- 1 Supplementary Information
- 2 **Title:** Adenine base editing-mediated exon skipping restores dystrophin in
- 3 humanized Duchenne mouse model
- 4

5 Authors:

- ⁶ Jiajia Lin^{1†}, Ming Jin^{1†}, Dong Yang^{2†}, Zhifang Li^{3†}, Qingquan Xiao², Yin Wang²,
- 7 Yuyang Yu², Yu Zhang², Xiumei Zhang², Zhurui Shao², Linyu Shi², Shu Zhang⁵,
- 8 Wanjin Chen¹, Ning Wang^{1*}, Shiwen Wu^{5*}, Hui Yang^{2,4*}, Chunlong Xu^{3,4*},
- 9 Guoling Li^{1, 2*}
- 10
- 11 †These authors contributed equally to this work.
- 12 Affiliations:
- 13 1. Department of Neurology, First Affiliated Hospital, Fujian Medical University,
- 14 Fuzhou, China.
- 15 2. HuidaGene Therapeutics Inc., Shanghai, China.
- 16 3. Lingang Laboratory, Shanghai, China.
- 17 4. Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai,
- 18 China.
- 19 5. Department of Neurology, First Medical Center of Chinese PLA General
- 20 Hospital, Beijing, China.
- 21 †These authors contributed equally to this work.
- 22
- ²³ *Correspondences: guolingli@huidagene.com(G.L.), xucl@lglab.ac.cn(C.X.),
- huiyang@huidagene.com(H.Y.), wu_shiwen@outlook.com(S.W.),
- 25 ningwang@fjmu.edu.cn (N.W.)
- 26
- 27
- 28
- 29
- 30

31 This PDF file includes:

32 Supplementary Figure 1 to 18

- Fig. S1: The muscle pathology and motor function of DMD^{ΔmE5051,KIhE50/Y} mice
 at different ages.
- Fig. S2: ABE-mediated A-to-G editing in other exon splice sites of *DMD* gene.
- Fig. S3: Comparison of the editing efficiencies of different ABE systems split
- 37 with various intein sequences *in vitro*.
- Fig. S4: Off-target analysis in HEK293T.

Fig. S5: Deep-seq read analysis for ABE1 and ABE2-edited splice sites of human *DMD* exon 50.

- 41 Fig. S6: Rescue of dystrophin expression following intramuscular (IM) injection
- 42 of ABE systems after 6 weeks.
- Fig. S7: Analysis of dystrophin protein level and Dys+ fibers after
 intraperitoneally delivery of AAV-ABE2 in DMD mice.
- 45 Fig. S8: Immunostaining of dystrophin in heart, TA, and DI tissues 6 weeks after
- 46 IP injection of AAV-ABE2.
- 47 Fig. S9: Toxicity response to AAV-ABE treatment after IP injection.
- 48 Fig. S10: Base editing analysis of satellite cells from ABE2-treated DMD mice.
- 49 Fig. S11: Gel electrophoresis analysis of RNA exon skipping events after 6-
- 50 week and 10-month ABE2 treatment in DMD mice.
- 51 Fig. S12: Analysis of dystrophin protein level and Dys+ fibers after intravenously
- 52 delivery in DMD mice.
- 53 Fig. S13: Immunostaining of dystrophin in heart, TA, and DI tissues 6 weeks
- and 10 months after IV injection of AAV-ABE2.
- 55 Figure S14. Histological analysis after systemic delivery of ABE2 in DMD mice.
- 56 Fig. S15. Toxicity response to AAV-ABE2 treatment after IV injection.
- 57 Fig. S16. Echocardiography was used to assess the cardiac function of DMD
- 58 mice after systemic delivery of ABE2.
- 59 Fig. S17. Flow cytometry gating strategy.
- 60 Fig. S18. Uncropped images.

61	Supplementary Table 1 to 2
62	Table S1: Primer sequence.
63	Table S2: Target sgRNA sequences.
64	Supplementary Note 1
65	Supplementary Note 1. Sequences of ABE1 and ABE2.
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	

91 Supplementary Figures

92

a, Alignment of human and mouse exon 50 sequence. Human exon 50 (Yellow
labeling), mouse exon 50 (Blue label), sgRNA (magenta line), Protospacer
adjacent motif (Red line). b, Statistical analysis of the number of revertant fibers.
c, H&E staining of diaphragm (DI), gastrocnemius (GA), and quadriceps (QA)
muscle of WT and different age of DMD mice. Wild-type (WT) mice as control.
Scale bar,100 µm. d, Statistical analysis of nuclear migration in H&E staining.
n=3 independent biological replicates. e, Serum creatine kinase (CK), a marker

