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Supplementary Note 1 

Oocyte data analysis  

Pulse-chase mass spectrometry data analysis 

All data processing was performed in R1. 

Fractions of 13C6-Lys labeled proteins, F, were computed for each technical replicate and each 
biological replicate as 𝐹 = 100 ∙ 𝐻/(𝐻 + 𝐿), where H is the DDA intensity of 13C6-Lys labeled 
proteins and L is the DDA intensity of 12C6-Lys labeled proteins. Per biological replicate, medians 
over technical replicates were only computed, if H was detected in at least 2 out of 4 technical 
replicates, otherwise this data point was omitted (set n.a.). Finally, means and standard 
deviations of F over biological replicates were computed, if F was detected in at least one of the 
two biological replicates. 

 

Enrichment analysis of very long-lived oocyte proteins 

A subset of 13C6-Lys-positive proteins was used to perform over-representation analysis with 
“fora” algorithm2. Multiple testing correction was done using Benjamini-Hochberg method3 and 
a threshold of 0.01 adjusted p-value was used for defining significantly enriched sets. A 
background set of all proteins detected in ovary DIA and all genes expressed in human ovary in 
Human Protein Atlas (https://www.proteinatlas.org/)4 was combined using mouse gene 
symbols.  

 

Ovary data analysis 

Overview of modeling strategy 

Protein turnover can be estimated from experimental pulse-chase mass spectrometry 
experiments. Commonly, an exponential-decay protein turnover model is calibrated to 
experimental data, resulting in estimation of protein turnover rates and protein half-lives. 
However, several factors impinge upon the applicability of the simple exponential decay model: 

(i) In living animals, in contrast to cell culture experiments, the pulse isotope is not 
immediately removed from the circulating free amino acid pool upon switch from 
pulse to chase, which could lead to protein synthesis using amino acids containing 
the pulse label, rather than the chase label.  

(ii) In developing organs, the concentration of individual proteins can vary strongly over 
time and, hence, impacts the observed pulse-chase dynamics. 

(iii) Growth of the ovary results in strong dilution of pulse isotopes through the chase 
isotopes independent to protein turnover dynamics.  

We developed a protein-centric exponential decay modeling framework (Fig. 2e,f, Extended 
Data Fig. 3a-b), which incorporates aspects (i-iii) in order to estimate protein turnover rates. 
Latter were in addition validated with a peptide-centric turnover modeling approach (Extended 
Data Fig. 3b-e). Resulting protein turnover rates were subject to further analysis to identify slow 

https://www.proteinatlas.org/


turning over proteins that are relevant during ovarian development. The following sections 
provide details of the modeling strategy. All data processing, modeling and subsequent model 
downstream analysis was performed in R1. 

 

Data sets to model protein turnover 

Two pulse-chase mass spectrometry data sets were used to model protein turnover during 
ovarian development (Fig. 2e,f and Extended Data Fig. 3a,b). For generation of the first data set, 
we fed pregnant mice 13C6-Lys chow until they gave birth (pulse), and the pups were 
subsequently raised on 12C6-Lys (chase). In the following we refer to this data set as short-pulse 
data. For generation of the second data set, we fed another cohort of pregnant mice 13C6-Lys 
chow until the progeny were weaned (pulse). Progeny were then fed 12C6-Lys chow (chase). We 
refer to this data set as long-pulse data. Firstly, we computed ratios of heavy (13C6-labeled) over 
light labeled (12C6-labeled) proteins (see below) for each biological replicate and time point. If 
ratios in less than two biological replicates of a given time point were detected, this time point 
was not considered in the respective data set. Furthermore, only proteins that had ratios 
detected in at least 3 time points in either the short- or long-pulse data were considered for 
modeling. Finally, only proteins also detected and quantified in the DIA mass spectrometry data 
set were considered. This resulted in 3,078 modeled proteins. 

In addition to short- and long-pulse data, three other data sets were used in order to model 
protein turnover throughout ovarian development (Extended Data Fig. 3a): 

(i) Data-independent acquisition (DIA) MS data of the ovary over mouse age to determine 
individual protein abundance changes throughout ovarian development. DIA signal 
from ovary measurements was aggregated as a mean across biological replicates per 
day per protein.  

