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CGMega: Explainable Graph Neural Network Framework with

Attention Mechanisms for Cancer Gene Module Dissection



Reviewer #1 (Remarks to the Author):

In this research, a deep learning framework for detecting cancer gene module called CGMega is 

suggested. CGMega integrates multiomics information including Hi-C data to represent node 

features of a graph attention network, which can help improve the prediction accuracy of the 

model. The authors conducted several experiments to show robustness of the model, importance 

of omics/Hi-C features, and high performance of the model compared to the baseline methods. In 

addition, extensive case studies with AML and BRCA datasets show a potential of CGMega for the 

analysis on cancer research. The proposed framework and the manuscript can be improved in 

several ways as follows:

1. The analysis result (gene modules and representation features) of the proposed framework can 

change depending on threshold of the importance scores from GNNExplainer. As for the 

representation features, the threshold is 10-fold of the minimum score, which is an arbitrary one. 

In addition, edge and feature thresholds for gene module detection are not described in the 

manuscript. The authors can explain or show experimental results about an impact of thresholds 

on the performance of the model.

2. Proposed framework is compared with existing algorithms such as MTGCN and EMOGI in Fig. 2b. 

Recently, a new method called MODIG has been published and it shows better performance than 

MTGCN and EMOGI according to the manuscript. Please consider adding MODIG into the 

comparative analysis.

Zhao, W., Gu, X., Chen, S., Wu, J., & Zhou, Z. (2022). MODIG: integrating multi-omics and multi-

dimensional gene network for cancer driver gene identification based on graph attention network 

model. Bioinformatics, 38(21), 4901-4907.

3. The authors showed performance of CGMega on different PPI databases in Fig. S2. It seems 

that performance is lower when using Iref and Multinet than other databases. It would be better if 

any discussion about this result (e.g. effect of the number of nodes/edges in the network) can be 

added.

4. In line 342-356, gene modules of ErbB family is described and three of them share the 

representation features as Hi-C and SNV. Although the authors added a number of references that 

explain the importance of SNV for cancer mechanisms (line 353-354), there should be a discussion 

about Hi-C representation features, as it is the main novelty of the proposed method. What would 

be the biological implication from the results of CGMega? Are there any common features for 

genes with Hi-C representation features?

Reviewer #2 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part of 

the Nature Communications initiative to facilitate training in peer review and appropriate 

recognition for co-reviewers.

Reviewer #3 (Remarks to the Author):

The study's writing and organisation are comprehensive and well-executed, but the technical 

novelty is lacking. Specifically, CGMega's replacement of GCN with GAT, available through PyTorch 

Geometric, and the use of GNNExplainer for model explanation are not novel contributions with 

significance.

The contributions of the study are listed in the Discussion clearly. However, additional evidence is 

required to support the conclusions.

• The authors emphasise the usage of Hi-C data as a unique feature of CGMega. It is then not 

clear that if all other methods compared in Figure 2 also used Hi-C data. If yes, then using Hi-C 

data is not a technical novelty of CGMega. If not, then it is not clear whether the GAT-based 

architecture provided better prediction.

• The second contribution is the utilisation of GNNExplainer. However, EMOGI is also explainable, 

and it would be better to demonstrate whether GNNExplainer provide more reliable model 

explanation than the way EMOGI explains the model.



• The third contribution is about pretraining and fine-tuning, but I believe this is a strategy that 

can be applied to any neural network-based model. What is unique in the CGMega about this?

This study is comprehensive as it covered most experiments and comparisons conducted in similar 

studies such as EMOGI. However, it does not use any external test set for unbiased performance 

evaluation. Using 25% of the data as the test set is acceptable but not as strong as using an 

external dataset in our field. Importantly, although in the Methods it says “To conduct evaluation, 

25% of the positive and negative genes were assigned to the test set while the remaining 75% 

were divided into 10 equal parts.”, Figure 2 and S2 seem to be reporting cross-validation results 

rather than test set results.

The authors claim proteome data are integrated. "The outperformance of CGMega benefits from 

the effective integration of multi-omics information, including genome, epigenome, proteome, and 

especially the 3D genome architecture." I believe the authors mean the usage of PPI data for 

proteomics, because otherwise there is no other proteomics mentioned. However, using PPI is not 

generally considered as the integration of proteomics data. In the similar work EMOGI, which is 

also based on PPI, does not claim proteomic data are integrated.

The methodology is overall sound and can meet expected standards with some further revision 

and clarification, but it lacks key novelties as a method paper. For example, the formulas for GAT, 

graph transformer and GNNExplainer are all included in the Methods at the moment without 

additional linkage to omics data. In this case, the authors could simply cite the original paper as 

there is no need to re-write the formulas.

The data used for training/test in each analysis is not clear. For example, in the analysis related to 

Fig2, CGMega only uses one cell line for both training and test?

In the Data collection and preprocessing section, the author states "To validate the suitability of 

CGMega on other PPIs (Fig. S3a)..." (line 540). However, Fig. S3a doesn't seem to be about 

different other PPIs, which is a crucial comparison.

The code repository needs to be polished for the work to be reproduced.

Are you satisfied that all data and source code needed to reproduce the results of the paper have 

been made available?

The quality of the overall project looks good, but it still needs some revision. The tutorial notebook 

is great but it currently seems broken with missing datasets.

Are you satisfied that the results can be replicated using the code/software and dataset provided in 

the study?

I was not able to run the Tutorial notebook due to missing datasets.

Were you able to run the tool successfully?

No. First, some dependencies were missing (No module named 'torch_sparse'). I figured out by 

myself but then the tutorial notebook couldn’t run because of missing datasets (No such file or 

directory: 'data/Breast_Cancer_Matrix/MCF7_Adjacent_Matrix_Ice').

Was the code sufficiently documented to allow another researcher to follow the algorithm?

There is some documentation, but they are not sufficient, especially for users who do not have 

experience of deep learning development. Also the current installation documentation on GitHub 

doesn’t seem to support GPU. Additional cuda packages were required.

Can the software be run on a widely available operating system?

Although not tested, I think the software can be run on a wide range of operating systems, given 

the required dependencies are available across different operating systems.

To your knowledge, do available tools or software exist that perform in a similar way to the 

reported software?



Yes. I know the EMOGI work relatively well and I think EMOGI solves exactly the same questions 

as CGMega. CGMega has changed a few components in the model and shown superior predictive 

performance. But they are essentially very similar.

In cases when the source code is not provided but the mathematical description of the algorithm 

is; was the core mathematical algorithm sufficiently documented to allow another researcher to 

reproduce it?

Yes.

Reviewer #4 (Remarks to the Author):

The authors propose a method for predicting cancer genes by integrating multi-omics features. 

Besides, GNNExplainer is utilized for interpretability analysis, and some significant patterns are 

identified from gene modules in the context at either cell-line level or patient level. The prediction 

results demonstrate the effectiveness and robustness of the proposed model, and the explanations 

help us better understand the structure of cancer gene modules. This paper is interesting and well-

written.

Major comments

1. In page 12, the authors show a case study of detecting gene modules and important features of 

BRCA1 and BRCA2. While the goal here is to show that the predictions are interpretable because of 

some important patterns, but the mechanistic explanations are not supported clearly (e.g. only an 

intermediate gene of BRCA2 are related to cancer mechanism). It is suggested to further show 

how the functions of the detected genes are related to the cancer mechanisms, by providing more 

in-depth explanations.

2. In page 18, the authors identified some significant high-order patterns of AML gene modules, 

but it’s unclear how these patterns are related with the AML. Therefore, it is suggested to conduct 

more analyses about mechanisms of AML disease, in order to mine more insightful patterns and 

further prove the interpretability of the method.