102	of muscle damage and membrane leakage, was measured in WT and DMD
103	mice at the ages from 2 weeks to 24 weeks. n=6 independent biological
104	replicates. f, The forelimb grip strength testing to measure muscle performance
105	of WT and DMD mice at the ages from 2 weeks to 24 weeks. n=6 independent
106	biological replicates. Data are presented as mean \pm s.d. Each dot represents
107	an individual mouse. Significance is indicated by asterisk and determined using
108	unpaired two-tailed Student's t test. * P < 0.05. *** P < 0.001. **** P < 0.0001,
109	Ns represents not statistically significant. Source data are provided as a Source
110	Data file.
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	

Fig. S2: ABE-mediated A-to-G editing in other exon splice sites of *DMD*gene.

a, Schematic diagram of nucleotide editing strategy in different exon splice sites.
Deletion of exon in the *Dmd* gene generates a premature stop codon in next
exon. Restoration of the correct open reading frame (ORF) can be obtained by
skipping of exon splice donor (SD) or splice acceptor (SA). Percentages of DNA
editing in *DMD* "hotspot" exon in HEK293T, including exon 2 (b), exon 43 (c),
exon 44 (d), exon 45 (e), exon 46 (f), exon 51 (g), exon 52 (h), exon 53 (i) and

141	exon 55 (j). Data are presented as mean \pm s.d (n=3 independent biological
142	replicates). Source data are provided as a Source Data file.
143	
144	
145	
146	
147	
148	
149	
150	
151	
152	
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	

a, Intein reconstitution strategy. Dual adeno-associated virus (AAV) vectors separately encoded protein fragments fused to split intein halves splice to reconstitute full-length protein following co-expression; Comparison of the editing efficiencies in *DMD* gene exon 50 (**b**), and exon 55 (**c** and **d**) with split ABE via various intein. Data are normalized with full-length protein and presented as mean \pm s.d (n=2 or 3 independent biological replicates). Source data are provided as a Source Data file.

- 179 180 181 182 183 184 185 186
- 187

169

189 Fig. S4: Off-target analysis in HEK293T.

a, Alignment of the top 14 off-target sites in human genomic DNA. Potential offtarget adenines are highlighted in red font, while black highlighted characters represent bases that are mismatched with on-target gRNA; **b**, Percentages of adenine editing in the all 14 potential off-target sites. Data are presented as mean \pm s.d (n=3 independent biological replicates). Source data are provided as a Source Data file.

196

188

- 197
- 198
- 199
- 200
- 201
- 202
- 203

205 Fig. S5: Deep-seq read analysis for ABE1 and ABE2-edited splice sites of

human DMD exon 50.

207 Chromatogram and deep-seq reads results for ABE1- (**a**) and ABE2-edited (**b**) 208 splice sites of human *DMD* exon 50, respectively. The red arrow indicates the 209 direction of the sgRNA, and the red box represents the PAM recognition 210 sequence.

- 211
- 212
- 213
- 214
- 215
- 216

Tibial anterior muscle

Fig. S6: Rescue of dystrophin expression following intramuscular (IM) injection of ABE systems after 6 weeks.

Dystrophin immunohistochemistry of entire tibialis anterior (TA) muscle. Control
 mice were injected with saline. Dystrophin is shown in green. Scale bar, 500
 µm.

- 223
- 224
- 225

Fig. S7: Analysis of dystrophin protein level and Dys+ fibers after intraperitoneally delivery of AAV-ABE2 in DMD mice.

a, Relative dystrophin intensity was calibrated against the internal vinculin 229 230 control and normalized to the wild-type dystrophin level. b, Percentage of Dys+ anterior (TA) from treated tissue tibialis and untreated 231 area in $\mathsf{DMD}^{\Delta m \mathsf{E5051},\mathsf{Klh}\mathsf{E50/Y}}$ mice. Data are presented as mean ± s.d (n=8 independent 232 biological replicates). Significance is indicated with asterisk and determined 233 using unpaired two-tailed Student's t test. Ns, not statistically significant. Source 234 data are provided as a Source Data file. 235

- 236
- 237 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247

Fig.S8

Fig. S8: Immunostaining of dystrophin in heart, TA, and DI tissues 6 weeks

250 after IP injection of AAV-ABE2.

251 Whole-muscle scanning of diaphragm (DI), tibialis anterior (TA) and and heart

of DMD^{ΔmE5051,KIhE50/Y} mice 6 weeks after systemic delivery of ABE2 particles.