(ii) Morphology data to estimate volume changes of the ovary over mouse age. Volume 
changes were approximated via volume computation of an ellipsoid, derived from 
length and width measurements of the microscopy data. 

(iii) Total protein amount measurements of the ovary over mouse age by BCA to estimate 
dilution factors of heavy labeled proteins over time.  

The two data sets (ii) and (iii) show good agreement in terms of volume changes and total 
protein abundance changes over time (Extended Data Fig. 3f), indicating a constant total 
protein concentration during ovarian development. 

2Lys-peptide-centric turnover model to determine dynamics of free 13C6-Lys labeled amino acids 

In the short-pulse experiment, all proteins are exclusively 13C6-Lys labeled (heavy labeled) at 
birth of the mouse. Upon onset of the chase, heavy labeled proteins (PH) are degraded with a 
turnover rate k, while newly synthesized proteins are 12C6-Lys labeled (light labeled, PL). While 
this holds true for most cell culture-based pulse-chase experiments, but not for in vivo animals-
based pulse-chase experiments, because the assumption that upon initiation of the chase, all 
heavy labeled amino acids are removed from the animal and that no heavy labeled amino acids 
are reincorporated into newly synthesized proteins is violated. Recycling of heavy labeled 



amino acids needs to be considered, depending on the experimental design. Shenheng Guan et 
al. 20125 proposed a three-compartment protein turnover model that allows to derive protein 
turnover rates under consideration of recycling of heavy labeled amino acids. In their model, 
the first compartment describes the overall turnover of all proteins in the system that 
contribute to the free heavy labeled amino acid pool and, hence, describing the dynamics of 
free heavy labeled amino acid pool. The second compartment describes the external space of 
the studied organ/tissue, from which labeled free amino acids are taken up and secreted to. 
The third compartment describes the turnover of a single protein of interest, which does not 
contribute to the free heavy amino acid pool, but its dynamics are dependent on the free heavy 
amino acid pool in the first compartment. Therefore, model parameters related to the first and 
second compartment are global parameters, which do not differ across proteins of interest, 
while model parameters related to the third compartment are protein of interest specific and 
describe the actual turnover rates. While this approach has already been successfully applied to 
various experimental systems6, 7, it relies on the assumption that the overall system is not 
growing so that steady-state approximations can be applied. Latter fact, however, prohibits the 
direct application of the two-compartment model to derive protein turnover rates during 
ovarian developments, since the ovary strongly increases in size over the time course of our 
experiments. The three-compartment model could be adapted to incorporate ovary growth, 
which however, would result in a system of ordinary differential equations that can only be 
solved numerically, thereby increasing drastically computational demands during parameter 
inference. Because the two-compartment model relies on global parameter estimation across 
(at least) the most abundant proteins and due to the high computational cost, this approach 
became impractical. 

Instead, we developed an alternative modeling approach to derive the dynamics of the free 
heavy labeled amino acids to estimate accurate turnover rates, which is peptide-centric and 
exploits the observation of peptides with missed tryptic cleavages in our MS data set. 
Specifically, we analyzed the MS data allowing for the detection of peptides that carry two 
lysines (2Lys-peptides) with different labeling status: exclusively heavy labeled peptides (13C6-
Lys-13C6-Lys peptides), exclusively light labeled peptides (12C6-Lys-12C6-Lys peptides) as well as 
‘mixed’ labelled peptides (13C6-Lys-12C6-Lys and 12C6-Lys-13C6-Lys peptides) (Extended Data Fig. 
3b-e). MS1 intensities of peptides of a given labelling status were extracted over time. Mean 
intensities over all 2Lys-peptides were extracted for each labelling status (exclusively heavy, 
exclusively light and mixed labelled) and time point. Latter were normalized, so that the total 
intensity was set to 1. Normalized MS1 intensities were used to inform the 2Lys-peptide model 
illustrated in Extended Data Fig. 3b. The 2Lys-peptide model consists of the ovary 
compartment, which grows over time, and an external compartment, from which heavy 
labelled lysines are taken up via feeding (influx) as well as secreted (efflux). Inside the ovary, 
heavy and light labelled free lysines can be incorporated with rate kon into 2Lys-peptides, which 
can get degraded with rate k thereby releasing heavy and light labelled lysines into the ovary 
compartment. We describe this model with a set of ordinary differential equations: 