3. The authors conduct interpretability analysis using GNNExplainer. Since the graph transformer 

layers with attention mechanism are used within the CGMega, I wonder why the authors do not 

use the learned attention scores of graph transformer layers for explanation. Would the analysis 

result be different from the explanations given by GNNExplainer?

Minor comments

1. From Figure 2e, SVM seems to perform better than MTGCN in terms of AUPRC, F1 score and 

ACC, so why do you say that MTGCN is the SOTA in page 6?

2. In Page 6, the sentence “we tested retrained CGMega (training from scratch) and pre-trained 

CGMega on K562 cell line using all labeled 164 genes” is not clear enough. I cannot figure out on 

which cell line the first model is retrained on and which cell line tested on, and whether the second 

model is fine-tuned or only is a pre-trained version. It is suggested to remove ‘tested’ and modify 

this sentence carefully.

3. In Figure S2b, it is interesting that the performance of the retrained CGMega does not exceed 

the pre-trained model. Can you explain more about this result?

4. In Figure S2e, you show the results of CGMega with different positive:negative ratios, but none 

of the results are matched with the original CGMega in Figure 2e. What is the positive:negative 

ratio you used for the original CGMega?

5. Will CGMega still outperform the best baseline if you use different positive:negative training 

ratios (in Figure S2e) or different PPI databases (Figure S2f)?



Point-by-point response to reviewers:

Reviewer #1 (Remarks to the Author):

In this research, a deep learning framework for detecting cancer gene module called CGMega 

is suggested. CGMega integrates multiomics information including Hi-C data to represent node 

features of a graph attention network, which can help improve the prediction accuracy of the 

model. The authors conducted several experiments to show robustness of the model, importance 

of omics/Hi-C features, and high performance of the model compared to the baseline methods. 

In addition, extensive case studies with AML and BRCA datasets show a potential of CGMega 

for the analysis on cancer research. The proposed framework and the manuscript can be 

improved in several ways as follows:

Response:

We appreciate the time and energies that the reviewer poured into our manuscript. We really thank 

the professional suggestions which greatly help improve the quality of our work. 

According to the concerns raised by the reviewer, we improved our work from the following four 

aspects:

1. We have added more analysis to test the performance of our framework.

2. We have added detailed methods description and extended the discussion.

3. We have conducted inhibitor treatment experiments to investigate gene modules.

4. We have optimized and uploaded both the original data and codes onto Zenodo for further use.

All results have been added to the revised manuscript, and point-to-point responses are as below:

Q1. The analysis result (gene modules and representation features) of the proposed framework 

can change depending on threshold of the importance scores from GNNExplainer. As for the 

representation features, the threshold is 10-fold of the minimum score, which is an arbitrary 

one. In addition, edge and feature thresholds for gene module detection are not described in 

the manuscript. The authors can explain or show experimental results about an impact of 

thresholds on the performance of the model.

1.1 Response: 

The concern raised by the reviewer about the thresholds is appreciated. We conducted threshold to 

restrict the size and connectivity of gene modules in order to ensure the computational feasibility 

for subsequent calculations. The threshold-setting does not involve strictly controlling the value of 

a certain importance score, but rather utilizes a top-ranking approach. Specifically, for each gene, 



CGMega keeps the edges as the final explanation when the combination of the following conditions 

is true: (a) the linked nodes are within two-hop neighbors of the central gene node, (b) the 

importance scores rank in the top 20, and (c) they must form a connective graph. Thanks for this 

comment which reminds us that the previous manuscript failed to convey that the threshold was not 

related to the absolute magnitude of importance scores, and we have polished the relevant text.

As for the representative features, we added the details about how the 10-fold threshold was 

determined. At first, we calculated 16 different scenarios when the threshold was set from 5 to 20, 

respectively (Table-1 for reviewer). With a certain threshold, genes could be classified into different 

categories according to the type of representative features they possess, including one or multiple 

from ATAC-seq, CTCF ChIP-seq, Hi-C, CNV, SNV and histone modifications. For example, genes 

with only ATAC as the representative feature were classified as ATAC_group, genes with only Hi-

C information as the representative feature were classified as Hi-C_group, and genes with multiple 

types of representative features were classified as Multiple_group. 

Then, we compared gene sets with different representative features under different threshold values. 

An excessively low threshold tends to assign too many genes to the Multiple_group. When the 

threshold is set to 5-fold of the minimum, the number of genes in the Multiple_group reaches 1025, 

an unreasonably high number, since it is rare that a single gene being linked to cancer in ways of 

multiple mechanisms. With the increased threshold, the number of genes in the Multiple_group 

decreases. Whereas, this does not mean the higher threshold will lead to more genuine calculations, 

because an excessively high threshold will omit the potential carcinogenic mechanisms of different 

genes. For example, when threshold is set to 20-fold of the minimum, the number of genes that have 

representative features sharply drops to 245, an obviously underestimated number compared to the 

scale of pan-cancer genes already known (more than a few hundreds). 

In summary, either too high or too low a threshold will lead to biologically unreasonable results for 

the scale or the mechanisms of cancer genes. Therefore, the threshold of 10-fold of minimum was 

determined as a trade-off of genuineness versus comprehensiveness according to the well-

established biological knowledge.

Table-1 for reviewer

SNV_group CNV_group CTCF_group Hi-C_group Multiple_group

Thresh_5 165 68 239 369 1025

Thresh_6 172 113 290 466 715

Thresh_7 177 134 330 517 475

Thresh_8 182 146 353 539 312

Thresh_9 190 139 352 528 208

Thresh_10 197 126 327 488 149

Thresh_11 209 112 293 417 98

Thresh_12 213 95 250 308 70



Thresh_13 211 52 201 165 52

Thresh_14 217 19 151 78 35

Thresh_15 220 8 114 36 25

Thresh_16 224 3 96 21 17

Thresh_17 219 2 81 16 13

Thresh_18 210 2 69 12 11

Thresh_19 203 2 55 10 6

Thresh_20 188 1 43 7 5

2. Proposed framework is compared with existing algorithms such as MTGCN and EMOGI in 

Fig. 2b. Recently, a new method called MODIG has been published and it shows better 

performance than MTGCN and EMOGI according to the manuscript. Please consider adding 

MODIG into the comparative analysis. 

Zhao, W., Gu, X., Chen, S., Wu, J., & Zhou, Z. (2022). MODIG: integrating multi-omics and 

multi-dimensional gene network for cancer driver gene identification based on graph attention 

network model. Bioinformatics, 38(21), 4901-4907.

1.2 Response: 

Thanks for reminding us to compare with MODIG. To address this concern, we detailed compared 

the required data and methods performance. 

As shown in Table-2 for reviewer, MODIG requires more input data than CGMega. First, MODIG 

is trained on ~3000 pan-cancer genes while CGMega is suitable for cancer-specific genes, and 

CGMega supports few-short learning with as few as 200 labelled genes (as shown in Fig. 2c). 

Second, CGMega required 15-dimensions node features including 10-dimensions epigenetic 

features and 5-dimensions Hi-C features while MODIG required 48-dimensions pan-cancer features. 

Third, MODIG required sufficient structure features including PPI, GO, gene co-expression, 

pathway, DNA sequence similarity, and semantic similarity while CGMega only import PPI as 

structure input. 