253	Control mice were injected with saline. Dystrophin is shown in green. Scale bar,
254	500 $\mu\text{m}.$ Images shown in both Fig. 4f and Fig. S7 were obtained from the same
255	tissue at 20× magnification. Fig. 4f showed the local region staining image
256	rather than the reconstituted whole-tissue scanning image in Fig. S8.
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	

Fig. S9: Toxicity response to AAV-ABE treatment after IP injection.

Characterization of creatine kinase (CK) (**a**), alanine aminotransferase (ALT) (**b**) and blood urea nitrogen (BUN) (**c**) activity after intraperitoneal injection of AAV-ABE2 (n=8 independent biological replicates). Data are shown as mean \pm s.d. Significance is indicated by asterisk and determined using unpaired two-tailed Student's t test. * P < 0.05. **** P < 0.0001, Ns represents not statistically significant. Source data are provided as a Source Data file.

Fig. S10: Base editing analysis of satellite cells from ABE2-treated DMD mice.

a, A-to-G conversion efficiency for adenine on the target splice site of human
 DMD exon 50. **b**, Deep-seq read analysis of ABE2-edited satellite cells. Source
 data are provided as a Source Data file.

320 Fig. S11: Gel electrophoresis analysis of RNA exon skipping events after

321 6-week and 10-month ABE2 treatment in DMD mice.

322 Gel electrophoresis results for *DMD* exon 50 skipping induction by ABE2 at 6-

week (a) and 10-month (b) post AAV injection in DMD^{$\Delta m E 5051, KIh E 50/Y$} mice.

324 Source data are provided as a Source Data file.

Fig. S12: Analysis of dystrophin protein level and Dys+ fibers after intravenously delivery in DMD mice.

a, Relative dystrophin intensity was calibrated against the internal vinculin 335 control and normalized to the wildtype dystrophin level. b, Percentage of Dys+ 336 tissue area in TA, DI and heart from treated and untreated $DMD^{\Delta mE5051,KIhE50/Y}$ 337 mice. Data are shown as mean \pm s.d (n=6 independent biological replicates for 338 10-month post-treatment group and n=9 independent biological replicates for 339 6-week post-treatment group). Significance is indicated by asterisk and 340 determined using unpaired two-tailed Student's t test. Ns represents not 341 statistically significant. Source data are provided as a Source Data file. 342

Fig. S13: Immunostaining of dystrophin in heart, TA, and DI tissues 6
weeks and 10 months after IV injection of AAV-ABE2.

Whole-muscle scanning of tibialis anterior (TA), diaphragm (DI), and heart muscle of $DMD^{\Delta mE5051,KIhE50/Y}$ mice 6 weeks and 10 months after systemic delivery of ABE2 particles. Control DMD mice were injected with saline. Dystrophin is shown in green. Scale bar, 500 µm. Images shown in both Fig. 5e and Fig. S13 were obtained from the same tissue at 20× magnification. Fig. 5e showed the local region staining image rather than the reconstituted wholetissue scanning image in Fig. S13.

Figure S14. Histological analysis after systemic delivery of ABE2 in DMD
mice.

356 H&E staining of tibialis anterior (TA), diaphragm (DI), and heart of wild-type

357 (WT), untreated and ABE2-treated DMD $^{\Delta mE5051,KIhE50/Y}$ mice at 6-week after

- intravenous injection. Scale bars, 100 μm.

371 Fig. S15: Toxicity response to AAV-ABE2 treatment after IV injection.

372 CK (**a**), ALT (**b**) and BUN (**c**)activity was detected after intraperitoneal injection 373 with ABE2. Data are presented as mean \pm s.d (n=6 independent biological 374 replicates for 10-month post-treatment group and n=9 independent biological 375 replicates for 6-week post-treatment group). Significance is indicated by 376 asterisk and determined using unpaired two-tailed Student's t test. **** P < 377 0.0001, Ns represents not statistically significant. Source data are provided as 378 a Source Data file.

Fig. S16: Echocardiography was used to assess the cardiac function of
 DMD mice after systemic delivery of ABE2.

a-b, Representative echocardiographic images for $DMD^{\Delta mE5051,KIhE50/Y}$ mice with or without ABE2 administration were monitored for 6 weeks (**a**) and 10 months (**b**). Age-matched WT and DMD mice were included as controls. **c**, Echocardiographic analysis was performed in WT, DMD-mock, and DMD mice

treated with ABE2 after 6 weeks and 10 months injection. LVID;d or LVID;s: Left Ventricular Internal Diameter during diastole or systole; LVPW;d or LVPW;s: Left Ventricular Posterior Wall Thickness during diastole or systole; LVPW;d or LVPW;s: Left Ventricular Posterior Wall Thickness during diastole or systole; LVAW;d or LVAW;s: Left Ventricular Anterior Wall Thickness during diastole or systole; LV Vol;d or LV Vol;s: Left Ventricular Volume during diastole or systole; EF: Ejection Fraction; FS: Fractional Shortening; CO: Cardiac Output; LV Mass (corrected): Left Ventricular Mass corrected for body surface area. Values are shown as mean \pm s.d (n=8 independent biological replicates and n=5 independent biological replicates for 10-month post-treatment group). Significance is indicated by asterisk and determined using unpaired two-tailed Student's t test. * P < 0.05. ** P < 0.01, Ns represents not statistically significant. Source data are provided as a Source Data file.

