Genome	aabys	aabys-male	M3	M5
Total length (bp)	750,403,944	893,747,508	1,318,800,909	1,333,442,172
Contig number	20,487	18,213	11,176	4,327
Largest Contig/Scaffold	2,348,962	454,643	12,933,002	37,055,696
Contig number (>= 10000 bp)	6,714	16,975	10,169	10195
GC (%)	35.11	35.99	35.16	34.78
N50	226,573	63,778	617,562	7,800,370
N75	82,880	40,079	172,126	1,980,037
L50	809	4,206	471	47
L75	2,176	8,651	1,468	134
BUSCO score*	C:96.5% (3172) S:95.5% (3138) D:1.0% (34) F:1.7% (56)	C:80.4% (2642) S:79.1% (2600) D:1.3% (42) F:4.8% (158)	C:98.9% (3249) S:58.2% (1911) D:40.7% (1338) F:0.5% (17)	C:99.2% (3258) S:69.8% (2292) D:29.4% (966) F:0.3% (10)
	M:1.8% (57)	M:14.8% (485)	M:0.6% (19)	M:0.5% (17)

Supplementary Table 1 Overview statistics of the M3, M5 and *aabys*-male genomes in comparison with published *aabys* genome

* Total BUSCO groups searched: 3285 (Universal protein-coding genes in dipteran lineages). C: Complete BUSCOs; S: Complete and single-copy BUSCOs; D: Complete and duplicated BUSCOs; F: Fragmented BUSCOs; M: Missing BUSCOs.

Subject	Query	Genome	Subject length (bp)	Max score	Total score	E-value	Identity (%)
	Contig6762		3759	3077	39190	0	97.05
	Contig7871	M2	3759	3544	1.537e+05	0	100
	Contig624	IVIS	3759	939	1682	0	85.42
	Contig5307		3759	961	1715	0	85.86
Mand	tig00004758	M5	3759	3517	13804	0	99.74
Mama (ORF)	tig00000533	MO	3759	939	1699	0	85.42
	contig_6317_pilon		3759	483	2215	8.00E-138	88.75
	contig_2268_pilon		3759	3099	11939	0	97.27
	contig_2269_pilon	aabys-male	3759	2787	18072	0	96.37
	contig_12930_pilon		3759	3506	8652	0	99.64
	contig_12873_pilon		3759	760	760	0	83.43
	Contig6762		3510	749	4261	0	83.07
	Contig7871	M2	3510	749	19542	0	83.07
	Contig624	M3	3510	3363	6035	0	97.89
	Contig5307		3510	3469	6074	0	98.87
171	tig00004758	N/5	3510	743	1486	0	82.95
Mancm (ORF)	tig00000533	MS	3510	3469	6212	0	98.87
· · ·	contig_6317_pilon		3510		No significant	similarity four	nd
	contig_2268_pilon		3510	754	1437	0	83.19
	contig_2269_pilon	aabys-male	3510	747	2484	0	83.09
	contig_12930_pilon		3510	686	686	0	81.77
	contig_12873_pilon		3510	3533	6664	0	99.48

Supplementary Table 2 BLAST results of aligning *Mdmd* and *Mdncm* ORF sequences to the 4 contigs in the M3 genome, 2 contigs in the M5 genome and 5 contigs in the *aabys*-male genome that contain *Mdmd*-like sequences