𝑑𝐻𝐻

𝑑𝑡
= 𝑘𝑜𝑛 ∗ ℎ ∗ ℎ − 𝑘𝑜𝑓𝑓 ∗ 𝐻𝐻 



𝑑𝐿𝐿

𝑑𝑡
=  𝑘𝑜𝑛 ∗ 𝑙 ∗ 𝑙 − 𝑘𝑜𝑓𝑓 ∗ 𝐿𝐿 

𝑑𝐻𝐿

𝑑𝑡
= −𝑘𝑜𝑛 ∗ ℎ ∗ 𝑙 − 𝑘𝑜𝑓𝑓 ∗ 𝐻𝐿 

𝑑𝑙

𝑑𝑡
= −2 ∗ 𝑙 ∗ 𝑙 ∗ 𝑘𝑜𝑛 + 2 ∗ 𝐿𝐿 ∗ 𝑘𝑜𝑓𝑓 − 𝑙 ∗ ℎ ∗ 𝑘𝑜𝑛 + 𝐻𝐿 ∗ 𝑘𝑜𝑓𝑓 − 𝑙 ∗ 𝑒𝑓𝑓𝑙𝑢𝑥 + 𝑖𝑛𝑓𝑙𝑢𝑥 

 

𝑑ℎ

𝑑𝑡
= −2 ∗ ℎ ∗ ℎ ∗ 𝑘𝑜𝑛 + 2 ∗ 𝐻𝐻 ∗ 𝑘𝑜𝑓𝑓 − 𝑙 ∗ ℎ ∗ 𝑘𝑜𝑛 + 𝐻𝐿 ∗ 𝑘𝑜𝑓𝑓 − ℎ ∗ 𝑒𝑓𝑓𝑙𝑢𝑥 

𝑑𝑇

𝑑𝑡
= −𝑇 ∗ 𝑘𝑜𝑓𝑓 + 𝑝 ∗ 𝑝 ∗ 𝑘𝑜𝑛, 

𝑖𝑛𝑓𝑙𝑢𝑥(𝑡) =  𝑎/(1 + 𝑒𝑥𝑝(−𝑏 ∗ (𝑡 − 𝑐))) + 𝑑 

p(t) = l(t)+h(t), 

where HH and LL indicate exclusively heavy and light labelled 2Lys-peptides, respectively, HL 
indicates ‘mixed’ labelled 2Lys-peptides, h and l indicate heavy and light labelled free lysines, 
respectively, T corresponds to the total protein amount in the ovary. This system of ordinary 
differential equations was solved numerically using the ‘ode’ function with the method ‘lsoda’ 
from the R package deSolve8. 

 
Estimation of free lysine pool using Bayesian inference 
The 2Lys-peptide model has a set of parameters 𝜃 = (𝑘, 𝑘𝑜𝑛, 𝑒𝑓𝑓𝑙𝑢𝑥, 𝑎, 𝑏, 𝑐, 𝑑). Parameters 
were estimated applying a Bayesian approach as originally proposed by Bayes and Price et al. 
19589. Briefly, the posterior distribution 𝑝(𝜃|𝐷) of the parameter vector 𝜃 is defined as 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)∙𝑝(𝜃)

𝑝(𝐷)
, 

where 𝑝(𝜃) is the prior distribution of the parameters 𝜃 and 𝑝(𝐷|𝜃) is the likelihood of the 
data D given the parameters 𝜃.The aim is to find a set of parameters 𝜃 that maximize the 
likelihood 𝑝(𝐷|𝜃).  

In this study the log-likelihood was defined as 

ln(𝑝(𝐷|𝜃)) = ∑ ln(𝐿1,𝑡) + ln(𝐿2,𝑡)𝑡 , 

with 

𝐿1,𝑡 = 𝑝(𝑥𝑠/𝑙(𝑡)|𝜃)~𝒩(𝜇 = 𝑥𝑠/𝑙
∗ (𝑡), 𝜎 = 𝑠𝑑 ∙ 𝑥𝑠/𝑙

∗ (𝑡)), 

where 𝒩 indicates the probability density of the normal distribution with mean 𝜇 and standard 
deviation 𝜎, x indicates model outputs for HH, HL and LL for the chase (12C6) from birth and 
from weaning experiment data sets, respectively, and x* indicates experimental data for HH, HL 
and LL for the chase (12C6) from birth and from weaning experiment data sets, respectively. 𝐿2,𝑡 

was defined as: 

𝐿2,𝑡 = 𝑝(𝑣(𝑡)|𝜃)~𝒩(𝜇 = 𝑣∗(𝑡), 𝜎 = 𝑠𝑑 ∙ 𝑣∗(𝑡)), 



where v is the model output describing the ovary growth (Tt/Tt=1 and v* indicates the 
experimentally measured fold changes of total protein across time. 