417 Fig. S17. Flow cytometry gating strategy.

- 418 Cell singletons were first gated out via forward scatter (FSC) and side scatter
- (SSC) parameters. Fluorescent cells were then gated for gene editing analysis.
- 420 Source data are provided as a Source Data file.

441 Fig. S18. Uncropped images.

- The red rectangles indicate the cropping location.

- . . .

Table S1: Primer sequence.

Experiment	Primer name	Primer sequence (5'-3')	Product (bp)
	All-TGF	TTCACTTGCCCTCTTGACC	6791
Genotyping of DMD ^{ΔmE5051,KIhE51/Y}	All-TGR	GATCAGCAGCCATAAGCTC	
mice	Intron50-KOF	GCCACATCAGCTCTATCTTCGG	714
	Intron50-KOR	ACAGACAATGGCAATTAAGTCC	
RT-PCR primer flanking exon 50	RNA-E50F	AGATTGAAGTAACAGTTCACGGTA	WT:682 Hete:682+449
	RNA-E50R	TGTTCGGCTTCTTCCTTAGCTT	Homo:449 Exon skipping:340
Genomic DNA PCR primer flanking	DNA-E50F	TTGTTCAGGTGCAATACCCACA	975
exon 50	DNA-E50R	AATTTAACTGAGCCACTATGCTT	
	Cell lysis exon2F	TACTGGCCTCAAGTGATCCG	510
	Cell lysis exon2R	CCATATCTTCTGCTGCTTACTCC	
	Cell lysis exon43F	AAGAAAAGAAGTGCAAATACTGA	803
	Cell lysis exon43R	TGTTTATAGCACCTCAATGCC	
	Cell lysis exon44F	AAGAAAATGCCAATAGTCCAAA	792
	Cell lysis exon44R	GGTTCCAACATAAAGCCGAA	
	Cell lysis exon45F	GACAAGAAATCGAATTTGCTCT	759
PCP in different even	Cell lysis exon45R	CCTTTAAGCAATCATGGGT	
	Cell lysis exon46F	TTTAAATTGCCATGTTTGTGTC	337
	Cell lysis exon46R	CTAATGGGCAGAAAACCAAT	
	Cell lysis exon51F	TTATCCCATCTTGTTTTGCCTT	857
	Cell lysis exon51R	ATGGCTACTTTTGTTATTTGCATT	
	Cell lysis exon52F	ATGTCTCCATTTGAGCCTT	683
	Cell lysis exon52R	TGCCAGCCCAGATGACAAC	
	Cell lysis exon53F	ATGGATATTCTGCTGTAGTGCTT	806
	Cell lysis exon53R	CACGCCTGGCTAGTAGTCCC	

Cell lysis exon55F	GAGCAGCATCAAAGACAAGCA	918
Cell lysis exon55R	GTTTCTCCTTGACCGAAGCTCT	

Table S2: Target sgRNA sequences.

Experiment	Primer name	Primer sequence (5'-3')
sgRNA for generation DMD^{Δ}	DMD-T7sgRNA1	CCTGTGATCATGGGTCTAGG
^{mE5051,KIhE51/Y} mice	DMD-T7sgRNA2	ACACACTATTCATTCTACTC
	sgRNA1	TATACTTACAGGCTCCAAT
	sgRNA2	GTATACTTACAGGCTCCAAT
	sgRNA3	GGTATACTTACAGGCTCCAAT
	sgRNA4	TACTTACAGGCTCCAATAG
DNA base editing sgRNA in exon	sgRNA5	ATACTTACAGGCTCCAATAG
50	sgRNA6	GATACTTACAGGCTCCAATAG
	sgRNA7	GGATACTTACAGGCTCCAATAG
	sgRNA8	TACTTACAGGCTCCAATAGT
	sgRNA9	GTACTTACAGGCTCCAATAGT
	sgRNA10	GGTACTTACAGGCTCCAATAGT
	sgRNA11	GCATTTTAGATGAAAGAGA
	sgRNA12	CATTTTAGATGAAAGAGA
	sgRNA13	GATTTTAGATGAAAGAGA
DNA base editing sgRNA in exon 2	sgRNA14	GCATTTTAGATGAAAGAGAAGA
	sgRNA15	GATTTTAGATGAAAGAGAAGA
	sgRNA16	GTTTTAGATGAAAGAGAAGA
	sgRNA17	GTTTAGATGAAAGAGAAGA
	sgRNA18	ACCTACCCTTGTCGGTCCT
	sgRNA19	TACCTACCCTTGTCGGTCCT
איוט base eaiting sgkina in exon 43	sgRNA20	GTACCTACCCTTGTCGGTCCT
	sgRNA21	GGTACCTACCCTTGTCGGTCCT

