

192 Whole-mount in situ hybridised animals that had been starved for at least 2 days were relaxed in 2% MgCl₂ (in 0.22 µm filtered seawater) for 5–10 min and subsequently 193 fixed overnight at 4 °C in 4% paraformaldehyde. Thereafter, the specimens were 194 195 dehydrated using a 25/50/75% MeOH series to remove undesired pigmentation and stored in 100% MeOH at -20 °C. The samples were rehydrated with a 75/50/25% 196 197 MeOH series for 10 min each, followed by a 10-minute PBT wash, and then bleached 198 in a 3% H2O2/PBT solution for 10 min. Animals were permeabilized for 10-20 min 199 with 1 µg/ml proteinase K (Sigma) in PBT after three 10-min PBT washes. Protease 200 digestion was stopped by a quick wash and a 10-min wash with 4 mg/ml glycine in PBT, followed by three 10-min PBT washes to remove residual glycine. The samples 201 were washed twice with 0.1 M triethanolamine for 10 min, and then treated with 2.5 202 203 μ l/ml and 5 μ l/ml acetic anhydride in 0.1 M triethanolamine (pH 7.8) for 5 min each to reduce probe nonspecific binding. Hereafter, the samples were refixed overnight 204 205 with 4% paraformaldehyde at 4 °C.

The fixative was thoroughly washed with three 10-min PBT washes and two 10-min 2× SSC washes. The animals in 2× SSC were transferred to a 70 °C water bath for 20 min. Prehybridization and hybridization were all carried out in hybridization oven at 57 °C. Prehybridization step was performed in hybridization buffer (50% Formamid, 5× SSC, 0.1% Tween-20, 0.1% CHAPS, 1× Denhardt's solution and 100 μ g/ml Heparin in DEPC water) with 0.5 mg/ml torula yeast RNA (Sigma; #R6625-25G) for 2 hours. For hybridisation, all probes denatured at 70 °C for 5 min were used at 10 ng/ml in hybridisation buffer with 0.5 mg/ml torula yeast RNA
to improve signal-to-noise and hybridised for 24 hours with gentle agitation.

Unhybridized probes were washed away with pre-warmed solutions at 57 °C 215 using 100% HS, 75% HS/25% 2× SSC, 50% HS/50% 2× SSC and 25% HS/75% 2× 216 SSC for 10 min each, as well as 2× SSC with 0.1% CHAPS for two 30-min. This was 217 followed by two 10-min washes with MAB-T (100 mM maleic acid, 150 mM NaCl, 218 0.1% Tween 20, pH 7.5). The samples were incubated in MAB-T with 1% BSA 219 220 Fraktion V (Coolaber; # CA1381-10G) for 1 hour at RT, after which it was blocked at 221 4 °C for 2 hours in 1 ml blocking solution (80% MAB-T with 1% BSA and 20% 222 sheep serum (Solarbio; #SL039)). The samples were incubated overnight with 1:2000 anti-DIG AP (Roche; #11093274910) in a blocking solution at 4 °C. 223

The samples then were washed nine times with MAB-T for 20 min each, rinsed with NTMT (100 mM NaCl, 100 mM Tris-HCl, 50 mM MgCl2, and 0.1% Tween-20 in DEPC water, pH 9.5) for 10 min, and developed in the presence of NBT/BCIP substrate (Roche; #11175041910) at RT in the dark. The colour reaction was stopped by three PBT washes, and background staining was cleared by incubation in 70% and 100% EtOH. The samples were sequentially cleared with 80% glycerol. The primer sequences are listed in Supplementary Table 20.

232 Supplementary Figure 1.

Balancing organs in Eumetazoa range from simple statocysts in aquatic invertebrates to complex vestibules in mammals, which comprise mass blocks of calcium crystals (statolith/otolith), proteoglycans and collagen, together with sensory hair cells mechanically influenced by the position of the mass blocks. The silhouette images of species were downloaded from BioRender. com except for echinoderm, hydra, immortal jelly and moon jelly.

