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Supplementary Fig. 1| Schematic illustration of the preparation of Hnp-

Cu100−xAux. Illustration of the synthetic process of Hnp-Cu100−xAux.  

  



 

Supplementary Fig. 2| XRD characterizations of Al80Cu18Au2. XRD patterns of the 

Al80Cu18Au2. 

  



 

Supplementary Fig. 3| SEM and XRD characterizations of np-Cu18Au2. (a) SEM 

images of the np-Cu18Au2, (b) XRD patterns of the np-Cu18Au2. 

  



 

Supplementary Fig. 4| XRD and EDS characterizations. (a) XRD patterns of np-Cu, 

Hnp-Cu70Au30, Hnp-Cu50Au50, Hnp-Cu35Au65 and np-Au. (b-d) EDS spectra of the 

Hnp-Cu70Au30, Hnp-Cu50Au50 and Hnp-Cu35Au65. 

  



 

Supplementary Fig. 5| SEM and XRD characterizations. (a-c) SEM images of (a) 

np-Cu, (b) np-Au and (c) np-Cu50Au50. (d) XRD patterns of the np-Cu50Au50. 

  



 

Supplementary Fig. 6| XPS characterizations. (a) XPS full spectra of Hnp-Cu50Au50, 

(b) XPS spectra of Hnp-Cu50Au50 and np-Au in Au 4f. 

  



 

Supplementary Fig. 7| Synchrotron radiation characterization of the np-Au and 

Hnp-Cu50Au50. (a) Normalized XANES at the Au L3-edge of Hnp-Cu50Au50, np-Au, 

Au foil. (b) The corresponding FT-EXAFS spectra of the Au L3-edge derived from (a). 

(c, d) WT of Au L3-edge EXAFS spectra of Hnp-Cu50Au50 and Au foil. 

  



 

 

Supplementary Fig. 8| The GC-MS standard curves for quantitative analysis. (a) 

Phenylacetylene, (b) Styrene and (c) Ethylbenzene. 

  



 

Supplementary Fig. 9| Electrocatalytic performance of Hnp-Cu70Au30 and Hnp-

Cu35Au65 for alkyne semi-hydrogenation. Potential-dependent conversions of 

phenylacetylene, selectivity and FE of styrene over (a) Hnp-Cu70Au30, (b) Hnp-

Cu35Au65 in 1 M KOH. The error bars represent the standard deviation for at least three 

independent measurements. 

  



 

Supplementary Fig. 10| Time-dependent conversion of phenylacetylene in 1 M 

KOH with and without 1 M KCl. Time-dependent conversion change of 

phenylacetylene with and without 1 M KCl over Hnp-Cu50Au50 at -0.6 V versus RHE. 

  



 

Supplementary Fig. 11| Electrocatalytic performance for alkyne semi-

hydrogenation in 1 M KOH with 1 M KCl and 1 M nBu4NCl. Conversions of 

phenylacetylene, selectivity and FE of styrene over Hnp-Cu50Au50 in 1 M KOH + 1 M 

KCl and 1 M KOH + 1 M nBu4NCl. The error bars represent the standard deviation for 

at least three independent measurements. 

  



 

Supplementary Fig. 12| Electrocatalytic performance of catalysts for alkyne semi-

hydrogenation. Potential-dependent conversions of phenylacetylene, selectivity and 

FE of styrene in 1 M KOH + 1 M KCl over (a) np-Cu, (b) np-Au and (c) np-Cu50Au50. 

The error bars represent the standard deviation for at least three independent 

measurements. 

  



    

 

Supplementary Fig. 13| Time-dependent conversion of styrene. Time-dependent 

conversions of styrene over np-Cu, np-Cu50Au50, and Hnp-Cu50Au50. 

  



 

Supplementary Fig. 14| The energy efficiency of alkyne semi-hydrogenation. The 

energy efficiency of Hnp-Cu50Au50 for semi-hydrogenation of phenylacetylene at 

different applied potentials. 

  



 

Supplementary Fig. 15| XRD characterizations of Hnp-Cu50Au50. XRD patterns of 

Hnp-Cu50Au50 before and after reaction. 

  



 

 

Supplementary Fig. 16| XPS Characterizations of the Hnp-Cu50Au50 after reaction. 

(a) Cu 2p XPS spectra. (b) Au 4f XPS spectra.  

  



 

 

Supplementary Fig. 17| SEM characterizations of Hnp-Cu50Au50 after reaction. 