	sgRNA22	GTACCTGCAGGCGATTTGAC
	sgRNA23	GCCTGCAGGCGATTTGAC
	sgRNA24	GCTGCAGGCGATTTGACAGATC
	sgRNA25	GTGCAGGCGATTTGACAGATC
DNA base editing sgRNA in exon 44	sgRNA26	TGCAGGCGATTTGACAGATC
	sgRNA27	CTTACCTTAAGATACCATT
	sgRNA28	ACTTACCTTAAGATACCATT
	sgRNA29	GACTTACCTTAAGATACCATT
	sgRNA30	GGACTTACCTTAAGATACCATT
	sgRNA31	GATCTTACAGGAACTCCAGGA
	sgRNA32	GTCTTACAGGAACTCCAGGA
	sgRNA33	GCTTACAGGAACTCCAGGA
DNA have editing as PNA in even 45	sgRNA34	GTTACAGGAACTCCAGGA
DIVA base editing sgriva in exon 45	sgRNA35	GTCTTACAGGAACTCCAGGAT
	sgRNA36	GCTTACAGGAACTCCAGGAT
	sgRNA37	GTTACAGGAACTCCAGGAT
	sgRNA38	GTACAGGAACTCCAGGAT
	sgRNA39	GAGCAAGTCAAGGTAATTT
DNA base editing seRNA in even 46	sgRNA40	TGAGCAAGTCAAGGTAATTT
	sgRNA41	GTGAGCAAGTCAAGGTAATTT
	sgRNA42	GGTGAGCAAGTCAAGGTAATTT
	sgRNA43	TTTTCTCATACCTTCTGCT
	sgRNA44	TCTCATACCTTCTGCTTGA
DNA base editing sgRNA in exon 51	sgRNA45	TTCTCATACCTTCTGCTTGA
	sgRNA46	GTTCTCATACCTTCTGCTTGA
	sgRNA47	GGTTCTCATACCTTCTGCTTGA
	sgRNA48	AACTTACTTCGATCCGTAA
DNA base editing sgRNA in exon 52	sgRNA49	AAACTTACTTCGATCCGTAA
	sgRNA50	GAAACTTACTTCGATCCGTAA

	sgRNA51	GGAAACTTACTTCGATCCGTAA
	sgRNA52	TGATACTAACCTTGGTTTC
DNA have editing as DNA in even 52	sgRNA53	TTGATACTAACCTTGGTTTC
DIVA base editing sgriva in exon 55	sgRNA54	GTTGATACTAACCTTGGTTTC
	sgRNA55	ATACTAACCTTGGTTTCTG
	sgRNA56	GTCCTTTGCAGGGTGAGTGAG
	sgRNA57	GCCTTTGCAGGGTGAGTGAG
	sgRNA58	GCTTTGCAGGGTGAGTGAG
	sgRNA59	GTTTGCAGGGTGAGTGAG
	sgRNA60	GCTTTGCAGGGTGAGTGAGCG
	sgRNA61	GTTTGCAGGGTGAGTGAGCG
	sgRNA62	GTTGCAGGGTGAGTGAGCG
DNA base editing scPNA in even 55	sgRNA63	GTGCAGGGTGAGTGAGCG
Dive base editing syrine in exon 33	sgRNA64	GTTTGCAGGGTGAGTGAGCG
	sgRNA65	GTTGCAGGGTGAGTGAGCG
	sgRNA66	GTGCAGGGTGAGTGAGCG
	sgRNA67	GTTGCAGGGTGAGTGAGCGAG
	sgRNA68	GTGCAGGGTGAGTGAGCGAG
	sgRNA69	TGCAGGGTGAGTGAGCGAG
	sgRNA70	TTGCAGGGTGAGTGAGCGAGA
	sgRNA71	GTGCAGGGTGAGTGAGCGAGA

