Alloying and Confinement effects on Hierarchically Nanoporous CuAu for Efficient Electrocatalytic Semi-Hydrogenation of Terminal Alkynes

Linghu Meng^{1,5}, Cheng-Wei Kao^{2,5}, Zhen Wang^{1,5}, Jun Ma³, Peifeng Huang³, Nan Zhao⁴, Xin Zheng⁴, Ming Peng¹, Ying-Rui Lu², Yongwen Tan^{1*}

¹College of Materials Science and Engineering, State Key Laboratory of Advanced

Design and Manufacturing Technology for Vehicle Body, Hunan University,

Changsha, Hunan 410082, China

²National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan

³College of Mechanical and vehicle Engineering, Hunan University, Changsha,

Hunan 410082, China

⁴Electrical Power Research Institute of Yunnan Power Grid Co. Ltd, North China

Electric Power, Kunming, Yunnan, 650217, China

⁵Linghu Meng, Cheng-Wei Kao and Zhen Wang contributed equally to this work *e-mail: tanyw@hnu.edu.cn

Supplementary Fig. 1| Schematic illustration of the preparation of Hnp-

 $Cu_{100-x}Au_x$. Illustration of the synthetic process of Hnp- $Cu_{100-x}Au_x$.

Supplementary Fig. 2| XRD characterizations of AlsoCu18Au2. XRD patterns of the

 $Al_{80}Cu_{18}Au_2.$

Supplementary Fig. 3| SEM and XRD characterizations of np-Cu₁₈Au₂. (a) SEM

images of the np-Cu₁₈Au₂, (b) XRD patterns of the np-Cu₁₈Au₂.

Supplementary Fig. 4| XRD and EDS characterizations. (a) XRD patterns of np-Cu, Hnp-Cu₇₀Au₃₀, Hnp-Cu₅₀Au₅₀, Hnp-Cu₃₅Au₆₅ and np-Au. (b-d) EDS spectra of the Hnp-Cu₇₀Au₃₀, Hnp-Cu₅₀Au₅₀ and Hnp-Cu₃₅Au₆₅.

Supplementary Fig. 5| SEM and XRD characterizations. (a-c) SEM images of (a)

np-Cu, (b) np-Au and (c) np-Cu₅₀Au₅₀. (d) XRD patterns of the np-Cu₅₀Au₅₀.

Supplementary Fig. 6| XPS characterizations. (a) XPS full spectra of Hnp-Cu₅₀Au₅₀,

(b) XPS spectra of Hnp-Cu₅₀Au₅₀ and np-Au in Au 4f.

Supplementary Fig. 7| Synchrotron radiation characterization of the np-Au and Hnp-Cu₅₀Au₅₀. (a) Normalized XANES at the Au L3-edge of Hnp-Cu₅₀Au₅₀, np-Au, Au foil. (b) The corresponding FT-EXAFS spectra of the Au L3-edge derived from (a). (c, d) WT of Au L3-edge EXAFS spectra of Hnp-Cu₅₀Au₅₀ and Au foil.

Supplementary Fig. 8| The GC-MS standard curves for quantitative analysis. (a)

Phenylacetylene, (b) Styrene and (c) Ethylbenzene.

Supplementary Fig. 9| Electrocatalytic performance of Hnp-Cu₇₀Au₃₀ and Hnp-Cu₃₅Au₆₅ for alkyne semi-hydrogenation. Potential-dependent conversions of phenylacetylene, selectivity and FE of styrene over (a) Hnp-Cu₇₀Au₃₀, (b) Hnp-Cu₃₅Au₆₅ in 1 M KOH. The error bars represent the standard deviation for at least three independent measurements.

Supplementary Fig. 10| Time-dependent conversion of phenylacetylene in 1 M KOH with and without 1 M KCl. Time-dependent conversion change of phenylacetylene with and without 1 M KCl over Hnp-Cu₅₀Au₅₀ at -0.6 V versus RHE.

Supplementary Fig. 11| Electrocatalytic performance for alkyne semihydrogenation in 1 M KOH with 1 M KCl and 1 M nBu₄NCl. Conversions of phenylacetylene, selectivity and FE of styrene over Hnp-Cu₅₀Au₅₀ in 1 M KOH + 1 M KCl and 1 M KOH + 1 M nBu₄NCl. The error bars represent the standard deviation for at least three independent measurements.

Supplementary Fig. 12 | Electrocatalytic performance of catalysts for alkyne semihydrogenation. Potential-dependent conversions of phenylacetylene, selectivity and FE of styrene in 1 M KOH + 1 M KCl over (a) np-Cu, (b) np-Au and (c) np-Cu₅₀Au₅₀. The error bars represent the standard deviation for at least three independent measurements.

Supplementary Fig. 13 | Time-dependent conversion of styrene. Time-dependent

conversions of styrene over np-Cu, np-Cu₅₀Au₅₀, and Hnp-Cu₅₀Au₅₀.

Supplementary Fig. 14| The energy efficiency of alkyne semi-hydrogenation. The energy efficiency of Hnp-Cu₅₀Au₅₀ for semi-hydrogenation of phenylacetylene at different applied potentials.

Supplementary Fig. 15| XRD characterizations of Hnp-Cu₅₀Au₅₀. XRD patterns of

 $Hnp-Cu_{50}Au_{50}$ before and after reaction.

Supplementary Fig. 16| XPS Characterizations of the Hnp-Cu₅₀Au₅₀ after reaction.

(a) Cu 2p XPS spectra. (b) Au 4f XPS spectra.

Supplementary Fig. 17| SEM characterizations of Hnp-Cu₅₀Au₅₀ after reaction.