$ \begin{array}{c} rlbose-phosphate pyrophosphokinase 1 \\ cytochrome P450 6D3 (CYP6D3) \\ cytochrome P450 6D3 (CYP6D3) \\ l4009 \\ label{eq:product} \\ AF200191.1 $	Description	Sequence length (bp)	Accession No.	Contig No.	Max score	Total score	Query cover	E value	Per. ident
$ \begin{array}{c} \mbodyline pyroprospin oxpin data pyroprospin oxpin $		2272	VM 005192925 2	M ^{III} -contig-1	985	3226	41%	0	93.87%
$ \begin{array}{c} cytochrome P450 \ 6D3 \ (CYP6D3) \\ cytochrome P450 \ (DYF6D3) \\ c$	ribose-phosphale pyrophosphokinase 1	2212	ANI_003183823.3	2374	1375	4020	94%	0	99.60%
				M ^{III} -contig-1	723	8159	13%	0	86.33%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cytochrome P450 6D3 (CYP6D3)	14009	AF200191.1	M ^{III} -contig-2	643	8372	11%	0	87.19%
$ \begin{array}{c} \mbox{Musca domestica 60S ribosomal protein L22-like} & 595 & \mbox{XM}_011296757.1 & \mbox{M}^{dll}-contig=1 & 560 & 844 & 93\% & 2.00E-161 & 96.47\% \\ \mbox{M}^{dll}-contig=2 & 440 & 779 & 53\% & 5.00E-125 & 91.56\% \\ \mbox{M}^{dll}-contig=2 & 440 & 779 & 53\% & 5.00E-125 & 91.56\% \\ \mbox{M}^{dll}-contig=2 & 440 & 779 & 53\% & 5.00E-125 & 91.56\% \\ \mbox{M}^{dll}-contig=2 & 368 & 654 & 31\% & 3.00E-145 & 88.14\% \\ \mbox{M}^{dll}-contig=2 & 368 & 654 & 31\% & 3.00E-145 & 88.14\% \\ \mbox{M}^{dll}-contig=2 & 368 & 654 & 31\% & 3.00E-103 & 93.52\% \\ \mbox{9512 } 782 & 1711 & 100\% & 0 & 100.00\% \\ \mbox{0} & 0 & 00.00\% \\ \mbox{0} & 0 & 0 & 00.00\% \\ \mbox{0} & 0 & 0 & 00.00\% \\ \mbox{0} & 0 & 0 & 0.00\% \\ \mbox{0} & 0 &$				7484	3722	1.19E+05	89%	0	98.49%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				M ^{III} -contig-1	560	844	93%	2.00E-161	96.47%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Musca domestica 605 ribosomai protein L22-	595	XM_011296757.1	M ^{III} -contig-2	440	779	53%	5.00E-125	91.56%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	like			4724	1074	1074	100%	0	99.16%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				M ^{III} -contig-1	507	1751	100%	3.00E-145	88.14%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Musca domestica putative protein TPRXL	790	XM 005189509.1	M ^{III} -contig-2	368	654	31%	3.00E-103	93.52%
$ \begin{array}{c} alpha-l.3-mannosyl-glycoprotein 4-beta-N-\\ acetylglucosaminyltransferase A \\ cetylglucosaminyltransferase A \\ putative mediator of RNA polymerase II \\ transcription subunit 26 \\ DNA topoisomerase I, mitochondrial-like \\ effensin-I mRNA \\ defensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ effensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ effensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ transcription subunit 26 \\ defensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ effensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ effensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ transpose I = 102 \\ topoisomerase I, mitochondrial-like \\ effensin-I mRNA \\ topoisomerase I, mitochondrial-like \\ terms are 3 \\ topoisomerase I = 1012 \\ topoisomerase I = 1000 \\ topoisome$			—	9512	782	1711	100%	0	100.00%
$\begin{array}{c} alpha-1, s-mannosyl-gycoprotein 4-beta-N-\\ acetylglucosaminyltransferase A \end{array} \qquad \begin{array}{c} 6282 \\ \mbox{M} & \$				M ^{III} -contig-1	394	497	7%	2.00E-110	84.50%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	alpha-1,3-mannosyl-glycoprotein 4-beta-N-	6282	XM 020038408.1	M ^{III} -contig-2	442	1740	7%	2.00E-124	84.28%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	acetyigiucosaminyitransferase A		—	2611	3238	18076	99%	0	93.15%