460 **Supplementary Note 1. Sequences of ABE1 and ABE2.**

hU6-Spacer-SpCas9 sgRNA scaffiod-Spc5-12-BPNLS-TadA8e-Linker-Cas9n
 (D10A)-N-Rma-N-W3SL

463 464 tgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagttt 465 taaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttG TGGAAAGGACGAAACACCGATACTTACAGGCTCCAATAGgttttagagctaGAA 466 467 AtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTTga 468 469 actgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagtttta 470 aaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttGT **GGAAAGGACGAAACACCGATACTTACAGGCTCCAATAG**gttttagagctaGAAAt 471 472 473 cggtggcggccgtccgccctcggcaccatcctcacgacacccaaatatggcgacgggtgaggaatggtg 474 475 gagttatttttagagcggaggaatggtggacacccaaatatggcgaccggttcctcaaccggtcgccatattt 476 477 gctccggggccggcggccggcggcccacgagcaccggtgccaccacggtgccaccatgaaacggacagcc 478 gacggaagcgagttcgagtcaccaaagaagaagcggaaagtctctgaggtggagttttcccacgagtact 479 ctggtgctgaacaatagagtgatcggcgagggctggaacagagccatcggcctgcacgacccaacagc480 481 ccatgccgaaattatggccctgagacagggcggcctggtcatgcagaactacagactgattgacgccacc ctgtacgtgacattcgagccttgcgtgatgtgcgccggcgccatgatccactctaggatcggccgcgtggtgt 482 483 ttggcgtgaggaacTCAaaaAGAggcgccgcaggCTCCCTGATGAACGTGCTGAACT ACCCCGGCATGAATCACCGCGTCGAAATTACCGAGGGAATCCTGGCAGA 484 TGAATGTGCCGCCCTGCTGTGCGATTTCTATCGGATGCCTAGACAGGTGT 485 486 TCAATGCTCAGAAGAaggcccagagctccATCAACtccggaggatctagcggaggctcctct 487 t caga caaga agta cag cat cgg cct gg ccat cgg cac caact ctg tgg gc cg tg at cac cga cat cgg cc cgt ga t cac cga cat cgg cc cgt ga t cac cga cat cgg ccat c488

489 490 acctgatcggagccctgctgttcgacagcggcgaaacagccgaggccacccggctgaagagaaccgcc 491 agaagaagatacaccagacggaagaaccggatctgctatctgcaagagatcttcagcaacgagatggc 492 493 gcggcaccccatcttcggcaacatcgtggacgaggtggcctaccacgagaagtaccccaccatctacca 494 495 catgatcaagttccggggccacttcctgatcgagggcgacctgaaccccgacaacagcgacgtggacaa 496 gctgttcatccagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagcggcgtg 497 gacgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgcccagctg 498 cccggcgagaagaagaatggcctgttcggaaacctgattgccctgagcctgggcctgacccccaacttca 499 agagcaacttcgacctggccgaggatgccaaactgcagctgagcaaggacacctacgacgacgacctg gacaacctgctggcccagatcggcgaccagtacgccgacctgtttctggccgccaagaacctgtccgacg 500 501 ccatcctgctgagcgacatcctgagagtgaacaccgagatcaccaaggcccccctgagcgcctctatgat 502 caagagatacgacgagcaccaccaggacctgaccctgctgaaagctctcgtgcggcagcagctgcctga 503 gaagtacaaagagattttcttcgaccagagcaagaacggctacgccggctacattgacggcggagccag 504 ccaggaagagttctacaagttcatcaagcccatcctggaaaagatggacggcaccgaggaactgctcgtg 505 aagctgaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccaccaga tccacctgggagagctgcacgccattctgcggcggcaggaagatttttacccattcctgaaggacaaccgg 506 507 gaaaagatcgagaagatcctgaccttccgcatcccctactacgtgggccctctggccaggggaaacagc 508 agattcgcctggatgaccagaaagagcgaggaaaccatcaccccctggaacttcgaggaagtggtgga 509 caagggcgcttccgcccagagcttcatcgagcggatgaccaacttcgataagaacctgcccaacgagaa 510 ggtgctgcccaagcacagcctgctgtacgagtacttcaccgtgtataacgagctgaccaaagtgaaatacg 511 tgaccgagggaatgagaaagcccgccttcctgagcggcgagcagaaaaaggccatcgtggacctgctgt 512 tcaagaccaaccggaaagtgaccgtgaagcagctgaaagaggactacttcaagaaaatcgagTGTC TGGCTGGCGATACTCTCATTACCCTGGCCGATGGACGACGAGTGCCTATT 513 AGAGAACTGGTGTCACAGCAGAATTTTTCCGTGTGGGGCTCTGAATCCTCA 514 GACTTACCGCCTGGAGAGGGGCTAGAGTGAGTAGAGCTTTCTGTACCGGC 515 ATCAAACCTGTGTACCGCCTCACCACTAGACTGGGGAGATCCATTAGGGC 516 CACTGCCAACCACCGATTTCTCACACCTCAGGGCTGGAAACGAGTCGAT 517 GAACTCCAGCCTGGAGATTACCTGGCTCTGCCTAGGAGAATCCCTACTGC 518