Inference was realized using the BayesianTools R package10. A truncated normal prior 
distribution 𝑝(𝜃)~𝑁𝑡(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠𝑐𝑎𝑙𝑒, [0, 𝐼𝑛𝑓]) with parameters displayed in Supplementary 
Table 12 was used to infer the model parameters. Differential-Evolution Markov Chain Monte 
Carlo (DE-MCMC) with Z past steps and Snooker update (zs) sampler implemented in R was 
applied11. Parameters were inferred using three start values, a Snooker update probability of 
1e-03, a thinning parameter of 10 and a multiplicative error of 0.2. The scaling factor γ was kept 
at 2.38, setting it to one with a probability of 0.1. The posterior distribution was saved and 
diagnostic plots were obtained. Inference was run for 106 iterations. Convergence was manually 
inspected for all proteins. 

Inference results and model fits to data are shown in Extended Data Fig. c-e. Sampling 500 
particles from the posterior parameter distribution, followed by model simulation with each 
particle allowed us to obtain the dynamics of the percentage of heavy-labeled free lysines 
compared to all free lysines. 

 

Protein-centric turnover model in ovarian development 

In the short-pulse experiment, all proteins are exclusively 13C6-Lys labeled (heavy labeled) at 
birth of the mouse. Upon onset of the chase, heavy labeled proteins (PH) are degraded with a 
turnover rate k, while newly synthetized proteins are 12C6-Lys labeled (light labeled, PL). Hence, 
at any time point the total amount of an individual protein (𝑃𝑡𝑜𝑡(𝑡)) is the sum of heavy and 
light labeled proteins, i.e. 

𝑃𝐿(𝑡) = 𝑃𝑡𝑜𝑡(𝑡) − 𝑃𝐻(𝑡). 

The total amount of the individual protein 𝑃𝑡𝑜𝑡(𝑡) can be determined from the DIA MS data set 
(see above - i) via 

𝑃𝑡𝑜𝑡(𝑡) =  𝑃0 ∙ 𝐺(𝑡) =  𝑃𝐻(𝑡 = 0) ∙ 𝐺(𝑡), 

where 𝑃0 is the initial protein amount and 𝐺(𝑡) denotes the individual protein abundance 
change relative to t=0, i.e., relative to the birth of the mouse, and is defined as 

𝐺(𝑡) =  
𝐷𝐼𝐴(𝑡)

𝐺(𝑡=0)
. 

Hence, we obtain a description for the light labeled proteins over time  

𝑃𝐿(𝑡) = 𝑃𝐻(𝑡 = 0) ∙ 𝐺(𝑡) − 𝑃𝐻(𝑡). 

The turnover of the heavy labeled protein pool 𝑃𝐻(𝑡) is commonly modeled as exponential 
decay, resulting from the differential equation 

𝑑𝑃𝐻

𝑑𝑡
= −𝑘 ∙ 𝑃𝐻(𝑡) 

      (equ. 1) 

However, equation 1 assumes that upon initiation of the chase, all heavy labeled amino acids 
are removed from the ovary and that no heavy labeled amino acids are reincorporated into 



newly synthesized proteins. To consider recycling of heavy labeled amino acids, we describe the 
turnover of heavy labeled proteins in the chase (12C6) from birth experiment, 𝑃𝐻𝑠

(𝑡), as 

𝑑𝑃𝐻𝑠

𝑑𝑡
= −𝑘 ∙ 𝑃𝐻𝑠

(𝑡) + 𝑘𝑠𝑦𝑛 ∙
𝐿𝑦𝑠𝐻𝑠

(𝑡)

𝐿𝑦𝑠𝐻𝑠
(𝑡)+𝐿𝑦𝑠𝐿𝑠

(𝑡)
,        (equ. 2) 

 

where 𝑘𝑠𝑦𝑛 indicates the protein synthesis rate, 𝐿𝑦𝑠𝐻𝑠
(𝑡) is the free heavy labeled amino acid 

pool and 𝐿𝑦𝑠𝐿𝑠
(𝑡) is the free light labeled amino acid pool. Therefore, synthesis of heavy 

labeled proteins is proportional to the fraction of free heavy labeled lysines compared to all 
free lysines at time t (Extended Data Fig. 3c). Latter was determined based on the 2Lys-peptide-
centric model described above. 