$\frac{1}{37} \frac{1}{13732} \frac{25446}{2844} \frac{99\%}{0} \frac{0}{96.88\%} \frac{96.88\%}{7.00E-78} \frac{99\%}{89.95\%} \frac{0}{96.88\%} \frac{37}{1.3732} \frac{25446}{2844} \frac{99\%}{1.00\%} \frac{0}{96.88\%} \frac{96.88\%}{7.00E-78} \frac{99.5\%}{89.95\%} \frac{1}{2844} \frac{1}{1568} \frac{1}{1795} \frac{1}{10\%} \frac{0}{9.95\%} \frac{0}{9.8.33\%} \frac{1}{2844} \frac{1}{1568} \frac{1}{1795} \frac{1}{10\%} \frac{0}{9.95\%} \frac{1}{9.83\%} \frac{1}{2844} \frac{1}{1568} \frac{1}{1795} \frac{1}{10\%} \frac{0}{9.95\%} \frac{1}{9.83\%} \frac{1}{38\%} \frac{1}{38\%} \frac{1}{11} \frac{1}{11} \frac{1}{266} \frac{1}{13\%} \frac{1}{5.00E-35} \frac{1}{86.57\%} \frac{1}{38\%} \frac{1}{38\%} \frac{1}{1683} \frac{1}{1979} \frac{1}{9.7\%} \frac{1}{9.7\%} \frac{1}{9.7\%} \frac{1}{9.97\%} \frac{1}{9.97\%} \frac{1}{9.97\%} \frac{1}{9.7\%} \frac{1}{9.7\%} \frac{1}{9.97\%} \frac{1}{9.97\%} \frac{1}{9.97\%} \frac{1}{9.97\%} \frac{1}{9.7\%} \frac{1}{9.97\%} \frac{1}{9.$	putative mediator of RNA polymerase II	12100	XX (020020000 1	M ^{III} -contig-1	361	498	3%	5.00E-100	86.31%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	transcription subunit 26	12199	XM_020039898.1	37	13732	25446	99%	0	96.88%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		005	X2 (020020042 1	M ^{III} -contig-1	283	2906	63%	7.00E-78	89.95%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DNA topoisomerase I, mitochondrial-like	895	XM_020039943.1	2844	1568	1795	100%	0	98.33%
$\frac{defensin-1 \ mKNA}{defensin-1 \ mKNA} = 1012 \qquad KC92090/.1 \qquad \frac{3896}{3896} = 1683 \qquad 1979 \qquad 97\% \qquad 0 \qquad 97.38\%}{3896} \\ protein sax-3 \qquad 6577 \qquad XM_020036366.1 \qquad \frac{M^{lll}-contig-1}{960} = 137 \qquad 229 \qquad 1\% \qquad 4.00E-33 \qquad 89.72\%}{960 \qquad 3650 \qquad 10509 \qquad 92\% \qquad 0 \qquad 97.15\%} \\ putative uncharacterized transmembrane protein DDB_G0293652 \qquad 1677 \qquad XM_020039173.1 \qquad \frac{M^{lll}-contig-2}{619} = 3009 \qquad 4064 \qquad 100\% \qquad 0 \qquad 93.50\%}{619 \qquad 3009 \qquad 4064 \qquad 100\% \qquad 0 \qquad 99.05\%} \\ Transcription elongation factor SPT6-like \qquad 3405 \qquad XM_020034885.1 \qquad \frac{M^{lll}-contig-2}{3766} = 1171 \qquad 7704 \qquad 54\% \qquad 0 \qquad 92.24\%}{3766 \qquad 4063 \qquad 19462 \qquad 100\% \qquad 0 \qquad 97.39\%} \\ \frac{ATP-dependent \ Clp \ \ protease \ \ proteolytic \ subunit, \ mitochondrial \qquad 1565 \qquad XM_005189536.3 \qquad \frac{M^{lll}-contig-2}{6518} = 2658 \qquad 9303 \qquad 100\% \qquad 0 \qquad 99.86\% \\ \frac{M^{lll}-contig-2}{10355 \qquad 1099 \qquad 37845 \qquad 91\% \qquad 0 \qquad 85.94\%}{10355 \qquad 1099 \qquad 37845 \qquad 91\% \qquad 0 \qquad 91.05\%} \\ ABC \ membrane \ transporter (white) \qquad 2180 \qquad AY055821.1 \qquad \frac{M^{lll}-contig-2}{496 \qquad 496 \qquad 18\% \qquad 4.00E-141 \qquad 89.57\%}{1290 \qquad 120\% \qquad 1$		1012	W C000007 1	M ^{III} -contig-1	141	266	13%	5.00E-35	86.57%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	defensin-1 mRNA	1012	KC920907.1	3896	1683	1979	97%	0	97.38%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(577	XXX 02002(2((1	M ^{III} -contig-1	137	229	1%	4.00E-33	89.72%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	protein sax-3	65//	XM_020036366.1	960	3650	10509	92%	0	97.15%
$P_{protein DDB_G0293652}$ 1677 $XM_020039173.1$ $\overline{619}$ 3009 4064 100% 0 99.05% $Transcription elongation factor SPT6-like$ 3405 $XM_020034885.1$ $\overline{M^{III}-contig-2}$ 1171 7704 54% 0 92.24% $ATP-dependent Clp protease proteolyticsubunit, mitochondrial1565XM_005189536.3\overline{M^{III}-contig-2}913219048\%093.10\%ATP-dependent Clp protease proteolyticsubunit, mitochondrial1565XM_005189536.3\overline{M^{III}-contig-2}913219048\%093.10\%ATP-dependent Clp protease proteolyticsubunit, mitochondrial961AF315724.1\overline{M^{III}-contig-2}86986984\%099.86\%AF315724.1M^{III-contig-2}86986984\%091.05\%ABC membrane transporter (white)2180AY055821.1M^{III-contig-2}496496100\%100\%092.24\%$	putative uncharacterized transmembrane	1/77	XX (020020172 1	M ^{III} -contig-2	1229	4488	100%	0	93.50%