239

240 Supplementary Figure 2.

241 *K-mer* distribution of the *T.rubra* (a, b) and *A. coerulea* (c) genomes. The *K-mer*

spectrum was constructed based on a 17-mer. The figure shows the K-mer spectrum

of raw reads. The x-axis represents the *K-mer* depth, whereas the y-axis represents the

frequence of *Kmer* species (a, c) and numbers (b, c). The *Knum* of the *T.rubra* and *A*.

coerulea genomes were 40,775,603,666 and 23130475928 based on the 17-mer. The

246 K*depth* were 151 and 40, respectively.

248 Supplementary Figure 3.

Hi-C contact maps of *T.rubra* (a) and *A. coerulea* (b) genome assemblies.
Chromosome-level genome assemblies comprising 15 and 22 chromosome-level
scaffolds, respectively.

253 Supplementary Figure 4.

Schematic representation of the genomic characteristics of *T.rubra* (a) and *A. coerulea* (b). Track a: Proteincoding genes on plus strand. TrackB: Protein coding genes on minus strand. Track C: Distribution of gene density with sliding windows of 1 Mb. Higher density is shown in darker red colour. Track D: Distribution of GC content in the genome. Track E: Distribution of repeats in the genome. Track F: Schematic presentation of major interchromosomal relationships. Source data are provided as a Source Data file.

262 Supplementary Figure 5.

263 The chromosome synteny of *T. rubra* and *A. coerulea*. Source data are provided as a

264 Source Data file.

266 Supplementary Figure 6.

The numbers near each branch indicate the number of substantially expanded (red) and contracted (blue) gene families. *Hydra vulgaris* and *Turritopsis rubra*, which lack statocysts are presented in the red box. (b) Percentages of transposable elements (TEs) studied in the different jellyfish genomes studied. LINE, long interspersed element; SINE, short, interspersed element; LTR, long terminal repeats.

273 Supplementary Figure 7.

The principal-component analysis (PCA) clustered the 32 samples. The legend represents sample names in **Supplementary Table 15**. Source data are provided as a Source Data file.

277

278 Supplementary Figure 8.

Volcano map of the shared and group-specific DEGs in the sensory organ and control
samples of *C. quinquecirrha* (a), *R. esculentum* (b) and *A. coerulea* (c) compared to
that in *T. rubra*. Yellow, purple and gray represent significantly changed DEGs in *T. rubra*, scyphozoan and both groups, respectively. Source data are provided as a
Source Data file.

284

285 Supplementary Figure 9.

Top 20 enriched GO terms for downregulated DEGs in the tentacle bulb of *T. rubra* compared to three scyphozoan (a. *C. quinquecirrha*, b. *R. esculentum* and c. *A. coerulea*) are shown for biological processes (BPs) and cellular components (CCs). Categories involved in cilium are coloured in red. The enrichment was conducted using the GOseq R package and corrected P < 0.05 indicated significant enrichment. The complete categories are listed in Supplementary Data 6 (P < 0.05). Source data are provided as a Source Data file.

294 Supplementary Figure 10.

Volcano maps of differentially expressed genes (DEGs) in the sensory organs and 295 control tissues of Turritopsis rubra (a), Chrysaora quinquecirrha (b), Rhopilema 296 297 esculentum (c), and Aurelia coerulea (d), and significantly enriched Gene Ontology (GO) terms (biological processes, p < 0.01) of up-regulated and down-regulated 298 DEGs in each species. Categories involved in cilium are coloured in red. The 299 complete categories are listed in Supplementary Data 8 (P < 0.05). The interaction 300 301 networks of cilium-related DEGs for each species are displayed in the right panel. The red and blue protein names in bubbles indicate up-regulated and down-regulated 302

303 proteins, respectively, in the sensory organ of each species. Edges represent 304 protein-protein associations made using the STRING database with a medium 305 confidence level (0.4). Coloured ellipses depict the regrouping of the closest clusters. 306 The network of all the interactors was determined using Markov Clustering MCL 307 (inflation parameter set to 3.0). Line thickness indicates the strength of evidence, with 308 thicker connections representing higher confidence in the protein-protein interaction. 309 Source data are provided as a Source Data file.