Numeric integration of equation 2 allows to obtain 𝑃𝐻𝑠
(𝑡), describing the abundance of heavy 

labeled proteins over time in the ovary. Our experimental pulse-chase MS data, however, 
described the concentration of heavy labeled protein over time (i.e., abundance of heavy 
labeled proteins in 1 𝜇g total ovary organ). Because the total volume of the ovary strongly 
increases during ovarian development, and newly synthesized proteins that contribute to ovary 
growth are light labeled, the concentration of heavy labeled proteins over time [𝐻𝑠](𝑡) was 
described as: 

[𝐻𝑠](𝑡) =
𝑃𝐻𝑠

(𝑡)

𝑉(𝑡)
,       (equ. 3) 

where V(t) is the ovary volume at time t. The concentration of light labeled proteins was 
described as: 

[𝐿𝑠](𝑡) =  𝑃𝐻𝑠
(𝑡 = 0) ∙ 𝐺(𝑡) − 𝑃𝐻𝑠

(𝑡).        (equ. 4) 

 

In the long-pulse data set all proteins are exclusively heavy labeled until 3 weeks after birth 
(Δ𝑇) of the mouse, and only then the chase starts. Therefore, equations 2-4 were adapted, 
resulting in: 

𝑑𝑃𝐻𝑙

𝑑𝑡
= −𝑘 ∙ 𝑃𝐻𝑙

(𝑡) + 𝑘𝑠𝑦𝑛, for 𝑡 < Δ𝑇 

𝑑𝑃𝐻𝑙

𝑑𝑡
= −𝑘 ∙ 𝑃𝐻𝑙

(𝑡) + 𝑘𝑠𝑦𝑛 ∙
𝐿𝑦𝑠𝐻𝑙

(𝑡)

𝐿𝑦𝑠𝐻𝑙
(𝑡)+𝐿𝑦𝑠𝐿𝑙

(𝑡)
, for 𝑡 ≥ Δ𝑇       (equ. 5) 

[𝐻𝑙](𝑡) =
𝑃𝐻𝑙

(𝑡)

𝑉(𝑡)/𝑉(Δ𝑇)
 

(equ. 6) 

[𝐿𝑙](𝑡) =  𝑃𝐻𝑙
(𝑡 = 0) ∙ 𝐺(𝑡)/𝐺(Δ𝑇) − 𝑃𝐻𝑙

(𝑡)       (equ. 7) 

 

The fraction of heavy labeled free lysines, 
𝐿𝑦𝑠𝐻𝑙

(𝑡)

𝐿𝑦𝑠𝐻𝑙
(𝑡)+𝐿𝑦𝑠𝐿𝑙

(𝑡)
, was determined from the 2Lys-

peptide-centric turnover model described above. A double sigmoidal function was fitted to the 
modeling results and subsequently used in equation 5. 



To learn turnover rates from mass spectrometry measurements of [𝐻](𝑡) and [𝐿](𝑡) their ratio 
𝑅(𝑡) is commonly used and was defined as 

𝑅𝑠(𝑡) = ln (
[𝐿𝑠](𝑡)

[𝐻𝑠](𝑡)
+ 1),       (equ. 8) 

for the chase (12C6) from birth experiment MS data and  

𝑅𝑙(𝑡) = ln (
[𝐿𝑙](𝑡)

[𝐻𝑙](𝑡)
+ 1),       (equ. 9) 

 

for the chase (12C6) from weaning experiment MS data. 