Table-2 for reviewer

Input data MODIG CGMega

Gene label source Pan-cancer genes Cancer-specific genes

Number of labelled 

genes

Positive 796 358

Negative 2187 1581

Total 2983 1939

Node features

Somatic Mutation " "

CNV " "

DNA methylation " -

Gene Expression " -

Chromatin Accessibility - "



Histone modification - "

Hi-C - "

Total Feature dimension 48 15

Structure features

PPI " "

Gene co-expression " -

GO " -

Pathway " -

DNA sequence similarity " -

Semantic similarity " -

Total structure types 6 1

Next, we compared the performance of CGMega and MODIG on both datasets. As shown in Table-

3 for reviewer, on our dataset, CGMega performed much better than MODIG. This is expected 

because as reported in MODIG paper, multiple structure features is very important for MODIG 

performance (as shown in Table-4 for reviewer, corresponding to Table 1 in MODIG paper), and 

CGMega dataset does not contain as sufficient structure features and multi-omics node features as 

MODIG required. But for MODIG dataset, MODIG achieved the best while CGMega performed 

better than EMOGI, MTGCN and others (See Table-5 for reviewer). 

Together, when we have sufficient omics data and prior knowledge such as known biological 

pathway, MODIG is a good choice for pan-cancer genes prediction. CGMega is advanced in 

cancer-specific genes prediction especially with limited data and knowledge. In addition, the 

motivation of MODIG and CGMega is different. MODIG was designed for cancer driver gene 

prediction while we proposed CGMega to detect cancer driver gene-associated modules.

We thank the reviewer again for helping us improve our work and we have added the comparisons 

between CGMega and MODIG in our revised manuscript. 

Table-3 for reviewer

Comparison on CGMega dataset

AUPRC AUROC ACC F1 score

CGMega 0.9140 0.9630 0.9216 0.8081

MODIG 0.6326 0.5001 0.5182 0.1957

MTGCN 0.8290 0.9417 0.9052 0.7604

EMOGI 0.7419 0.8994 0.6784 0.5215

GCN 0.6876 0.8914 0.8557 0.6734

GAT 0.7752 0.9355 0.8845 0.7308

Table-4 for reviewer

MODIG Performance on different structure features, corresponding to Table 1 in 

MODIG paper

Structure feature Node features AUPRC AUROC ACC F1

PPI Multi-omics 0.5955 0.8243 0.7572 0.6281



PPI+GO+Seq+Path+Exp Multi-omics 0.8164 0.9086 0.8441 0.7293

Table-5 for reviewer

Comparison on MODIG dataset

PPI source MODIG CGMega EMOGI MTGCN GCN GAT

STRING (MODIG used) 0.81 0.74 0.71 0.68 0.66 0.63

CPDG (CGMega used) 0.80 0.75 0.70 0.62 0.67 0.62

3. The authors showed performance of CGMega on different PPI databases in Fig. S2. It seems 

that performance is lower when using Iref and Multinet than other databases. It would be better 

if any discussion about this result (e.g. effect of the number of nodes/edges in the network) can 

be added.

1.3 Response:

Thanks for reminding us to discuss CGMega performance on different PPI datasets. Actually as the 

reviewer speculated, the numbers of nodes/edges have an impact on CGMega performance.

As described in “Dataset organization” section of the manuscript, the input graph for CGMega takes 

16,165 protein coding genes as graph nodes, and the size of graph adjacent matrix is 16,165 x 16,165, 

which are extracted from PPI network. Thus, the node number and edge number of PPI datasets 

directly determine the graph structure for CGMega training. As shown in Table-6 for reviewer, 

Multinet dataset contains the fewest PPIs compared to other datasets, resulting in a sparsity of 0.03% 

(83766/161652). This extreme sparsity of Multinet input graph may be the main factor for CGMega 

bad performance. To confirm this speculation, we removed the 5143 isolated nodes in above 

Multinet input graph and generated a connected graph (namely condensed Multinet). Condensed 

Multinet contains 11,022 nodes and the sparsity is 0.07%. When testing CGMega (See Table-7 for 

reviewer), the AURPC increased from 0.8062 (Multinet) to 0.8991 (condensed Multinet), 

suggesting the great impact of graph sparsity on CGMega performance. Notably, MTGCN and GCN 

outperformed CGMega on condensed Multinet dataset, suggesting that graph convolution is more 

suitable for small size graph modeling.

Table-6 for reviewer

Information for PPI datasets

Node # Edge #
Sparsity of CGMega input 

graph

CPDB 12262 273765 0.10%

STRING 10967 253535 0.10%

iRef 14960 342006 0.13%

PCNet 15999 2192197 0.84%

Multinet 11022 83766 0.03%

Table-7 for reviewer



Performance on Multinet and condensed Multinet PPI datasets

CGMega MTGCN EMOGI GAT GCN

Multinet 0.8062 0.8545 0.6151 0.7037 0.5739

Condensed Multinet 0.8991 0.9154 0.8855 0.7912 0.9081

We collected iRef PPIs from its original version, which was published in 2008. It is the oldest dataset 

used in our study. As reported, protein-protein interactions in iRef were established using proteins 

primary sequence, taxonomy identifiers, and the Secure Hash Algorithm, which lack experimental 

evidence. The performance of other current methods on iRef dataset were also poor (Table-8 for 

reviewer). 

Table-8 for reviewer

AURPC on different PPI datasets

PPI dataset CGMega MTGCN EMOGI GAT GCN

CPDB 0.9140 0.8290 0.7393 0.7752 0.6976

STRING 0.8953 0.8332 0.5304 0.8495 0.4955

iRef 0.8659 0.7451 0.6387 0.5919 0.5672

PCNet 0.8955 0.8462 0.8113 0.7340 0.7471

Multinet 0.8062 0.8545 0.6151 0.7037 0.5739

We have added above discussion in our revised manuscript.

4. In line 342-356, gene modules of ErbB family is described and three of them share the 

representation features as Hi-C and SNV. Although the authors added a number of references 

that explain the importance of SNV for cancer mechanisms (line 353-354), there should be a 

discussion about Hi-C representation features, as it is the main novelty of the proposed method. 

What would be the biological implication from the results of CGMega? Are there any common 

features for genes with Hi-C representation features?

1.4 Response:

Thanks for the helpful advice. 

In this work, representation features (RFs) were calculated based on feature importance scores, 

which were generated to quantify the contribution of each feature. Thus, to discuss the biological 

implication of RFs, we first focus on feature importance scores. As shown in Fig-1 for reviewer, 

genes from MCF7 cell line were generally divided into five clusters (by K-means clustering) based 

on feature importance scores. Implications among these gene clusters are: Many cancer driven 

genes (class-5) were as reported to be dominated by genetic mutations. Except for these well-known 

cancer genes. The five Hi-C features, condensed by SVD, have provided extended supplements 

based on their participations in each cluster: 1st, 4th and 5th Hi-C features showed joint effect with 





Based on the rationality of feature importance score, we proposed RFs to focus on the most crucial 

information. In MCF7 cell line, 1109 genes were attributed with Hi-C as RFs. A cancer gene with 

Hi-C as its RF means that chromatin structure might be an indispensable driving factor in its 

association with cancer. We summarized three possible ways to study cancer genes based on Hi-

C RFs: (i) Hi-C RFs reflect potential structure variations. For example, in ErbB family, three 

members (ErbB2, ErbB3 and ErbB4) share Hi-C as RF while the other one ErbB1 (EGFR) does not 

(Fig-3 for reviewer). (ii) Genes with only Hi-C as RFs account to 171. Among these genes, 144 and 

22 of them locate at crucial positions as loop anchors and TAD boundaries, respectively. (iii) Genes 

of which the RFs include not only Hi-C, but also epigenetic and (or) structural variants information 

tend to link with aberrant gene expression resulted from gene fusion (MYB, NOTCH1, CD74, BRAF, 

FGR3, NDRG1, RUNX1) [5,6,7,8], enhancer hijacking (ABCC1, B3GNT9, FOPNL) [9] and so on.