 D
 Description

 ko0502
 Pathways of neurodogeneration - multiple diseases

 ko05016
 Hurtington disease

 ko05017
 Amyrophic lateral sclerosis

 ko05018
 Amyrophic lateral sclerosis

 ko05029
 Sensing pathways regulating pluripotency of stam cell ko05058

 ko050510
 Human pathicam-siru infection

 ko050512
 ECM--receptor inferaction

 ko0412
 ECM--receptor inferaction

 ko0413
 Gastric cancer

 ko0414
 Gastric cancer

 ko0415
 Gastric cancer

 ko0416
 Gastric cancer

 ko0415
 Sensition

 ko0416
 Gastric cancer

 ko0415
 GPR-Mut signaling pathway

Pathway Top 20

 Description

 ko04002
 Vasopressin-regulated water readoction

 ko05002
 Pathways of neurodogeneration - multiple disease

 ko05001
 Amyotrophic lateral solerosis

 ko05012
 Samonelia intection

 ko05013
 Samonelia intection

 ko05014
 Hurtington disease

 ko05015
 Pathways in cancer

 ko0502
 Breast cancer

 ko0503
 Toryoid cancer

 ko0504
 Toryoid cancer

 ko0505
 EGFR prosine kinase inhibor reastance

 ko0514
 Mahris

 ko0515
 EdGFR prosine kinase inhibor resistance

 ko0516
 Hurnan papitomarius infection

 ko0516
 Samat cel lung cancer

 ko0516
 Samat cel lung cancer

Pathway Top 20

ID	Descrption
ko05226	Gastric cancer
ko05416	Viral myocarditis
ko05412	Arrhythmogenic right ventricular cardiomyopathy
ko05410	Hypertrophic cardiomyopathy
ko04390	Hippo signaling pathway
ko05414	Dilated cardiomyopathy
ko05022	Pathways of neurodegeneration – multiple diseases
ko05224	Breast cancer
ko05218	Melanoma
ko05217	Basal cell carcinoma
ko05200	Pathways in cancer
ko05016	Huntington disease
ko04550	Signaling pathways regulating pluripotency of stem cells
ko04512	ECM-receptor interaction
ko04350	TGF-beta signaling pathway
ko04810	Regulation of actin cytoskeleton
ko05205	Proteoglycans in cancer
ko04016	MAPK signaling pathway – plant
ko04916	Melanogenesis
ko04911	Insulin secretion

ID	Descrption
ko04390	Hippo signaling pathway
ko05200	Pathways in cancer
ko04550	Signaling pathways regulating pluripotency of stem cells
ko04151	PI3K-Akt signaling pathway
ko05206	MicroRNAs in cancer
ko05226	Gastric cancer
ko04360	Axon guidance
ko05414	Dilated cardiomyopathy
ko05205	Proteoglycans in cancer
ko05224	Breast cancer
ko04391	Hippo signaling pathway - fly
ko04010	MAPK signaling pathway
ko04935	Growth hormone synthesis, secretion and action
ko04350	TGF-beta signaling pathway
ko05165	Human papillomavirus infection
ko04110	Cell cycle
ko05410	Hypertrophic cardiomyopathy
ko04722	Neurotrophin signaling pathway
ko05412	Arrhythmogenic right ventricular cardiomyopathy
ko05225	Hepatocellular carcinoma

310

Pathway Top 20

311 Supplementary Figure 11.

- 312 Top 20 KEGG pathways for DEGs of the sensory organs and control tissues in T.
- 313 rubra (a), C. quinquecirrha (b), R. esculentum (c) and A. coerulea (d). The complete
- 314 categories are listed in Supplementary Data 9 (P < 0.05).