CTCCTGAgaattcCGCTCGAGATAATCAACCTCTGGATTACAAAATTTGTGAA 519 AGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACG 520 CTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTT 521 CTCCTCCTTGTATAAATCCTGGTTAGTTCTTGCCACGGCGGAACTCATCG 522 CCGCCTGCCTGCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTG 523 ACAATTCCGTGGTGTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGT 524 AACCATCTAGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACC 525 526 TCAGGTTCAGGGGGGGGGGGTGTGGGGGGGTTTTTTAAA 527

528 Spc5-12-Rma-C-Cas9n(D10A)-C-BPNLS-Linker-W3SL

529 caccgcggtggcggccgtccgccctcggcaccatcctcacgacacccaaatatggcgacgggtgagga 530 531 532 533 aaaaggctccgggggccggcggcccacgagcaagcttgccaccatgatggcggcggcgtgcccgg 534 aactgcgtcagctggcgcagagcgatgtgtattgggatccgattgtgagcattgaaccggatggcgtggaa 535 gaagtgtttgatctgaccgtgccgggcccgcataactttgtggcgaacgatattattgcgcataactgcttcga 536 ctccgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaa 537 ttatcaaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctg acactgtttgaggacagagagatgatcgaggaacggctgaaaacctatgcccacctgttcgacgacaaa 538 539 gtgatgaagcagctgaagcggcggagatacaccggctggggcaggctgagccggaagctgatcaacg 540 gcatccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaa acttcatgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccgg 541 542 ccagggcgatagcctgcacgagcacattgccaatctggccggcagccccgccattaagaagggcatcct 543 gcagacagtgaaggtggtggacgagctcgtgaaagtgatgggccggcacaagcccgagaacatcgtga tcgaaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaag 544 545 cggatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacaccc 546 agctgcagaacgagaagctgtacctgtactacctgcagaatgggcgggatatgtacgtggaccaggaact 547 ggacatcaaccggctgtccgactacgatgtggaccatatcgtgcctcagagctttctgaaggacgactccat 548 cgacaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaaga 549 ggtcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagtt 550 cgacaatctgaccaaggccgagagaggcggcctgagcgaactggataaggccggcttcatcaagagac 551 agctggtggaaacccggcagatcacaaagcacgtggcacagatcctggactcccggatgaacactaagt 552 acgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccgattt 553 ccggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctg 554 aacgccgtcgtgggaaccgccctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgact 555 556 gtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatccggaa 557 gcggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccac 558 cgtgcggaaagtgctgagcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggctt 559 560 cctaagaagtacggcggcttcCTTTGGcccaccgtggcctattctgtgctggtggtggccaaagtggaa 561 aagggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagca 562 gcttcgagaagaatcccatcgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcat caagctgcctaagtactccctgttcgagctggaaaacggccggaagagaatgctggcctctgccAAGC 563 564 gagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcacta 565 566 cctggacgagatcatcgagcagatcagcgagttctccaagagagtgatcctggccgacgctaatctggac 567 aaagtgctgtccgcctacaacaagcaccgggataagcccatcagagagcaggccgagaatatcatcca 568 cctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccggaagC AAtacAGAagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacga 569 570 gacacggatcgacctgtctcagctgggaggtgactctggcggctcaaaaagaaccgccgacggcagcg aattcgagcccaagaagaagaggaaagtctaagaattcCGCTCGAGATAATCAACCTCTG 571 GATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTT 572 TTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTC 573 CCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTAGTTCTTGCC 574 ACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCT 575 CGGCTGTTGGGCACTGACAATTCCGTGGTGTTTATTTGTGAAATTTGTGAT 576 GCTATTGCTTTATTTGTAACCATCTAGCTTTATTTGTGAAATTTGTGATGCTA 577