SEM image of Hnp-Cu50Au50 alloy after reaction. 

  



 

Supplementary Fig. 18| In situ Raman spectra for the electrocatalytic 

hydrogenation of phenylacetylene. In situ Raman tests in a mixed 1.0 M KOH/Diox 

solution for electrocatalytic hydrogenation of phenylacetylene at −0.4 V vs. RHE over 

(a) np-Cu, (b) Hnp-Cu50Au50. 

  



 

Supplementary Fig. 19| DFT calculations. (a) PDOS of Cu (111), Au (111) and 

Cu50Au50, (b) the relationship between d-band center and free energy of *C8H8 

adsorption. 

  



 

Supplementary Fig. 20| Free energy diagram for water-splitting process. Free 

energy diagram for water-splitting process over Cu (111), Au (111), and Cu50Au50. 

  



 

Supplementary Fig. 21| Double-layer capacitance analyses. (a, b) CVs of np-

Cu50Au50 (a) and Hnp-Cu50Au50 (b). These CVs were performed at various scan rates 

20, 40, 60, 80, and 100 mV s-1. (c) The plots of current densities against scan rates. ∆j 

is the difference between anodic and cathodic current densities at a same potential (0.05 

V. vs. RHE). (d) The electrochemically active surface areas (ECSAs) of Hnp-Cu50Au50 

and np-Cu50Au50. 

  



 

Supplementary Fig. 22| The comparison of styrene FE and ECSA-normalized 

styrene current density. The styrene FE and ECSA-normalized styrene current density 

comparison between Hnp-Cu50Au50 and np-Cu50Au50 in 1 M KOH.  

  



 

Supplementary Fig. 23| Electrochemical impedance spectroscopy analyses. 

Nyquist plots of Hnp-Cu50Au50 and np-Cu50Au50 at -0.4 V vs. RHE. Inset: equivalent 

circuit for EIS fitting. 

  



 

Supplementary Fig. 24| CV curves of np-Cu50Au50 in 1 M KOH with or without 1 

M KCl. CV curves of np-Cu50Au50 in 1 M KOH and 1 M KOH + 1 M KCl with a scan 

rate of 100 mV s-1. 

 
  



 

Supplementary Fig. 25| Quasi-in situ EPR tests. Quasi-in situ EPR trapping for 

carbon and hydrogen radicals over Hnp-Cu50Au50 at -0.4 V vs. RHE. 

  



 

Supplementary Fig. 26| Standard equilibrium potential of phenylacetylene to 

styrene. (a) Standard Gibbs free energies of H2(g), C8H6, C8H8 and H2O(l). (b) The 

standard equilibrium potential of phenylacetylene-to-styrene conversion routes. 

  



Supplementary Table 1. Summary of conversion (Con), selectivity (Sel.) and Faradaic 

efficiency (FE) values of the reported catalysts in the electrocatalytic semi-

hydrogenation of alkynes to alkynes. 

Catalyst Reactant Product 
Con 
(%) 

Sel 
(%) 

FE 
(%) 

Reference 

Hnp-
Cu50Au50 

  
94 100 92 

This 
work 

Pt/W2C-
7.4 

  
32 95 53 [1] 

PdFe 
  

96.1 92.9 — [2] 

PdCu 
  

97.4 93.0 9.5 [3] 

PdP 

  
92 98 78 [4] 

Pd2N 

  
95.7 97.8 72.4 [5] 

Pd@ArS-
Pd4S 

  
97 96 75 [6] 

Cu-S 
  

99 99 10 [7] 

PdSx 

  
67 98 28 [8] 

  

H2N
H2N

H2N
H2N

H2N
H2N

H2N
H2N

H2N
H2N



Supplementary Table 2. Substrate scope for electrocatalytic semi-hydrogenation of 

alkynes with H2O over a Hnp-Cu50Au50 cathode. 

 

 

95% (94%) 

 

93% (96%) 

 

        98% (100%) 

 

91% (100%) 

 

88% (93%) 

 

94% (97%) 

Reaction conditions: alkynes substrates (1 mmol), Hnp-Cu50Au50 (working area: 1 cm2), 1 M KOH 

(Dioxane/H2O), room temperature, -0.4 V vs. RHE. Conversion yields were reported, and the data 

in parentheses were the alkene selectivity. 

  

R R

O H2N

F Br Cl

Hnp-Cu50Au50 -0.4 V 

1 M KOH/Dioxane 
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