Fig-3 for reviewer.

Taken together, feature importance scores provided by CGMega measure the joint effect of 

multiple factors, and can be used for guiding cancer genes classification. Hi-C RFs are 

meaningful in investigating the associations between chromatin structure and cancer gene 

mechanism such as dysregulation and genomic variation.

We have added above results and discussion in our revised manuscript.
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Reviewer #2 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part 

of the Nature Communications initiative to facilitate training in peer review and appropriate 

recognition for co-reviewers.

Response:

We appreciate the time and energies that the reviewer poured into testing our framework. 

According to the issues from the reviewer as listed in Reviewer 3 comments, we have optimized 

and uploaded both the original data and codes onto Zenodo 

(https://zenodo.org/records/10086978). Besides, to facilitate users to quickly start using CGMega, 

we also provide a pre-built docker image (built based on Ubuntu 20.04) as well as its Readme.md 

on Zenodo. Dependent packages and CGMega are installed in an anaconda environment. This 

environment will be activated automatically when you log in.

We hope the revised version will run well and help the reviewer test CGMega’s performance.

Reviewer #3 (Remarks to the Author):

The study's writing and organisation are comprehensive and well-executed, but the technical 

novelty is lacking. Specifically, CGMega's replacement of GCN with GAT, available through 

PyTorch Geometric, and the use of GNNExplainer for model explanation are not novel 

contributions with significance.

Response:

We appreciate the reviewer’s efforts in helping us improving our work, especially for helping us 

highlight the novelties of our framework. 

According to the issues from the three reviewers, we improved our work from the following four 

aspects:

1. We have added more analysis to test the performance of our framework.

2. We have added detailed methods description and extended the discussion, especially in discussing 

the novelties of our work.

3. We have conducted inhibitor treatment experiments to investigate gene modules.

4. We have optimized and uploaded both the original data and codes onto Zenodo for further use.

All results have been added to the revised manuscript, and point-to-point responses are as below:

The contributions of the study are listed in the Discussion clearly. However, additional evidence 



is required to support the conclusions.

Q1. The authors emphasise the usage of Hi-C data as a unique feature of CGMega. It is then 

not clear that if all other methods compared in Figure 2 also used Hi-C data. If yes, then using 

Hi-C data is not a technical novelty of CGMega. If not, then it is not clear whether the GAT-

based architecture provided better prediction.

2.1 Response: 

Thanks for the comment. The technical novelty of CGMega lies in its ability to exploit Hi-C data 

for cancer gene prediction, as there has been no prior methods for predicting cancer genes that 

utilizes Hi-C data to our best knowledge.

There are three aspects of advantages by using Hi-C data: (i) Hi-C features have contributes to 

prediction performance (Fig-1A for reviewer, related to Fig. 2d in manuscript), AUPRC increases 

from 0.8964 (without Hi-C) to 0.9140 (with Hi-C). (ii) Hi-C features contributes to few-shot 

learning especially for training with less than 200 known cancer genes (Fig-1B for reviewer, related 

to Fig. 2c in manuscript). (iii) Hi-C features help measure the joint effect of multiple factors, and 

can be used for guiding cancer genes classification. As shown in Fig-1C for reviewer, genes from 

MCF7 cell line were generally divided into five clusters (by K-means clustering) based on feature 

importance scores. Implications among these gene clusters are: Many cancer driven genes (class-5) 

were as reported to be dominated by genetic mutations. Except for these well-known cancer genes. 

The five Hi-C features, condensed by SVD, have provided extended supplements based on their 

participations in each cluster: 1st, 4th and 5th Hi-C features showed joint effect with other regulatory 

factors on cancer driver genes (cluster-3), while 2nd and 3rd Hi-C features showed joint effect with 

genetic mutations (cluster-1). 

In addition, we also test whether GAT-based architecture contributes to prediction. We constructed 

GCN-based architecture by replacing the transformer layer with GCN, the input is the same as 

CGMega which contains Hi-C data. As shown in Fig-2 for reviewer, the performance of GAT-

based is better than that of GCN-based architecture.





Fig-2 for reviewer

Together, both Hi-C data and GAT-based architecture contribute to CGMega performance. 

Thanks for the helpful advice in emphasizing the usage of Hi-C data, and we have added the analysis 

and discussion in the revised manuscript.

Q2. The second contribution is the utilisation of GNNExplainer. However, EMOGI is also 

explainable, and it would be better to demonstrate whether GNNExplainer provide more 

reliable model explanation than the way EMOGI explains the model.

2.2 Response: 

Thank you for your comment. EMOGI incorporates layer-wise relevance propagation (LRP), a 

gradient-based approach, to explain the model. LRP is initially developed for MLP and CNN 

models [1], and involves calculating partial derivatives of the model outputs to the input feature 

matrix and the corresponding adjacency matrix Laplacian matrix. As reported, gradient-based 

methods are often not suitable for explaining predictions made on graphs [2], and the efficacy of LRP 

hinges on the specific architecture of the model, and LRP is more difficult to apply to complex 

neural network architecture such as GAT. Due to these limitations, interpretations generated by LRP 

will be meaningless in some cases.

To avoid these limitations, we conduct GNNExplainer in CGMega, it is a model-agnostic approach 

for providing interpretable explanations for predictions of any GNN-based model on any graph-

based machine learning task, and could avoid issues related to gradient-based methods such as 

gradient saturation. These issues are exacerbated on discrete inputs such as graph adjacency 

matrices since the gradient values can be very large but only on very small intervals. Thus, utilisation 

of GNNExplainer is more advanced compared to LRP in EMOGI. 

We have added this statement in the revised manuscript.
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Q3. The third contribution is about pretraining and fine-tuning, but I believe this is a strategy 

that can be applied to any neural network-based model. What is unique in the CGMega about 

this?



2.3 Response: 

Thanks for pointing out this poor discussion in our manuscript. Actually as the reviewer said, 

CGMega does not employ a unique pretraining/fine-tuning scheme. Rather, we aim to use these 

techniques to explore the potential for knowledge transfer between different cancers. 

Previous methods, such as EMOGI, have primarily focused on pan-cancer data, neglecting the 

potential for knowledge transfer between different cancer types. The well performance of these 

methods benefits a lot from the abundant labelled genes from pan-cancer data. However, as we 

noted, some cancers have abundant known data, while others may not. Thus, it will be a significant 

achievement to explore cancer-specific driver genes. To accomplish this, we constructed pretrained 

model on large dataset (MCF7 cell line) and test the performance of model fine-tuning on small 

dataset (sampled from K562 cell line). Furthermore, Hi-C features contributes to this pretraining 

and fine-tuning strategy especially for few-shot transfer learning as trained on less than 200 known 

cancer genes (as discussed in Q1, Fig-1B for reviewer, related to Fig. 2c in manuscript). These 

results demonstrate the transferability of CGMega on different cancer types, and it is an important 

aspect of our study. 

According to the helpful advice, we have revised this discussion in our revised manuscript. 

Q4. This study is comprehensive as it covered most experiments and comparisons conducted in 

similar studies such as EMOGI. However, it does not use any external test set for unbiased 

performance evaluation. Using 25% of the data as the test set is acceptable but not as strong 

as using an external dataset in our field. Importantly, although in the Methods it says “To 

conduct evaluation, 25% of the positive and negative genes were assigned to the test set while 

the remaining 75% were divided into 10 equal parts.”, Figure 2 and S2 seem to be reporting 

cross-validation results rather than test set results.