 

Protein turnover estimation using Bayesian inference 

The protein turnover model results in a description of 𝑅(𝑡) for short-pulse and long-pulse data, 
subsequently termed 𝑅𝑠(𝑡) (equation 8) and 𝑅𝑙(𝑡) (equation 9), respectively. Accordingly, 
𝑅𝑠

∗(𝑡) and 𝑅𝑙
∗(𝑡) denote the experimentally determined ratios of heavy and light labeled 

proteins 𝑅(𝑡).The models has a set of parameters, 𝜃, with 

𝜃 = (𝑘, 𝑘𝑠𝑦𝑛, 𝑉(𝑡)/𝑉(𝑡 = 0), 𝐺(𝑡) ∙ 𝐺(𝑡 = 0)). Parameters were estimated as described above 

applying a Bayesian approach. 

The log-likelihood was defined as 

ln(𝑝(𝐷|𝜃)) = ∑ ln(𝐿1,𝑡) + ln(𝐿2,𝑡) + ln(𝐿3,𝑡)𝑡 , 

with 

𝐿1,𝑡 = 𝑝(𝑅𝑠(𝑡)|𝜃)~𝒩(𝜇 = 𝑅𝑠
∗(𝑡), 𝜎 = 𝑠𝑑 ∙ 𝑅𝑠

∗(𝑡)), 

𝐿2,𝑡 = 𝑝(𝑅𝑙(𝑡)|𝜃)~𝒩(𝜇 = 𝑅𝑙
∗(𝑡), 𝜎 = 𝑠𝑑 ∙ 𝑅𝑙

∗(𝑡)) 

and 

𝐿3,𝑡 = 𝑝(𝐺(𝑡) ∙ 𝐺(𝑡 = 0)|𝜃)~𝒩(𝜇 = 𝐷𝐼𝐴(𝑡), 𝜎 = 𝑠𝑑 ∙ 𝐷𝐼𝐴(𝑡)), 

where 𝒩 indicates the probability density of the normal distribution with mean 𝜇 and standard 
deviation 𝜎. 

Inference was realized using the BayesianTools R package10. A uniform prior 
𝑝(𝜃)~𝒰([𝑚𝑖𝑛, 𝑚𝑎𝑥]) was used to infer the model parameters. Uniform prior ranges 
(𝑚𝑖𝑛, 𝑚𝑎𝑥) are displayed in Supplementary Table 13. Differential-Evolution Markov Chain 
Monte Carlo (DE-MCMC) with Z past steps and Snooker update (zs) sampler implemented in R 
was applied11. Parameters were inferred using three start values, a Snooker update probability 
of 1e-03, a thinning parameter of 10 and a multiplicative error of 0.2. The scaling factor γ was 
kept at 2.38, setting it to one with a probability of 0.1. The posterior distribution for each 
protein was saved and diagnostic plots were obtained. Inference was run for 106 iterations. 
Convergence was manually inspected for all proteins. 

 



Quality of protein model fit 

The mean squared error (MSE) between the experimentally determined 𝑅𝑠
∗(𝑡), 𝑅𝑙

∗(𝑡) and 
𝐷𝐼𝐴(𝑡) as well as the corresponding median of the model simulations 𝑅𝑠(𝑡), 𝑅𝑙(𝑡)and 𝐺(𝑡) 
derived from the estimated posterior distributions (see below for Analysis of posterior 
parameter distributions) were computed as 

𝑀𝑆𝐸 =  𝜇((𝑥∗ − 𝑥)2), 

where 𝜇 indicates the mean, x = 𝑅𝑠(𝑡), 𝑅𝑙(𝑡) and 𝐺(𝑡), respectively, and 𝑥∗=𝑅𝑠
∗(𝑡), 𝑅𝑙

∗(𝑡) and 
𝐷𝐼𝐴(𝑡), respectively. The time points and biological replicates of the pulse-chase data are 
derived from individual mice, and are subject to noise. To determine if a median model fit is 
sufficient to interpret the corresponding posterior parameter distributions, we only consider 
proteins with MSE<0.1 or MSE<3 ∙ 𝜏, where 𝜏 is the mean square estimate between 
experimental data points of biological replicates. Furthermore, proteins with 𝜏>0.5 were not 
further considered. This resulted in 2691 proteins with inferred parameters out of 3078 
modeled proteins. 