578 TTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAA
579 TTGCATTCATTTTATGTTTCAGGTTCAGGGGGGGAGATGTGGGGAGGTTTTTTA
580 AA

hU6-Spacer-SpCas9 sgRNA scaffiod-Spc5-12-Rma-C-Cas9n(D10A)-C-BPN
 LS-Linker-W3SL

583 tgactgtaaacacaaagatattagtacaaaatacgtgacgtagaaagtaataatttcttgggtagtttgcagttt 584 585 taaaattatgttttaaaatggactatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatatatcttGTGGAAAGGACGAAACACCGATACTTACAGGCTCCAATAGgttttagagctaGAA 586 587 AtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcTTTTTca 588 589 590 cgggagttatttttagagcggaggaatggtggacacccaaatatggcgaccggttcctcaaccggtcgcca 591 592 593 ctgcgtcagctggcgcagagcgatgtgtattgggatccgattgtgagcattgaaccggatggcgtggaaga 594 agtgtttgatctgaccgtgccgggcccgcataactttgtggcgaacgatattattgcgcataactgcttcgactc 595 cgtggaaatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaaaattat 596 caaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcgtgctgaccctgac 597 actgtttgaggacagagagatgatcgaggaacggctgaaaacctatgcccacctgttcgacgacaaagtg 598 atgaagcagctgaagcggcggagatacaccggctggggcaggctgagccggaagctgatcaacggca 599 tccgggacaagcagtccggcaagacaatcctggatttcctgaagtccgacggcttcgccaacagaaactt 600 catgcagctgatccacgacgacagcctgacctttaaagaggacatccagaaagcccaggtgtccggcca 601 gggcgatagcctgcacgagcacattgccaatctggccggcagccccgccattaagaagggcatcctgca 602 gacagtgaaggtggtggacgagctcgtgaaagtgatgggccggcacaagcccgagaacatcgtgatcg aaatggccagagagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcg 603 604 gatcgaagagggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacaccccag 605 ctgcagaacgagaagctgtacctgtactacctgcagaatgggcgggatatgtacgtggaccaggaactgg 606 acatcaaccggctgtccgactacgatgtggaccatatcgtgcctcagagctttctgaaggacgactccatcg

607 acaacaaggtgctgaccagaagcgacaagaaccggggcaagagcgacaacgtgccctccgaagagg 608 tcgtgaagaagatgaagaactactggcggcagctgctgaacgccaagctgattacccagagaaagttcg 609 acaatctgaccaaggccgagagaggcggcctgagcgaactggataaggccggcttcatcaagagaca 610 gctggtggaaacccggcagatcacaaagcacgtggcacagatcctggactcccggatgaacactaagta 611 cgacgagaatgacaagctgatccgggaagtgaaagtgatcaccctgaagtccaagctggtgtccgatttc 612 cggaaggatttccagttttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctga 613 acgccgtcgtgggaaccgccctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgacta 614 615 tacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggccaacggcgagatccggaag 616 cggcctctgatcgagacaaacggcgaaaccggggagatcgtgtgggataagggccgggattttgccacc 617 gtgcggaaagtgctgagcatgccccaagtgaatatcgtgaaaaagaccgaggtgcagacaggcggcttc 618 619 ctaagaagtacggcggcttcCTTTGGcccaccgtggcctattctgtgctggtggtggccaaagtggaaa 620 agggcaagtccaagaaactgaagagtgtgaaagagctgctggggatcaccatcatggaaagaagcag 621 cttcgagaagaatcccatcgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatc 622 aagctgcctaagtactccctgttcgagctggaaaacggccggaagaagagatgctggcctctgccAAGCA 623 624 agaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaacagcacaagcactac 625 ctggacgagatcatcgagcagatcagcgagttctccaagagagtgatcctggccgacgctaatctggaca 626 aagtgctgtccgcctacaacaagcaccgggataagcccatcagagagcaggccgagaatatcatccac 627 ctgtttaccctgaccaatctgggagcccctgccgccttcaagtactttgacaccaccatcgaccggaagCA 628 AtacAGAagcaccaaagaggtgctggacgccaccctgatccaccagagcatcaccggcctgtacgag 629 acacggatcgacctgtctcagctgggaggtgactctggcggctcaaaaagaaccgccgacggcagcga attcgagcccaagaagaagaggaaagtctaagaattcCGCTCGAGATAATCAACCTCTGG 630 ATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTT 631 TACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCC 632 CGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTAGTTCTTGCCA 633 CGGCGGAACTCATCGCCGCCTGCCTGCCCGCTGCTGGACAGGGGCTC 634 GGCTGTTGGGCACTGACAATTCCGTGGTGTTTATTTGTGAAATTTGTGAT 635 GCTATTGCTTTATTTGTAACCATCTAGCTTTATTTGTGAAATTTGTGATGCTA 636

- 637 TTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAA638 TTGCATTCATTTTATGTTTCAGGTTCAGGGGGGAGATGTGGGGAGGTTTTTTA
- 639 AA