SEM image of Hnp-Cu₅₀Au₅₀ alloy after reaction.

Supplementary Fig. 18| In situ Raman spectra for the electrocatalytic hydrogenation of phenylacetylene. In situ Raman tests in a mixed 1.0 M KOH/Diox solution for electrocatalytic hydrogenation of phenylacetylene at -0.4 V vs. RHE over (a) np-Cu, (b) Hnp-Cu₅₀Au₅₀.

Supplementary Fig. 19 DFT calculations. (a) PDOS of Cu (111), Au (111) and $Cu_{50}Au_{50}$, (b) the relationship between d-band center and free energy of $*C_8H_8$ adsorption.

Supplementary Fig. 20| Free energy diagram for water-splitting process. Free

energy diagram for water-splitting process over Cu (111), Au (111), and Cu₅₀Au₅₀.

Supplementary Fig. 21| Double-layer capacitance analyses. (a, b) CVs of np-Cu₅₀Au₅₀ (a) and Hnp-Cu₅₀Au₅₀ (b). These CVs were performed at various scan rates 20, 40, 60, 80, and 100 mV s⁻¹. (c) The plots of current densities against scan rates. Δj is the difference between anodic and cathodic current densities at a same potential (0.05 V. vs. RHE). (d) The electrochemically active surface areas (ECSAs) of Hnp-Cu₅₀Au₅₀ and np-Cu₅₀Au₅₀.

Supplementary Fig. 22| The comparison of styrene FE and ECSA-normalized styrene current density. The styrene FE and ECSA-normalized styrene current density comparison between Hnp-Cu₅₀Au₅₀ and np-Cu₅₀Au₅₀ in 1 M KOH.

Supplementary Fig. 23 [Electrochemical impedance spectroscopy analyses. Nyquist plots of Hnp-Cu₅₀Au₅₀ and np-Cu₅₀Au₅₀ at -0.4 V vs. RHE. Inset: equivalent circuit for EIS fitting.

Supplementary Fig. 24| CV curves of np-Cu₅₀Au₅₀ in 1 M KOH with or without 1

M KCl. CV curves of np-Cu₅₀Au₅₀ in 1 M KOH and 1 M KOH + 1 M KCl with a scan rate of 100 mV s⁻¹.

Supplementary Fig. 25| Quasi-in situ EPR tests. Quasi-in situ EPR trapping for carbon and hydrogen radicals over Hnp-Cu₅₀Au₅₀ at -0.4 V vs. RHE.

Supplementary Fig. 26 Standard equilibrium potential of phenylacetylene to styrene. (a) Standard Gibbs free energies of $H_2(g)$, C_8H_6 , C_8H_8 and $H_2O(1)$. (b) The standard equilibrium potential of phenylacetylene-to-styrene conversion routes.

Catalyst	Reactant	Product	Con	Sel	FE	Reference
Hnp- Cu50Au50			94	100	92	This work
Pt/W2C- 7.4			32	95	53	[1]
PdFe			96.1	92.9		[2]
PdCu			97.4	93.0	9.5	[3]
PdP	H ₂ N	H ₂ N	92	98	78	[4]
Pd ₂ N	H ₂ N	H ₂ N	95.7	97.8	72.4	[5]
Pd@ArS- Pd4S	H ₂ N	H ₂ N	97	96	75	[6]
Cu-S	H ₂ N	H ₂ N	99	99	10	[7]
PdS _x	H ₂ N	H ₂ N	67	98	28	[8]

Supplementary Table 1. Summary of conversion (Con), selectivity (Sel.) and Faradaic efficiency (FE) values of the reported catalysts in the electrocatalytic semi-hydrogenation of alkynes to alkynes.

Supplementary Table 2. Substrate scope for electrocatalytic semi-hydrogenation of alkynes with H_2O over a $Hnp-Cu_{50}Au_{50}$ cathode.

Reaction conditions: alkynes substrates (1 mmol), Hnp-Cu₅₀Au₅₀ (working area: 1 cm²), 1 M KOH (Dioxane/H₂O), room temperature, -0.4 V vs. RHE. Conversion yields were reported, and the data in parentheses were the alkene selectivity.

Supplementary References

- Xiu L. et al. Enrichment of polarized alkynes over negatively charged Pt for efficient electrocatalytic semihydrogenation. ACS Catal. 14, 2173–2180 (2024).
- Zhu, K. et al. Unraveling the role of interfacial water structure in electrochemical semihydrogenation of alkynes. ACS Catal. 12, 4840–4847 (2022).
- 3. Xu, X. et al. Regulating the interfacial water structure by tensile strain to boost electrochemical semi-hydrogenation of alkynes. *Inorg. Chem. Front.* **9**, 3444 (2022)
- Wu, Y., Liu, C., Wang, C., Lu, S. & Zhang, B. Selective transfer semihydrogenation of alkynes with H₂O (D₂O) as the H (D) source over a Pd-P cathode. *Angew. Chem. Int. Ed.* 59, 21170– 21175 (2020).
- 5. Song, Z. et al. Interstitial modification of palladium nanocubes with nitrogen atoms promotes aqueous electrocatalytic alkyne semihydrogenation. *ACS Mater. Lett.* **5**, 3068–3073 (2023).
- 6. Gao, Y. et al. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. *Sci. Adv.* **8**, eabm9477 (2022).
- 7. Wu, Y. et al. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semihydrogenation with water. *Nat. Commun.* **12**, 3881 (2021).
- Li, H. et al. σ-alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdS_x nanocapsules. J. Am. Chem. Soc. 144, 19456–19465 (2022).