2.4 Response: 

Thanks for this comment. Figure 2 and S2 do not report cross-validation results. Here we 

adopted the same evaluation strategy as EMOGI, which involves dividing the training set into 10 

folds and using 10-fold cross-validation to generate 10 trained models. We then used these 10 

models to predict the test set respectively, and the averaged test results were taken as the final results.

We understand that this may not have been explicitly stated in the manuscript, and we have added 

a description in Methods section to clarify these settings. We apologize for any confusion this may 

have caused.

5. The authors claim proteome data are integrated. "The outperformance of CGMega benefits 



from the effective integration of multi-omics information, including genome, epigenome, 

proteome, and especially the 3D genome architecture." I believe the authors mean the usage of 

PPI data for proteomics, because otherwise there is no other proteomics mentioned. However, 

using PPI is not generally considered as the integration of proteomics data. In the similar work 

EMOGI, which is also based on PPI, does not claim proteomic data are integrated.

2.5 Response: 

We apologize for this unrigorous claim. As the reviewer point out, we indeed used PPI rather than 

integrate proteomics data. We have corrected these claims in the revised manuscript.

6. The methodology is overall sound and can meet expected standards with some further 

revision and clarification, but it lacks key novelties as a method paper. For example, the 

formulas for GAT, graph transformer and GNNExplainer are all included in the Methods at the 

moment without additional linkage to omics data. In this case, the authors could simply cite the 

original paper as there is no need to re-write the formulas.

2.6 Response: 

As the reviewer pointed out, both GAT and GNNExplainer are well defined methods, and we have 

simplified the original formula description and provided more task-specific formal 

descriptions in the revised manuscript.

Although we conduct the well-known GAT and GNNExplainer in our work, CGMega own its 

unique novelties. First and the most important, CGMega incorporates Hi-C data for cancer gene and 

gene module prediction. This enables cancer-specific gene study rather than previous pan-

cancer studies, and is helpful for few-shot transfer learning (as discussed above in Q3 response). 

To achieve this incorporation, we test different strategies for integrating Hi-C and other omics data, 

and finally confirmed SVD as the best strategy. It is a novel and instructive in developing multi-

omics combination methods. Second, to utilize multi-omics data and prevent overfitting, we have 

made modifications to the original GAT model by adding residual connections between the input 

feature and the last graph transformer layer (See Fig-3 for reviewer and Fig. 1a in revised 

manuscript). 

We appreciate the reviewer’s feedback and hope that these revisions better clarify the contributions 

and novelty of our study.





Table-1 for reviewer

AUPRC

CGMega trained with MCF7, and test on K562 cell line 0.7203

Pre-trained CGMega with 1000 labeled genes from K562 cell line 0.9155

Pre-trained CGMega with 100 labelled genes from K562 cell line 0.8850

8. In the Data collection and preprocessing section, the author states "To validate the suitability 

of CGMega on other PPIs (Fig. S3a)..." (line 540). However, Fig. S3a doesn't seem to be about 

different other PPIs, which is a crucial comparison.

2.8 Response: 

Thanks for pointing out this mistake, and we would like to clarify that the correct figure is Fig. 

S2f. We have corrected this in the revised manuscript.

9. The code repository needs to be polished for the work to be reproduced.

2.9 Response:

To facilitate reproducing the results of CGMega, we have further polished the tutorial notebook and 

uploaded both the original data and codes onto Zenodo (https://zenodo.org/records/10086978). 

Besides, a pre-built docker image and its Readme.md were also provided on Zenodo.  The 

information includes file or directory that were previously missing now have been added. We wish 

our efforts may help reducing the workload for results replication. 

Are you satisfied that all data and source code needed to reproduce the results of the paper have 

been made available?

The quality of the overall project looks good, but it still needs some revision. The tutorial 

notebook is great but it currently seems broken with missing datasets.

Are you satisfied that the results can be replicated using the code/software and dataset provided in 

the study?

I was not able to run the Tutorial notebook due to missing datasets.

Were you able to run the tool successfully?

No. First, some dependencies were missing (No module named 'torch_sparse'). I figured out 

by myself but then the tutorial notebook couldn’t run because of missing datasets (No such file 

or directory: 'data/Breast_Cancer_Matrix/MCF7_Adjacent_Matrix_Ice').

Was the code sufficiently documented to allow another researcher to follow the algorithm?



There is some documentation, but they are not sufficient, especially for users who do not have 

experience of deep learning development. Also the current installation documentation on 

GitHub doesn’t seem to support GPU. Additional cuda packages were required.

Can the software be run on a widely available operating system?

Although not tested, I think the software can be run on a wide range of operating systems, 

given the required dependencies are available across different operating systems.

To your knowledge, do available tools or software exist that perform in a similar way to the reported 

software?

Yes. I know the EMOGI work relatively well and I think EMOGI solves exactly the same 

questions as CGMega. CGMega has changed a few components in the model and shown 

superior predictive performance. But they are essentially very similar.

In cases when the source code is not provided but the mathematical description of the algorithm is; 

was the core mathematical algorithm sufficiently documented to allow another researcher to 

reproduce it?

Yes.



Reviewer #4 (Remarks to the Author):

The authors propose a method for predicting cancer genes by integrating multi-omics features. 

Besides, GNNExplainer is utilized for interpretability analysis, and some significant patterns 

are identified from gene modules in the context at either cell-line level or patient level. The 

prediction results demonstrate the effectiveness and robustness of the proposed model, and the 

explanations help us better understand the structure of cancer gene modules. This paper is 

interesting and well-written.

Response:

We appreciate the reviewer’s efforts in helping us improving our work. 

According to the issues from the reviewer, we improved our work from the following four aspects:

1. We have added more analysis to test the performance of our framework.

2. We have conducted inhibitor treatment experiments to investigate gene modules.

3. We have added detailed methods description and extended the discussion.

4. We have optimized and uploaded both the original data and codes onto Zenodo for further use.

All results have been added to the revised manuscript, and point-to-point responses are as below:

Major comments

Q1. In page 12, the authors show a case study of detecting gene modules and important features 

of BRCA1 and BRCA2. While the goal here is to show that the predictions are interpretable 

because of some important patterns, but the mechanistic explanations are not supported 

clearly (e.g. only an intermediate gene of BRCA2 are related to cancer mechanism). It is 

suggested to further show how the functions of the detected genes are related to the cancer 

mechanisms, by providing more in-depth explanations.

4.1 Response: 

Thanks for pointing out our poor description of BRCA modules. To address this concern, we have 

made efforts in the following three areas: 

(i) Deep analysis and discussion of important features. 

(ii) Detailed explanations of BRCA2 gene modules with a dozen evidence. 

(iii) Conducting tumor cells inhibition experiment with BRCA2 inhibitor and ROCK2 

inhibitor treatment.