 

Analysis of posterior parameter distributions 

Applying the Bayesian framework, we obtained posterior parameter distributions for all 
modeled proteins. Marginal posterior parameter distributions are visualized as density plots 
(Supplementary Data 2) upon burn-in (30%) removal and sampling 1000 parameter 
combinations from the corresponding posterior. Protein H1/2 values in days were defined as: 

𝐻1/2 =
ln (2)

𝑘/7
.       (equ. 10) 

Median and 5%- and 95%-quantiles can be used to summarize marginal posterior distributions. 
No correlation between parameters was detected (data not shown). Low quantile ranges 
indicate good inference of the corresponding parameter and, hence, less uncertainty about that 
parameter. 

Posterior parameter samples were used to compute the turnover rate 𝑘(𝑡) and 𝐻1

2

(𝑡) over 

time. Medians, 5%- and 95%-quantiles were computed (Supplementary Table 3). Accordingly, 
posterior parameter samples as well as equations 2 and 3 were used to derive the percentage 
of heavy labeled proteins over time, defined as 

𝐻𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 100 ∙
[𝐻](𝑡)

[𝐻](𝑡)+[𝐿](𝑡)
. 

Estimates of half-lives of proteins, for which the marginal posterior distributions of the turnover 
rate, k, cover ranges that are very low (i.e., close to zero), is extremely inaccurate, indicated 
also by very large confidence ranges for H1/2 (Extended Data Fig. 4e).  

 

Comparison to protein turnover model without consideration of heavy labeled free lysine pool 

We compared the protein turnover model with a peptide-centric modeling approach, only 
considering 2Lys-peptides that are exclusively heavy or light labeled. For the latter, we 



employed the equations 1-9, aggregating intensities of all 2Lys-peptides derived from the same 
protein as means over time. Parameter inference (as described above) and subsequent H1/2 
computation allowed us to correlate the estimated H1/2 values between both approaches 
(Extended Data Fig. 4a). We found good agreement between determined H1/2.  

Furthermore, we compared the protein turnover model considering the heavy labeled free 
lysine pool with the ‘classical’ modeling approach, not considering incorporation of heavy 
labeled free lysines during protein synthesis (Extended Data Fig. 4b). In the latter, the 
parameter ksyn was set to ksyn=0, i.e., not allowing synthesis of heavy labeled proteins. Both 
approaches agreed in their H1/2 values for long lived proteins (H1/2>100 days). However, shorter 
lived proteins showed a bias towards higher H1/2 values when not considering incorporation of 
heavy labeled amino acids into newly synthetized proteins. Finally, we repeated the latter 
modeling approach, only considering chase time points larger than 3 weeks and 6 weeks, 
respectively. At this time, the heavy labeled free lysine pool was estimated to be nearly 
removed and, hence, should not bias the estimation of H1/2 with the ‘classical’ modeling 
approach. Indeed, we observed good agreement between the resulting estimated H1/2 values 
with the full protein turnover modeling approach (Extended Data Fig. 4c-d). 

 

Modeling protein turnover in liver, cartilage and skeletal muscle from Rolfs et al. 20216 

The 2Lys-peptide model and the protein-centric turnover model was applied to MS data 
published by Rolfs et al. (2021)6 for comparison. Specifically, we downloaded the MS data for 
liver, cartilage (CC) and skeletal muscle (SM) and searched them with MaxQuant version 
1.6.0.1, using the same protein sequence database as for the analysis of our SILAC oocyte and 
ovary data, and the following settings: enzyme, trypsin/P; multiplicity, 2; heavy labels, Lys8; 
fixed modifications, carbamidomethyl (C); variable modifications (included in protein 
quantification), oxidation (M), acetylation (protein N-term). For mixed peptide analysis, settings 
were the same except for multiplicity was set to 1 and Lys8 (13C8-K) was set as variable 
modification. Proteins were modelled only if the MS1 signal for heavy and light isotopes were 
detected in at least three of five time points in at least two biological replicates. 

 

Identification and enrichment analysis of protein clusters with 13C6-Lys levels in the aging ovaries 

The modeling employed in this study inferred distributions of 13C6-Lys percentages left in a 
given protein at a given time point. Medians of these distributions per protein were used as 
point estimates of 13C6-Lys percentage. All values in each time point from 42 to 350 days were 
log10-transformed. All values smaller than -10 after transformation were set to -10. A matrix of 
normalized values was clustered using “Ward.D” method as implemented in R stats::hclust 
function12 using euclidean distance as a metric. This approach aimed to minimize variance 
within clusters. After clustering we observed that three groups of proteins emerged – those 
with next to no signal after 42 days (“short-lived” cluster), those with high signal (“long-lived” 
cluster) and those with small amounts of residual 13C6-Lys percentage. Plotting was done with 
“pheatmap” R package13. Clusters were tested for gene over-representation using “fora” 
algorithm2 based on hypergeometric test. Multiple testing correction was performed across all 



p-values in all clusters using Benjamini-Hochberg method3 and a threshold of 0.05 adjusted p-
value was used for defining significantly enriched sets.  