Transcription elongation factor SPT6-like 3405 XM_020034885.1 $\frac{M^{III}$ -contig-2 1171 7704 54% 0 92.24% ATP-dependent Clp protease proteolytic subunit, mitochondrial 1565 XM_005189536.3 $\frac{M^{III}$ -contig-2 913 2190 48% 0 93.10% subunit, mitochondrial 1565 XM_005189536.3 $\frac{M^{III}$ -contig-2 913 2190 48% 0 93.10% transposonMdmaT1anonfunctional 961 AF315724.1 $\frac{M^{III}$ -contig-2 869 869 84% 0 85.94% transposase 92180 AY055821.1 $\frac{M^{III}$ -contig-2 496 496 18% $4.00E-141$ 89.57% ABC membrane transporter (white) 2180 AY055821.1 $\frac{M^{III}$ -contig-2 496 496 18% $4.00E-141$ 89.57%	protein DDB G0293652	16//	XM_020039173.1	619	3009	4064	100%	0	99.05%
Transcription elongation factor SP16-like 3405 XM_020034885.1 3766 4063 19462 100% 0 97.39% ATP-dependent Clp protease proteolytic subunit, mitochondrial 1565 XM_005189536.3 M ^{III} -contig-2 913 2190 48% 0 93.10% transposon MdmaTla nonfunctional transposase 961 AF315724.1 M ^{III} -contig-2 869 869 84% 0 85.94% ABC membrane transporter (white) 2180 AY055821.1 M ^{III} -contig-2 496 496 18% 4.00E-141 89.57%		2405	X2 (020024005 1	M ^{III} -contig-2	1171	7704	54%	0	92.24%
$\frac{ATP-dependent Clp \ protease \ proteolytic}{subunit, \ mitochondrial} 1565 \qquad XM_005189536.3 \qquad \frac{M^{III}-contig-2}{6518} \qquad \frac{913}{2658} \qquad \frac{2190}{9303} \qquad \frac{48\%}{00\%} \qquad 0 \qquad \frac{93.10\%}{0} \\ \frac{100\%}{100\%} \qquad 0 \qquad \frac{99.86\%}{00} \\ \frac{100\%}{10355} \qquad \frac{100\%}{10355} \qquad \frac{100\%}{1099} \qquad \frac{100\%}{37845} \qquad \frac{100\%}{0} \qquad 0 \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad 0 \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad 0 \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad \frac{100\%}{0} \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad 0 \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad \frac{100\%}{0} \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad \frac{100\%}{0} \\ \frac{100\%}{100\%} \qquad \frac{100\%}{0} \\ \frac{100\%}{0} \frac{100\%}$	Transcription elongation factor SP16-like	3405	XM_020034885.1	3766	4063	19462	100%	0	97.39%
$\frac{subunit, mitochondrial}{transposon} \frac{MdmaTla}{transposon} Mdm$	ATP-dependent Clp protease proteolytic	1565	XX (00510052(2	M ^{III} -contig-2	913	2190	48%	0	93.10%
transposon MdmaT1a nonfunctional 961 AF315724.1 M ^{III} -contig-2 869 869 84% 0 85.94% transposase 10355 1099 37845 91% 0 91.05% ABC membrane transporter (white) 2180 AY055821.1 M ^{III} -contig-2 496 496 18% 4.00E-141 89.57%	subunit, mitochondrial	1565	XM_005189536.3	6518	2658	9303	100%	0	99.86%
transposase 961 AF315/24.1 10355 1099 37845 91% 0 91.05% ABC membrane transporter (white) 2180 AY055821.1 <u>M^{III}-contig-2</u> 496 496 18% 4.00E-141 89.57%	transposon MdmaT1a nonfunctional	0.61	1 521 672 4 1	M ^{III} -contig-2	869	869	84%	0	85.94%
ABC membrane transporter (white) 2180 AY055821.1 $\frac{M^{III}$ -contig-2 496 496 18% 4.00E-141 89.57%	transposase	961	AF315724.1	10355	1099	37845	91%	0	91.05%
ABC membrane transporter (white) 2180 AY 055821.1 1004 (6404 1000) 0 02420		2100	137055001 1	M ^{III} -contig-2	496	496	18%	4.00E-141	89.57%
1321 1094 06494 100% 0 83.43%	ABC membrane transporter (white)	2180	AY055821.1	1321	1094	66494	100%	0	83.43%
<u>M^{III}-contig-2 350 700 2% 1.00E-96 97.56%</u>		52.40	ND 6 00000 5464 4	M ^{III} -contig-2	350	700	2%	1.00E-96	97.56%
protein prickle 7369 XM_020035464.1 5687 3980 12146 95% 0 97.91%	protein prickle	/369	XM_020035464.1	5687	3980	12146	95%	0	97.91%
M ^{III} -contig-2 344 569 8% 5.00E-95 82.11%		(572)		M ^{III} -contig-2	344	569	8%	5.00E-95	82.11%
<i>clock protein period</i> 65/3 AH00/818.2 <u>1194 8026 86233 93% 0 97.61%</u>	clock protein period	6573	AH00/818.2	1194	8026	86233	93%	0	97.61%
M ^{III} -contig-2 185 185 36% 6.00E-48 74.40%				M ^{III} -contig-2	185	185	36%	6.00E-48	74.40%
partial bcd gene for bicoid protein 1293 AJ297850.1 10701 1434 3587 99% 0 97 95%	partial bcd gene for bicoid protein	1293	AJ297850.1	10701	1434	3587	99%	0	97.95%