First, we examined known breast cancer genes with different important features. As shown in Fig-

1 for reviewer, based on feature importance scores, genes from MCF7 cell line were generally 

divided into five clusters (by K-means clustering). Implications among these gene clusters are: 











activation and inhibition of lipid synthesis. Biochem Biophys Res Commun., 2019, DOI: 

10.1016/j.bbrc.2019.04.101

4. Siyuan Weng et al., ALOX12: A Novel Insight in Bevacizumab Response, Immunotherapy Effect, 

and Prognosis of Colorectal Cancer. Front. Immunol., 2022, DOI: 10.3389/fimmu.2022.910582

5. Huifeng Wang et al., BRCA2 and Nucleophosmin Coregulate Centrosome Amplification and Form 

a Complex with the Rho Effector Kinase ROCK2. Cancer Research, 2011, DOI: 10.1158/0008-

5472.CAN-10-0030

6. D A Freedman et al., Nuclear Export Is Required for Degradation of Endogenous p53 by MDM2 

and Human Papillomavirus E6. Molecular and Cellular Biology, 1998, DOI: 

10.1128/MCB.18.12.7288

7. Kai Zheng et al., miR-135a-5p mediates memory and synaptic impairments via the 

Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nature 

Communications, 2021, DOI: 10.1038/s41467-021-22196-y

8. Imola Wilhelm et al., Role of Rho/ROCK signaling in the interaction of melanoma cells with the 

blood brain barrier. Pigment Cell Melanoma Res, 2014, DOI: 10.1111/pcmr.12169

9. Toru Tanaka et al., Nuclear Rho Kinase, ROCK2, Targets p300 Acetyltransferase, Journal of 

Biological Chemistry, 2006, DOI: 10.1074/jbc.M510954200

10. Maaike A C Bruin et al., Pharmacokinetics and Pharmacodynamics of PARP Inhibitors in 

Oncology. Clin Pharmacokinet, 2022, DOI: 10.1007/s40262-022-01167-6

11. Jan-Willem Henning et al., Clinical Considerations for the Integration of Adjuvant Olaparib into 

Practice for Early Breast Cancer: A Canadian Perspective. Current Oncology, 2023, DOI: 

10.3390/curroncol30080556

12. Ronil A Patel et al., RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-

invasive and anti-tumor activities in breast cancer. Cancer Research, 2012, DOI: 10.1158/0008-

5472.CAN-12-0954

Q2. In page 18, the authors identified some significant high-order patterns of AML gene 

modules, but it’s unclear how these patterns are related with the AML. Therefore, it is suggested 

to conduct more analyses about mechanisms of AML disease, in order to mine more insightful 

patterns and further prove the interpretability of the method.

4.2 Response: 

Thanks for this advice. To address this concern, we have conducted more analysis on the high-order 

of AML gene modules.

Since complex diseases, such as cancer, are both polygenic and multifactorial, dismantling the 

higher order structure of gene modules is necessary for network-based analysis [1]. Hubs of high-

order gene modules have strong ties to their neighborhood, getting damaged could break the system 

into small, nonfunctional elements [2]. Identifying hub genes in gene modules has led to the 

identification of several gene essential in cancer [3,4], type 2 diabetes [5], chronic fatigue [6], other 

diseases [7,8] and tissue regeneration [9].
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Q3. The authors conduct interpretability analysis using GNNExplainer. Since the graph 

transformer layers with attention mechanism are used within the CGMega, I wonder why the 

authors do not use the learned attention scores of graph transformer layers for explanation. 

Would the analysis result be different from the explanations given by GNNExplainer?

4.3 Response: 

Thanks for the expertise of your comment. We did not rely on attention mechanism to generate 



explanation mainly due to the two reasons as following.

First, the issue of whether attention mechanisms provide interpretability is still controversial, 

and there is simply no agreement to be recognized. Taking the field of NLP as an example, Jain, 

S. et al. proposed that Attention is not Explanation [1]. Their experiments showed that different 

attention coefficients would lead to the same prediction, which provides a counterfactual argument 

for attention being not interpretable. However, another diametrically opposed view that Attention is 

not not Explanation was proposed by Wiegreffe, S.et al [2]. Although they provided almost a point-

to-point rebuttal to the former work, they did not prove that attention is interpretable (none of the 

other published research has proven or disproven it either). Besides, they believed that the 

attention score used to provide interpretability are not unique, which challenges the well-

recognized rule that the underlying mechanisms of a cancer gene in a specific cancer type are 

usually clear and definite rather than multiple or ambiguous.

Second, the attention scores are learned to optimize the overall performance, and each score 

quantifies to what degree the attention should be paid by the model to the corresponding edge (i.e., 

a specific protein-protein interaction). However, all the scores are learned through the whole training 

process and therefore there were only one set of scores, which means that for any protein-protein 

interaction, attention mechanism only provides one fixed score. This is almost the opposite of the 

fact that one protein-protein interaction should play different roles with varied importance in the 

carcinogenic process driven by different cancer genes. In contrast with the model-level attention 

scores, GNNExplainer generates its explanation for gene-module by masking edge one at a 

time, thus the importance scores for one edge in different gene-modules are accordingly 

various.

As the reviewer suggested, we calculated the attention scores in our framework and compared 

them with GNNExplainer’s importance scores on MCF7 cell line. Results showed that using 

the above two ways will lead to interpretations with far more differences than similarities. 

1. From the perspective of edge, Table-1 for reviewer shows the example of edge SMAD3-RUNX1. 

According to the result of GNNExplainer, this edge has the highest importance score in the 

module of RUNX1 while with trivial importance in the modules of several other genes. But 

attention mechanism only provides a fixed score for this edge and does not support any gene-

specific analysis. 

Table-1 for reviewer

Edge: SMAD3-RUNX1 GNNExplainer & score Attention mechanism & score

Module 1 RUNX1 0.7948 # 0.0037

Module 2 BRCA1 0.0423 # 0.0037

Module 3 BRCA2 0.0422 # 0.0037



Module 4 GATA3 0.0418 # 0.0037

Module 5 EGFR 0.0425 # 0.0037

2. From the perspective of gene, for example, as shown in Table-2 for reviewer, the top-1 edge in 

the module of STAT3 calculated by GNNExplainer is PTPRT-STAT3. Among the attention 

scores for edges joining STAT3 with other genes, the highest score is also for PTPRT-STAT3. 

Both GNNExplainer and attention mechanism all assign a rather important role to PTPRT (a 

phosphatase of the crucial JAK-STAT signaling pathway in anti-cancer immunity regulation [3]), 

indicating that something in common are learnt by the both. Whereas, the other edges at the top 

of their separate lists were all different and the distribution of two kinds of scores also varied a 

lot.

Table-2 for reviewer

Gene: STAT3 GNNExplainer & score Attention mechanism & score

Top-1 edge PTPRT-STAT3 0.9615 PTPRT-STAT3 0.4172

Top-2 edge PTPRT-EGFR 0.5097 SULT2A1-STAT3 0.3855

Top-3 edge PTPRT-ATP2A2 0.0859 CHI3L1-STAT3 0.3232 

Top-4 edge STAT3-ROCK2 0.0520 HESX1-STAT3 0.3196 

Top-5 edge CSF3R-CSF3 0.0429 FRK-STAT3 0.2413 

Top-6 edge STAT6-STAT3 0.0429 TSLP-STAT3 0.2336 

Top-7 edge NFKB2-SIN3A 0.0428 IL23R-STAT3 0.2271 

Top-8 edge PTPRD-MTNR1A 0.0428 LRRFIP2-STAT3 0.1935 

Top-9 edge JAK2-CSF3R 0.0428 AZU1-STAT3 0.2025 

Top-10 edge PTPRT-ATP2A2 0.0859 SOCS7-STAT3 0.1800 

Based on above reasons and analysis, we believe that using attention scores as explanations is not 

an appropriate choice while GNNExplainer owns its intrinsic strength more suitable for 

interpretation task on cancer gene.
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Minor comments

Minor-Q1. From Figure 2e, SVM seems to perform better than MTGCN in terms of AUPRC, 

F1 score and ACC, so why do you say that MTGCN is the SOTA in page 6?