316 Supplementary Figure 12.

Predicted protein structures encoded by the lost otolith morphogenesis (OM) gene 317 318 family (a) and statocyst-related positively selected genes (PSGs) (b). (a) Predicted protein structures encoded by OMs of each species revealed similar structures, with 319 an LRR (red) and TNFRSF (green) domains (except for Clytia hemisphaerica), in 320 addition to an LRRNT domain (blue) in front of the LRR in Aurelia coerulea and 321 Rhopilema esculentum. The LRR domain plays vital role in biomineralisation. (b) 322 Predicted protein structures encoded by some representing PSGs of Figure 2; selected 323 324 amino acids are labelled on conserved domains, which are represented in different colours. 325

326

Supplementary Figure 13.

(a) The number of polyps under two stages of four groups. ES, early stage of
strobilation; AS, advanced stage of strobilation. (b) The relative expression of target
genes in the si-OM and si-LRR groups. Source data are provided as a Source Data
file.

333 Supplementary Figure 14.

different life stage in *T.rubra* (a, b) and medusa of *A.coerulea* (c, d).

337 Supplementary Figure 15.

Cell atlas of the *T. rubra* and *A. coerulea*. (a) UMAP visualization of the merged dataset (left) and each life stage (right). coloured by cluster identity from Louvain clustering and annotated based on marker genes, cell-type colours are the same in each life stage, associated with **Figure 4**. (b) Dot plot showing expression of selected marker genes per cell type. Dot sizes represent percentages of cells within a cell type in which a given marker is detected; dot intensities represent average expression levels.

346 Supplementary Figure 16.

Cross-species comparison of neural cells in *Turritopsis rubra* and *Aurelia coerulea*. (a) 347 Uniform Manifold Approximation and Projection (UMAP) visualisation of neural 348 cells in the T. rubra and A. coerulea integrated medusa cell atlas. Inset: locations of 349 350 the neural cell cluster of the merged UMAP plot in Figure 4a. (b) Feature plots visualising the expression of genes associated with neural development in neural cells. 351 (c) Volcano map (left) displaying differential gene expression between the neural cells 352 of T. rubra and A. coerulea; bar plot (right) depicts Gene Ontology (GO) analyses for 353 354 differentially expressed genes (DEGs). Source data are provided as a Source Data file.

357 Supplementary Figure 17.

Cross-species comparison of striated muscle cells between Turritopsis rubra and 358 Aurelia coerulea (a) Uniform Manifold Approximation and Projection (UMAP) 359 visualisation of striated muscle cells in the T. rubra and A. coerulea integrated 360 medusa cell atlas. (b) Feature plots showing the expression of genes associated with 361 muscle contraction in striated muscle cells. (c) Volcano plot (left) depicting the 362 differential gene expression between striated muscle cells of T. rubra and A. coerulea; 363 364 bar plot (right) represents the Gene Ontology (GO) analyses for differentially expressed genes (DEGs). Source data are provided as a Source Data file. 365

367 Supplementary Figure 18.

Analyses of the cell differentiation trajectory at different stages in *T. rubra*. (a-b) 368 369 UMAP visualisation of the cell differentiation potential during the normal development stage (a) and the reverse-development stage (b) of the T. rubra. (c) 370 Dynamics of differentiation potential between stem cells and nematocytes during the 371 forward development process in T. rubra. (d) Heatmap showing the expression 372 373 dynamics of selected transcription factors related to nematocyte differentiation during reverse development in T. rubra, related to Figure 5c. Source data are provided as a 374 375 Source Data file.

377 Supplementary Figure 19.

378 Genetic basis for the swimming patterns of *T. rubra* and *A. coerulea*. Lost genes 379 (grey), positively selected genes (orange), and down-regulated or non- expressed 380 genes and pathways (blue) in the hair cells of *T. rubra*, which are related to statocyst 381 formation and cilium function and may result in the loss of statocyst and 382 straight-swimming patterns in *T. rubra*.