For over-representation analysis, a background set of all proteins detected in ovary DIA and all 
genes expressed in human ovary in Human Protein Atlas14 was combined using mouse gene 
symbols. This background gene set aimed to get rid of tissue-specific expression bias, as 
compared to default choices of a full genome annotation as a background gene set.  

In order to perform over-representation analysis and gene set enrichment analysis (GSEA) a 
custom gene set list was constructed. We used the following STRING ontology categories: 
"Protein Domains and Features (InterPro)", "Protein Domains (SMART)", "Protein Domains 
(Pfam)", "Reactome Pathways", "Subcellular localization (COMPARTMENTS)", "Local Network 
Cluster (STRING)", "Biological Process (Gene Ontology)", "Annotated Keywords (UniProt)". 
These genes were augmented with Aging Atlas15, MsigDB16 ovary-related sets from Fan et al. 
201917, CORUM complex database18, in-house made scRNA-seq cell type signatures (see 
‘Analysis of single-cell RNA sequencing data’) and sets manually constructed from the following 
Uniprot19 keywords: “cohesin”, “nucleosome”, “lamin”, “nucleoporin”. 

Mass spectrometry DIA data normalization to determine protein abundance profiles 

Data-independent acquisition (DIA) signal from ovary measurements was aggregated as a mean 
across biological replicates per day per protein and log10-transformed. In order to obtain the 
relative protein changes between timepoints, the DIA intensity was further scaled to the mean 
of 0 and standard deviation of 1 on per-protein basis. This normalization resulted in protein-
wise abundance relative to time and was used for GSEA2.  

 

Clustering and GSEA of protein abundance profiles 

Mean relative abundancies per gene symbol in each time point were used as input for 
“fgseaMultilevel” analysis with p-value calculation, boundary set as 1e-100 and minimal gene 
set size of 4. Background gene set in GSEA was determined by a presence of protein signal – all 
proteins quantified in DIA ovary dataset were used. A significance threshold of 0.01 of p-value 
corrected by Benjamini-Hochberg method3 was used.  

In order to identify clusters of protein dynamics for late time points (64-350 days), the 
corresponding DIA intensities were aggregated as a mean across biological replicates per day 
per protein and log10-transformed. DIA intensity was further scaled to the mean of 0 and 
standard deviation of 1 on per-protein basis. This resulted in relative protein abundancies for 
late time points only. In order to identify groups of protein with distinct behavior with regards 
to abundance changes, clustering with “Ward.D” method in euclidean distance space was 
applied and resulted in 6 clusters. These clusters were tested for ontology over-representation 
using hypergeometric test using “fora” algorithm. Same as in other applications of over-
representation testing, all proteins detected in ovary DIA and all genes expressed in human 
ovary in Human Protein Atlas were used as a background set. A significance threshold of 0.05 
Benjamini-Hochberg p-adjusted was chosen. We focused on investigating clusters 2 and 5, as 
these protein groups either gradually go down with age or increase only at 350 days.  



 
Analysis of single-cell RNA sequencing data 

The scRNA-seq data was aligned and quantified using the cellranger software (version 3.0.2, 10x 
Genomics). Low-quality cells that were either apoptotic (>10% mitochondrial counts) or with 
fewer than 750 detected genes and 1000 unique molecular identifier counts were excluded 
from the analysis. Doublets were detected using DoubletFinder v2.0.320. All downstream 
analyses, including data normalization to graph-based clustering, were carried out in R1 using 
Seurat v4.0521. Following cluster identification based on the specific expression of known 
markers, the in-house scRNA-seq cell type signatures were generated with the following 
cutoffs: avglog2FC ≥ 0.25 and %cellular expression > 10%. Mapping of the transcripts to specific 
or multiple cellular compartments were based on an avglog2FC ≥ 1.0 cutoff in a one-vs-all 
analysis. 
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