Minor-1 Response: 

Thanks for reminding us. We meant to convey that we have compared with the most progressive 

methods in this field (i.e., MTGCN and EMOGI) at the time of writing. But we neglected that some 

basic machine learning methods as simple as SVM can also achieve good results and it was 

inappropriate to use ‘the state-of-the-art methods’ to describe MTGCN and EMOGI. In the revised 

manuscript, we have corrected this misstatement.

Minor-Q2. In Page 6, the sentence “we tested retrained CGMega (training from scratch) and 

pre-trained CGMega on K562 cell line using all labeled 164 genes” is not clear enough. I 

cannot figure out on which cell line the first model is retrained on and which cell line tested on, 

and whether the second model is fine-tuned or only is a pre-trained version. It is suggested to 

remove ‘tested’ and modify this sentence carefully.

Minor-2 Response: 

Thanks for your kind suggestion. As the reviewer pointed, the vocabulary choice of ‘tested’ was 

misleading. We intended to describe that the first model was trained on K562 cell line (training 

from scratch), and the second model was fine-tuned on K562 cell line using its pre-trained 

version on MCF7 cell line. In the revised manuscript, we have modified the related sentences as 

following:

To this end, we adopted a two-step approach with CGMega. In the initial stage, CGMega 

was pretrained on the MCF7 cell line, allowing it to grasp fundamental patterns and 

characteristics prevalent in cancer genes. Following pre-training, we performed fine-

tuning on other cancers, enabling CGMega to adapt and fine-tune its learned 

representations to the specific context of those rare cancers. To assess the performance of 

transfer learning, we conducted tests on the non-pretrained CGMega (trained from 

scratch) and the pretrained CGMega using all labeled genes (597 positives and 1839 

negatives) in the K562 cell line.

Minor-Q3. In Figure S2b, it is interesting that the performance of the retrained CGMega does 

not exceed the pre-trained model. Can you explain more about this result?

Minor-3 Response: 

Sorry for our misleading description in the previous manuscript. We believe this confusion derives 

from the same source as the above comment (minor-Q2). After the description being corrected, the 

message we were meant to show actually will be ‘the model rained from scratch does not exceed 

the fine-tuned version of the model’, and this is in line with our expectations.



Minor-Q4. In Figure S2e, you show the results of CGMega with different positive:negative 

ratios, but none of the results are matched with the original CGMega in Figure 2e. What is the 

positive:negative ratio you used for the original CGMega?

Minor-4 Response: 

Thanks for reminding us to provide this detailed information in our manuscript. The collected 

dataset used for model training was highly imbalanced (positive:negative = 1:4 in MCF7 cell line). 

To prevent bias towards negative samples, we removed 50% of the negative samples, and finally 

trained CGMega on dataset with positivite:negative ratio of 1:2.2. We have added this 

information in the revised manuscript.

In Fig. S2e. to examine the robustness of our model to different positive-to-negative sample ratios, 

we conducted comparative experiments with different ratios. Although the generated datasets were 

imbalanced, CGMega’s performance remained relatively stable, indicating its robustness to 

variations in the positive-to-negative sample ratio.

Minor-Q5. Will CGMega still outperform the best baseline if you use different positive:negative 

training ratios (in Figure S2e) or different PPI databases (Figure S2f)?

Minor-5 Response: 

To address this concern, we performed methods comparison on different P:N ratios and different 

PPI databases.

As shown in Fig-8 for reviewer, when considering various positive and negative sample ratios, 

CGMega maintains its position as the SOTA method. MTGCN and EMOGI, which have designed 

to alleviate unbalanced sample distributions, also exhibit robustness against varying sample ratios. 

GAT, on the other hand, leverages self-attention mechanisms to mitigate the impact of imbalanced 

samples by effectively balancing the contributions of neighboring nodes. However, GCN appears 

to be more susceptible to the variations in sample ratios, showcasing the importance of handling 

sample imbalance effectively.



Fig-8 for reviewer

Next, we test methods on five different PPI datasets as used in Fig. S2f. As shown in Table-3 for 

reviewer, CGMega performed best in four PPI datasets except Multinet dataset. MTGCN surpasses 

CGMega when evaluated on Multinet, which contains the fewest PPIs exist in this dataset, resulting 

in a sparsity of 0.03% (83766/161652). This observation implies that CGMega excels at learning in 

dense network environments. MTGCN’s performance on Multinet may be due to its auxiliary task 

of PPI link prediction. MTGCN can utilize information from isolated nodes by incorporating a 

reconstruction loss.

Table-3 for reviewer

AURPC on different PPI datasets

PPI dataset CGMega MTGCN EMOGI GAT GCN

CPDB 0.9140 0.8290 0.7393 0.7752 0.6976

STRING 0.8953 0.8332 0.5304 0.8495 0.4955

iRef 0.8659 0.7451 0.6387 0.5919 0.5672

PCNet 0.8955 0.8462 0.8113 0.7340 0.7471

Multinet 0.8062 0.8545 0.6151 0.7037 0.5739
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Reviewer #1 (Remarks to the Author):

The authors addressed the comments and the manuscript is well improved.

Minor comment:

- The authors described the process of deciding the 10-fold thershold of representative features in 

the rebuttal. It would be better if it is briefly mentioned in the manuscript as well.

Reviewer #1 (Remarks on code availability):

Docker image and tutorial is provided to run the code with same system configuration as the 

authors used, and the code is well organized. It requires a GPU with a large memory (more than 

24GB) and the code itself is large (16GB) as well, which might be hard for individual users to run 

the code.

Reviewer #2 (Remarks to the Author):

The authors conducted a wide range of additional analyses and experiments. However, some of my 

concerns are still not adequately addressed.

In Response 2.4, the author said Figure 2 and S2 do not report cross-validation results. However, 

the descriptions in both the response and the revised manuscript suggest the implementation of 

cross-validation. It appears that the authors are referring to the validation fold as the "test set", 

which differs from the external test set that I recommended. Testing the model on an entirely 

separate dataset, in addition to partitioning a single dataset into training and test sets, is essential.

Response 2.7 addresses this to some extent by evaluating the model on a different cell line than 

the one utilised for training. Yet, the model demonstrates suboptimal performance without 

pretraining. The authors claimed this was due to the cell line being of another tissue type. It would 

then be important to test the model on another breast cancer cell line so that results are 

comparable.

I appreciate the additional comparison with MODIG as requested by the other reviewer. However, I 

don’t think the message is clearly reflected in the main text. Fig2 only shows MODIG performs 

poorly, while the detailed discussion written in the response should also be mentioned.

Is Table-3 for reviewer based on overlapping features? In the original table in the MODIG paper, 

the performance is a lot better than 0.5 AUC even when a small subset of the features were used. 

I suspect some configurations were not properly set for MODIG so the performance was so poor.

Regarding the comparison with MODIG, my primary concern is the apparent novelty of CGMega, 

which, as noted by the authors in Response 2.6, seems primarily linked to the utilisation of 

different omics. Similar to CGMega's employment of Hi-C features, MODIG incorporates alternative 

structural features. The improvement in prediction accuracy with the addition of more features (or 

modalities) is an anticipated outcome. Therefore, I believe that the utilisation of a specific type of 

feature, such as Hi-C features, cannot be deemed the main contribution, unless the Hi-C data are 

primary data or necessitate a novel method for their incorporation into the model. The way 

CGMega uses Hi-C data also seems quite standard.

Other minor points:

Fig S2h seems to be coloured by each column, which could look confusing when comparing row-

wise.

Reviewer #2 (Remarks on code availability):

NA



Reviewer #3 (Remarks to the Author):

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part of 

the Nature Communications initiative to facilitate training in peer review and appropriate 

recognition for co-reviewers.