Supplementary Table 3 BLAST results of matches for partial replicates of predicted genes in the M^{III}-contigs and against M3 genome and with the best match

Contig	Class	Туре	Num	Sum	
		LINE/CR1	1		
		LINE/I-Jockey	9	-	
		LINE/R1-LOA	19	-	
	Class I Retrotransposon	LINE/RTE-BovB	1	94	
		LTR/Copia	3		
		LTR/Gypsy	26	-	
<i>MIII</i>		LTR/Pao	35	-	
M ^m -contig-1		DNA/CMC-EnSpm	3		
	Class II	DNA/hAT-Blackjack	3	42	
	DNA transposons	DNA/TcMar-Tc1	11	- 42	
		RC/Helitron	25	-	
		Low_complexity	4		
		Simple_repeat	43		
		Unknown	145	-	
		LINE/CR1	24		
		LINE/I-Jockey	12		
		LINE/Penelope	20	-	
	Class I Retrotransposon	LINE/R1-LOA	48	141	
		LINE/RTE-BovB	2	-	
		LTR/Gypsy	23	-	
M ^{III} -contig-2		LTR/Pao	12	-	
		DNA/CMC-EnSpm	1		
	Class II DNA transposons	DNA/TcMar-Tc1	17	55	
		RC/Helitron	37	-	
		Low_complexity	9		
		Simple_repeat	42	-	
		Unknown	297	-	