Species Sampling	Origin	Sampling date	Genome sequencin g	Hi-C sequencing	Note
T. rubra	Yantai and Dongying, Shandong, China	2021.6.5	individual	individual	newly sequenced
A. coerulea	Yantai, Shandong, China	2021.12.4	individual	individual	newly sequenced

383 Supplementary Table 1. Jellyfish samples used for genome and Hi-C sequencing.

Sample ID	Library	Data (Gb)	Denth
		× /	Deptii
T. rubra	350bp	53.43	200 imes
A. coerulea	350bp	60.90	$120 \times$

385 Supplementary Table 2. Genome sequencing data by Illumina.

387 Supplementary Table 3. Genome size estimation with *K-mer* distribution analysis

Sample ID	Genome size (Mb)	Heterozygosity (%)	Repeat ratio (%)
T. rubra	266.51	0.45	48.17
A. coerulea	521.62	1.43	56.18

based on a 17*-mer*.

Species	Raw paired reads	Raw Base(bp)	Clean Base(bp)	Q20(%)	Q30(%)	GC Content(%)
T. rubra	12,317,885	3,695,365,500	3,685,032,300	97.23	91.97	35.80
A. coerulea	461,577,177	68,707,838,179	68,315,728,511	98.80	95.70	37.30

390 Supplementary Table 4. Sequencing data evaluation for Hi-C assemblies.

Species	Assembly	Scaffold	Scaffold	Contig	Contig N50	Complete	Fragmented	Missing	Loading
Genome size	size (bp)	num	N50(bp)	num	(bp)	BUSCOs (%)	BUSCOs (%)	BUSCOs (%)	rate (%)
T. rubra	266,862,699	329	16,943,197	762	1,187,606	92.40	1.30	6.30	95.11
A. coerulea	566,061,810	321	25,260,120	42	22,395,985	86.40	6.80	7.20	99.71

392 Supplementary Table 5. Summary of genome sizes and assembly statistics.

	Sequenes ID	Cluster Number	Sequeues Length
	Hic_asm_0	57	18,799,587
	Hic_asm_1	42	17,348,683
	Hic_asm_2	19	13,911,814
	Hic_asm_3	15	16,302,533
	Hic_asm_4	20	17,136,266
	Hic_asm_5	27	13,858,914
	Hic_asm_6	24	17,883,988
T. rubra	Hic_asm_7	20	18,556,697
	Hic_asm_8	13	20,379,689
	Hic_asm_9	16	16,246,515
	Hic_asm_10	30	16,356,653
	Hic_asm_11	35	17,031,648
	Hic_asm_12	36	16,943,197
	Hic_asm_13	46	16,806,440
	Hic_asm_14	48	16,243,415

394 Supplementary Table 6. Statistics of the anchored chromosomes for *T. rubra*

395 genome.

		Number of	Length of	Length of
	Superscattold	Contigs	Contigs	Superscaffold
	chr1	4	50,743,788	50,745,288
	chr2	1	36,548,555	36,548,555
	chr3	4	33,598,094	33,599,594
	chr4	4	31,316,877	31,318,377
	chr5	1	30,607,789	30,607,789
	chr6	1	28,066,466	28,066,466
	chr7	1	26,734,379	26,734,379
	chr8	1	26,296,151	26,296,151
	chr9	2	25,259,620	25,260,120
	chr10	1	24,443,289	24,443,289
1 aaamulaa	chr11	2	24,105,683	24,106,183
4.coeruieu	chr12	1	23,738,836	23,738,836
	chr13	2	23,151,249	23,151,749
	chr14	4	22,688,858	22,690,358
	chr15	2	22,541,530	22,542,030
	chr16	1	22,395,985	22,395,985
	chr17	1	20,565,505	20,565,505
	chr18	1	20,011,490	20,011,490
	chr19	1	19,548,997	19,548,997
	chr20	3	19,537,659	19,538,659
	chr21	2	19,094,960	19,095,460
	chr22	2	15,066,050	15,066,550