Supplementary Table 4 Overview of the repeat sequences in the M¹¹¹-contigs

Position	310	512	527	1020	1184	1596	1712	1722	1765	1853	1997	2040	2671	2683	2942	3093	3257	3272	3282	3425	Total
M^{II}	А	С	А	G	С	Т	G	Т	А	G	Т	G	А	А	G	С	G	С	Т	Т	4
M^{III}	А	А	А	Α	С	С	А	С	G	Т	С	G	А	Т	А	Т	G	С	С	Т	8
$M^{V}A$	А	А	G	G	С	Т	А	Т	А	G	Т	G	А	А	G	Т	G	С	С	Т	1
$M^{V}B$	А	А	G	G	С	Т	А	Т	А	G	Т	А	А	А	G	Т	G	С	С	Т	2
M^{Y}	G	А	А	G	Α	Т	А	Т	А	G	Т	G	G	А	G	Т	Α	G	С	С	6
Consensus	А	А	А	G	С	Т	А	Т	А	G	Т	G	А	А	G	Т	G	С	С	Т	

Supplementary Table 5 Positions where SNPs are found in intact Mdmd gene from M^{II} , M^{V} , and M^{Y}

Supplementary Fig. 1 FISH localization using *Mdmd*-specific probe and Mix probe in samples from various geographic strains. *Mdmd*-specific probe resulted in localization of *M* loci on the Y chromosome (**a**, **b**), the X chromosome (**c**, **d**, **e**, **f**), chromosome II (**e**, **f**) and chromosome III (**g**, **h**). M^Y , M^{II} and M^{III} all showed pericentromeric location on the short arms of each chromosome. M^X was located in the middle of one arm of the X chromosome. Particularly, homozygous M^X are observed because of the existence of tra^D , a dominant variant of *transformer* gene. tra^D directs female development regardless of the presence of *M*, and thus, allows both males and females to carry *M* (for details see ref²⁰). Mix probe was applied to the SPA1 (**i**) and SPA4 (**j**) samples. The results show co-localization of MAS repeats and M^X . The M^X signals are inseparable from the signals of MAS repeats signals indicating the adjacency of the two. Positive signals are shown in red and indicated by open triangles, chromosomes are indicated by arrows. Mitotic chromosomes are shown in blue. Signals were only considered as a successful hybridization if they were observed with consistent chromosomal locations on at least 20 metaphase nuclei on each slide. For each strain, 2-3 individuals were tested to ensure reproducibility.

Supplementary Fig. 2 Genomic sequence alignment and transcripts of the *Mdmd* copies in M^{V} . **a:** Only one nucleotide substitution (indicated by the dashed line box) is found between the two *Mdmd* copies. **b:** PCR amplification of *Mdmd* fragments using cDNA of two M5 male samples. The amplified fragments from the cDNA are shorter than that of the gDNA as the *Mdmd* transcripts do not contain the intron. NTC: control. M: ladder. Upon Sanger sequencing, base-calling sequencing electropherogram shows that in both gDNA and cDNA fragments, a double peak representing G and A exist at the SNP location. This demonstrates that both *MdmdA* and *MdmdB* transcribe.

Supplementary Fig. 3 Examples of genomic regions that show similar structures to M^{V} and contain identical Terminal Inverted Repeats (TIR). **a:** Self-alignment visualizations of 14 genomic regions containing the same interspersed tandem repeat blocks and TIRs as M^{V} . M^{V} -like palindromic structures are observed in all of them. The matched sequences are shown in blue (with the same orientation) and orange (with the reverse orientation). The wordsize used for similarity search was set to 50. **b:** All examined palindromic regions contain identical TIRs. Flanking those TIRs are direct repeats (DRs) that are mostly 9 bp (12 out of 14 examined regions) but differ in sequence contents.

Supplementary Fig. 4 Self-alignment visualization of 4 examples of duplicated regions on the M^{III} contigs. The grey squares represent the *Mdmd* sequences. The red dashed line boxes indicate the
duplicated unit. The duplicated unit vary in length and range as it can be *Mdmd* with its upstream and
downstream sequences (**a**), partial *Mdmd* sequences with its downstream sequences (**b**), or only *Mdmd*flanking sequences (**c**, **d**). The wordsize used for similarity search was set to 25.

			М‴-с	contig-	1 [Kb]	M ^{///} -contig-2 [Kb]																		
	0 20	40	60 8	0 100	120 14	0 16		200	0 40	60	80	100 :	120	140 1	60 180	200	220	240	260	280	300 320	340	360	380
M3-female_1			•••••		· ····	•••••	· - ·	\																
M3-female_2			•••••		· ····	•••••	·— ·	+					.											
LPR-female			•••••		· •· ··· ·· ·	••••	· - ·	+	<u> </u>				_								..			
A3-female	- · · · · ·		••••••		• ••• •••	•••••	·— ·	+																
aabys-female			••••••		•••••	••••	· — ·	. <u> </u>					-	. .			.							

Supplementary Fig. 5 The coverage in five female genomic datasets of the M^{III} -contigs. The similarity to the M^{III} -contigs for each dataset is represented by a horizontal line consisting of individual dots that indicate sufficient coverage. The lack of similarity is visible by the absence of dots and thus a discontinuous line. Unmapped parts indicate M^{III} -specific sequences, which disperse over the M^{III} -contigs. All five replicates showed comparable coverage patterns. The schematic drawing of M^{III} -contigs on the top show the distribution of Mdmd sequences, wherein the fragmented replicates are represented by orange (sense order) or green (antisense order) triangles. The complete Mdmd genes are represented by blue triangles. The dashed line box indicates the part where the two M^{III} -contigs share high homology.

Supplementary Discussion

Identification of DSB/homologous repair traces in M^{III} tandem duplications

Fiston-Lavier *et al.* (2007) described a particular case of tandem duplication formation via re-invasion process during double-strand break/homologous repair mechanism. Several sequence traces are expected to exist as a result. For instance: 1. The pairwise alignment of the template sequence and the sequences with the tandem duplication would exhibit a gap on the template. 2. Repeats are strictly in tandem within the newly synthesized sequence. 3. Homologous fragments should be detected between the template and each copy of the duplication. We examined a duplicated region on one M^{III} -contigs to see if we could find such traces. We focused on the 170-190 kb region on M^{III} -contig-2 as this is M^{III} -specific and is considered to have recently originated after the translocation from the Y to autosome III. Sequence traces are thus less likely lost because of degeneration.

We found one region at approximately 183-185 kb on M^{III} -contig-2 (duplicated sequence, referred to as DS) representing replication of the sequence at approximately 170-173.5 kb (template sequence, referred to as TS). Unlike the TS, the DS contains one fragment that replicated twice, thereby resulting in a total of three tandem copies (fig. S6). By examining pairwise alignment between TS and DS, microhomology traces were observed in both TS and DS. One trace directly flanked the gap in TS, whereas two are located at the end of additional duplications in DS (indicated by red boxes, fig. S6). Because of observed traces, we inferred that double-strand break/homologous repair mechanism caused examined tandem replications.

Supplementary Fig. 6 Alignment of a tandemly duplicated region in comparison to its template sequence on M^{II} -contig-2. Dotplot visualization demonstrates (on the left) two additional tandem copies in the duplicated region. Paiwise alignment between the template and the duplicated region reveals microhomology traces (indicated by red box), that allows dissociation and upstreams re-invasion.

Supplementary Fig. 7 Mapping Pacbio raw reads of *aabys*-male (M^{Y} -containing) and M5-male (M^{V} -containing) to M^{Y} -contigs. Distribution of *Mdmd* sequences is showed by dark blue blocks in the first track in each figure. Blue shading indicates major M^{Y} -specific regions, which only showed coverage in *aabys*-male reads, but not in M5-male reads. Yellow shading indicates the region containing the intact *Mdmd* copy. As M^{Y} and M^{V} share homology for this region, both *aabys*-male reads and M5-male reads show coverages. Green boxes indicate major regions that show higher coverages than M^{Y} -specific regions and are mapped not only by *aabys*-male reads but also by M5-male reads. As M^{V} and M^{Y} -loci do not share homology for those regions, mapped M5-male reads are likely non-*M*-related sequences, which are potentially homologous sequences on the X chromosome.