397 Supplementary Table 7. Statistics of the anchored chromosomes for *A.coerulea*

400 Supplementary Table 8. Statistics of TEs in *T. rubra* and *A.coerulea* genomes.

402 Secolar	Trues	Denovo+Repba	$\mathbf{D}_{ata}(0/\mathbf{)}$	TE proteins	Rate	Combined TEs	Rate
Species	I ype	se Length(bp)	Rate (%)	Length(bp)	(%)	Length(bp)	(%)
	DNA	30,634,570	11.48	11,144,987	4.18	34,270,163	12.84
	LINE	25,796,510	9.67	11,973,960	4.49	29,915,257	11.21
	SINE	4,869,953	1.82	0	0.00	4,869,953	1.82
T. rubra	LTR	16,260,095	6.09	2,939,498	1.10	17,550,578	6.58
	Other	0	0.00	0	0.00	0	0.00
	Unknown	50,261,822	18.83	0	0.00	50,261,822	18.83
	Total	120,603,297	45.19	25,944,876	9.72	126,581,914	47.43
	DNA	45,886,648	7.97	707,009	0.12	45,727,839	7.94
	LINE	96,396,367	16.75	20,206,690	3.51	102,296,994	17.77
	SINE	6,859,988	1.20	0	0.00	6,853,467	1.19
A.coerulea	LTR	232,566,099	40.41	9,031,961	1.57	230,701,339	40.08
	Other	0	0.00	0	0.00	0	0.00
	Unknown	90,804,249	15.77	0	0.00	90,778,823	15.77
	Total TE	408,176,930	70.92	29,940,888	5.20	410,702,814	71.35

Species	Gene set	Software	Species	Number
		Augustus	-	16,812
		GlimmerHMM	-	27,384
	De novo	SNAP	-	22,730
		Geneid	-	5,765
		Genscan	-	12,883
			Aurelia aurita	20,506
T mibra			Clytia hemisphaerica	25,304
1. rubra	Homolog	Blast and	Hydra vulgaris	17,557
	Holliolog	Genewise	Morbakka virulenta	15,451
			Pocillopora damicornis	18,625
			Rhopilema esculentum	21,438
	DNAcog	PASA	-	48,492
	KINASeq	Cufflinks	-	46,749
	Intergration	EVM	-	18,746
		Augustus	-	51,133
	De novo	Genscan	-	49,597
		GlimmHMM	-	79,009
			Aurelia aurita	76,379
			Aurelia sp1	86,080
1			Cassiopea xamachana	36,171
A.coerulea	Homolog	Exonerate	Chrysaora	27.770
			quinquecirrha	37,770
			Hydra vulgaris	17,611
			Rhopilema esculentum	32,353
	RNAseq	PASA	-	6,658
	Intergration	MAKER	-	32,035

403 Supplementary Table 9. Statistics of the gene prediction in *T. rubra* and 404 *A.coerulea*.

Species	Annotation database	Number	Percent(%)
	Swissprot	12,770	68.12
	Nr	16,890	90.10
	KEGG	13,385	71.40
Turkan	InterPro	16,674	88.95
1. rubra	GO	7,805	41.64
	Pfam	12,322	65.73
	Annotated	16,898	90.14
	Unannotated	1,848	9.86
	InterPro	24,625	76.87
	GO	13,592	42.43
	KEGG_ALL	30,628	95.61
	KEGG_KO	8,724	27.23
A.coerulea	Swissprot	21,001	65.56
	TrEMBL	30,979	96.70
	NR	30,891	96.43
	Annotated	31,116	97.13
	Unannotated	919	2.87

405 Supplementary Table 10. Statistics of functional annotation of protein-coding

406 genes in *T. rubra* and *A.coerulea*.

coci aica s						
Spacios	Туре		Conv	Average	Total	% of
Species			Сору	length(bp)	length(bp)	genome
	m	iRNA	125	116.00	14,531	0.0050
	tRNA		8,425	75.00	629,943	0.2406
		rRNA	496	98.20	48,709	0.0180
		18S	55	189.31	10,412	0.0039
	rRNA	28S	8	126.50	1,012	0.0004
T. rubra		5.8S	0	0.00	0	0.0000
		58	433	86.11	37,285	0.0140
	snRNA	snRNA	747	128.43	95,935	0.0359
		CD-box	43	131.40	5,650	0.0021
		HACA-box	16	185.12	2,962	0.0011
		splicing	676	126.34	85,406	0.0320
	miRNA		65	38.43	2,498	0.0004
	tRNA		2,341	75.19	176,034	0.0306
		rRNA	630	1,741.31	1,097,027	0.1906
		18S	187	1,793.33	335,353	0.0583
	rKNA	28S	183	3,999.16	731,847	0.1271
A.coerulea		58	260	114.71	29,827	0.0052
		snRNA	39	149.43	5,828	0.0010
		CD-box	2	218.00	436	0.0001
	snRNA	HACA-box	0	0.00	0	0.0000
		splicing	37	145.72	5,392	0.0009
		scaRNA	0	0.00	0	0.0000

408 Supplementary Table 11. Statistics of the non-coding RNA of *T. rubra* and 409 *A.coerulea* genomes.

411 Supplementary Table 12. BUSCO evaluation of annotated results.

m=054	Percentages(%)			
N-934	T. rubra	A. coerulea		
Complete BUSCOs	93.3	88.3		
Complete and single-copy BUSCOs	88.4	87.9		
Complete and duplicated BUSCOs	4.9	0.5		
Fragmented BUSCOs	1.6	4.7		
Missing BUSCOs	5.1	6.9		

414 Supplementary Table 13. Comparison of genome assemblies of *Turritopsis* and *Aurelia* with published genomic statistics.

Species	T wuhua	T mibua	T.dohrni	dohrni T. dohrnii A. coerulea i	Aurolia sp1	A. aurita	A. aurita	
species	1. rudra	1. ruora	i		A. Coeruieu	Aurelia spi	(Atlantic)	(Pacific)
Assembly size (bp)	266.86	210.00	390.00	435.92	566.06	713.00	377.00	429.00
Contig num	762	53,262	68,044	891	42	67,005	170,088	213,756
contig N50(bp)	1,187,606	3,457	7,666	747,194	22,395,985	20k	2,627	2,665
Scaffold num	329	9,508	74,829		22	16,793	2,710	7,744
scaffold N50(bp)	16,943,197	71,856	10,419		25,260,120	124K	1.04M	0.2M
GC Content(%)	34.26	34.00	34.50	34.70	37.34	32.60	37.10	37.60
TE rate(%)	47.43	39.45	50.78	60.35	73.14	49.50	44.67	44.03
Complete BUSCOs	02.40	00.70	70.00	00.40	96.40		72.20	40.00
(%)	92.40	88.78	/8.88	90.40	86.40		/2.20	49.00
Gene num	18,746	9,324	17,468	23,314	32,035	29,964	28,625	30,166
Genome coverage	200×	96×	95×	219.5×	120×		90×	90×
Assembly level	chromosome	scaffold	scaffold	contig	chromosome	scaffold	scaffold	scaffold
	P This study	Pascual-7	Forner et	Hasegawa		Gold et al,	121 1	4 1 2010
Reference		al., 2	2022	et al., 2023	I his study	2019	Khalturin	et al.,2019

416 Supplementary Table 14. GenBank accession numbers of statocyst related PSGs

Gene	Species	GenBank accession number		
	D. rerio	NP_997843		
CUSVI	G. gallus	XP_015147744		
CHSTI	M. musculus	NP_001074632		
	H. sapiens	AAQ88893		
	D. rerio	XP_009291422.1		
USU 7 A	G. gallus	XP_015139379.2		
USIIZA	M. musculus	AAZ23164.1		
	H. sapiens	KAI4084958.1		
	D. rerio	NP_999974.1		
CDU22	G. gallus	XP_421595.5		
CDH23	M. musculus	NP_075859.2		
	H. sapiens	NP_071407.4		
	D. rerio	XP_021336434.1		
DCTNI	G. gallus	XP_040555015.1		
DCINI	M. musculus	NP_001185795.1		
	H. sapiens	NP_004073.2		
	D. rerio	NP_001340860.1		
CED02	G. gallus	XP_015139570.1		
CEP83	M. musculus	NP_084128.2		
	H. sapiens	NP_057206.2		
	D. rerio	XP_005173914.1		
WI (1000 C	G. gallus	XP_004949130.2		
KIAA2026	M. musculus	NP_766424.2		
	H. sapiens	NP_001017969.2		

417 protein sequences of four vertebrate species.

419 Supplementary Table 15. Number of DEGs of the sensory organs compared with

420 control samples in each species (Q<0.01).

421

Species	Up	Down	Total
T. rubra	1,303	3,335	4,638
C. quinquecirrha	4,796	5,140	9,936
R. esculentum	1,048	413	1,461
A. coerulea	3,698	4,032	7,730

SiRNA	Number	Sequence (5'-3')
	1	CTATCGATCTCACGTTGAA
Si-OM	2	GGCTACAACAGGCAAACAA
	3	GGCAACGACTTCAAAGGAA
	1	CCTACAACGAAACAGGATA
Si-LRR	2	CCAGACTTTCGAGGAATCA
	3	GGAAACAGTCTCTCAAACA

423 Supplementary Table 16. The sequences of RNAi used in the study.

/		
	Gene name	Sequence (5'-3')
		F: TCACGGTTCGATCGCTTTGG
	ОМ	R: TCCACTGCATCCAGTAGCCT
		F: CCGAGCTTCACCTACAACGA
LKK		R: CGGTGCAAGTTTCATGCCATC

426 Supplementary Table 17. RT-qPCR primer sequence of select gene.

429 Supplementary Table 18. The Sc-RNA sequencing information of *T. rubra* and *A.*430 *coerulea* medusa.

Success	Dlatform	Data	Number of captured	Number of selected
Species	Platform	Data	cells	cells
T. rubra	10X	1200	28,607	22,245
	Genomics	1200		
A. coerulea	BD	1200	27 (71	18,936
	Rhapsody	1200	57,071	

433 Supplementary Table 19. The Sc-RNA sequencing information of five stages of *T*.

rubra.

Dlatform	Data	Number of	Number of	
Flation	Data	captured cells	selected cells	
10X	20 C	4 416	4,079	
Genomics	800	4,410		
BD Rhapsody	80G	8,647	4,739	
10X	120G	29 (07	22.245	
Genomics		28,007	22,245	
DD Dhanaa da	200	12 194	0 260	
BD Knapsody	80G	12,184	8,308	
BD Rhapsody	80G	7,416	5,523	
	Platform 10X Genomics BD Rhapsody 10X Genomics BD Rhapsody BD Rhapsody	PlatformData10X80GGenomics80GBD Rhapsody80G10X120GGenomics80GBD Rhapsody80GBD Rhapsody80G	PlatformDataNumber of captured cells10X80G4,416Genomics80G8,647BD Rhapsody80G8,64710X120G28,607Genomics80G12,184BD Rhapsody80G7,416	

Species	Gene name	Gene ID	Sequence (5'-3')
T. rubra	LOXHD1	evm.model.Hic	F: GGCATTGGTCCTGCATGGTA
		_asm_10.1109	R: GCTGCTTGGTTGATAGTGGC
	USH2A	evm.model.Hic	F: GTCAACGTGTCCTGGTCGAT
		_asm_9.1159	R: TCCAGCCCAACATGAAACGA
A. coerulea		A co 27060	F: TTAGCACAGGTGGACTGGT
	LOAIIDI	Ac027000	R: ACCATCACACGACAAGGTGA
	LICU? A	A == 20175	F: ACAGTCGTTGGCTGCTCTAC
	USIIZA	AC020175	R: AGGTGAGCTTTCTGGTGTCG
	OM_{2}	1 005836	F: CGATGCCTGACCTAAGAGGC
	OMS	Ac003830	R: AAGACGCCTTGTGGCAGATA
	CEAD1A1	Aco15911	F: TAAGGAACTTGAAGAGCAGTCTGT
	<i>CFAF 141</i>		R: CAGTTGAGCTTGCCGAACC

437 Supplementary Table 20. Sequences of the primers, related to ISH experimental
438 procedures.