Reviewer #4 (Remarks to the Author):

The authors have made extensive revisions with additional experiments, which are very 

impressive. But I still have one minor comment:

In Figure 5A for reviewer, is the result in the second row conducted with only ROCK2 inhibitor? If 

so, how to prove that the combination of both BRCA2 and ROCK2 inhibitors are effective using this 

figure?

Reviewer #4 (Remarks on code availability):

N/A



Reviewers' comments:

Reviewer #1 (Remarks to the Author):

The authors addressed the comments and the manuscript is well improved.

Response:

We thank the reviewer for his/her recognition of our effort in last revision.

Minor comment:

- The authors described the process of deciding the 10-fold threshold of representative features 

in the rebuttal. It would be better if it is briefly mentioned in the manuscript as well.

Response:

Thanks, and we have described this process in the Methods section of the revised manuscript.



Reviewer #2 (Remarks to the Author)

The authors conducted a wide range of additional analyses and experiments. However, some 

of my concerns are still not adequately addressed.

1. In Response 2.4, the author said Figure 2 and S2 do not report cross-validation results. 

However, the descriptions in both the response and the revised manuscript suggest the 

implementation of cross-validation. It appears that the authors are referring to the validation 

fold as the "test set", which differs from the external test set that I recommended. Testing the 

model on an entirely separate dataset, in addition to partitioning a single dataset into training 

and test sets, is essential.

2. Response 2.7 addresses this to some extent by evaluating the model on a different cell line 

than the one utilised for training. Yet, the model demonstrates suboptimal performance without 

pretraining. The authors claimed this was due to the cell line being of another tissue type. It 

would then be important to test the model on another breast cancer cell line so that results are 

comparable.

Response:

We understand the above two concerns about the model evaluation were from the construction and 

source of test sets. We incorporated these two questions to answer.

In our work, to conduct evaluation, we first constructed independent training set and test set as 

followings: 25% of the positive and negative genes were assigned to the test set while the remaining 

75% were used for training. Then, we performed a standard procedure referred to as k-fold 

cross-validation on the training set and make prediction on the test set.

Here is a brief summary of this procedure:

1.Dataset Division: The training set is divided into 'k' equal parts or 'folds'. In our case, k is set 

to 10.

2.Model Training & Validation: For each individual fold, the model is trained on the remaining 

'k-1' parts and validated on this leftover fold. This process is repeated 'k' times, such that each 

fold serves as the validation set once. This results in 'k' independently trained models.

3.Model Testing & Averaging: All 'k' models are then used to make predictions on the 

independent test set (the data that has never been exposed during the training process). The 

final prediction is the average of the predictions from all 'k' models, and was reported in Fig. 2 

and Fig. S2.



Also, we acknowledge the importance about model performance on another breast cancer cell line

as the reviewer pointed out. To test this, we collected additional Hi-C data and other omics data to 

construct new dataset for breast cell line, and ran CGMega on the new dataset. As shown in Table-

1 for reviewer, the results of CGMega were comparable on different datasets. Details about these 

two datasets were shown in Table-2 for reviewer. This result helps demonstrate the stable 

performance of CGMega.

Thanks for helping us refine our work, and we have added these results in our revised manuscript.

Table-1 for reviewer

CGMega performance across different breast cancer datasets

AUPRC AUROC ACC F1

Dataset-1 (Reported in the main text) 0.9140 0.9630 0.9216 0.8081

Dataset-2 0.9072 0.9627 0.9320 0.8272

Table-2 for reviewer

Data source of Dataset-1 and Dataset-2

Dataset-1 is used in CGMega original paper and Dataset-2 is newly constructed for comparison

Dataset-1 Dataset-2

H3K4me3
ENCODE project

ENCFF145CCI / ENCFF268RXB

ENCODE project

ENCFF078BWS / ENCFF251QQR

H3K27ac
ENCODE project

ENCFF340KSH / ENCFF491LQY

ENCODE project

ENCFF054VCV / ENCFF071XTD

ATAC-seq
ENCODE project

ENCFF821OEF

ENCODE project

ENCFF976UNK

CTCF
ENCODE project

ENCFF138LHE / ENCFF163JHE / ENCFF198YOJ

ENCODE project

ENCFF157EYO / ENCFF237BZX / ENCFF915BMD

CNV
TCGA project

530 Breast cancer samples

TCGA project

106 randomly selected Breast cancer samples

SNV
TCGA project

4 Breast cancer samples

TCGA project

2 randomly selected Breast cancer samples

Hi-C
Genome Biology, 2015

GSE66733

Nucleic Acids Research, 2021

GSE182306

3. I appreciate the additional comparison with MODIG as requested by the other reviewer. 

However, I don’t think the message is clearly reflected in the main text. Fig2 only shows MODIG 

performs poorly, while the detailed discussion written in the response should also be mentioned.

Response:

We appreciate the reviewer’s recognition of our effort in comparison with MODIG. According to 



the reviewer’s helpful advice, we have added the detailed results and discussion in our newly revised 

manuscript. 

4. Is Table-3 for reviewer based on overlapping features? In the original table in the MODIG 

paper, the performance is a lot better than 0.5 AUC even when a small subset of the features 

were used. I suspect some configurations were not properly set for MODIG so the performance 

was so poor.

Response:

We reported that the MODIG AUC achieved only 0.5001 with our dataset but in its original paper 

MODIG AUC was reported to achieve 0.8253. We understand such a difference raises the 

reviewer’s question that whether we used MODIG properly.

This big difference of MODIG AUCs mainly derived from different datasets, especially due to the 

labelled genes in each dataset. In the last version of our response, we have only briefly described 

that CGMega is developed for cancer-specific genes while MODIG is for pan-cancer genes, but did 

not describe such difference between cancer-specific genes and pan-cancer genes in detail. We 

evaluated CGMega on breast cancer dataset, which was constructed based on the Network of Cancer 

Genes (NCG), Cancer Gene Census (CGC) along with high-confidence (level # 0.95). There 

were distinct differences between breast cancer-specific genes and pan-cancer genes as 

MODIG used (Table-1 for reviewer). 

Moreover, to further clarify that we have configured MODIG properly, we performed addition 

ablation experiment for MODIG (See Table-3 for reviewer). This ablation experiment was 

performed on the pan-cancer dataset that MODIG used which includes 2983 pan-cancer genes. In 

Test-1, Test-3, Test-4, and Test-5, 1939 labelled genes were randomly selected to make a fair 

comparison as on data of breast cancer cell line. As shown in Table-4 for reviewer, we have 

reproduced MODIG performance (See last two columns), and we also observed effects of node 

features on MODIG performance.

Thanks for reminding us to discuss the difference of MODIG performance on our dataset and 

MODIG dataset, and we have added this discussion in our newly revised manuscript.

Table-3 for reviewer

Comparison of MODIG dataset and CGMega dataset

Pan-cancer genes

MODIG dataset

Breast cancer genes

CGMega dataset
Overlap

All labels 2983 1939 612



Positive labels 796 358 188

Negative labels 2187 1581 417

P : N ratio 1 : 2.7 1 : 4.4 1 : 2.2

Table-4 for reviewer

Performance of MODIG on different datasets

Input data
Test

1

Test

2

Test

3

Test

4

Test

5

Test

6

MODIG

paper

Number of labelled genes 1939 2983 1939 1939 1939 2983 2983

Node 

features

Somatic Mutation " " " " " " "

CNV " " " " " " "

DNA methylation - - " - " " "

Gene expression - - - " " " "

PPI " " " " " " "

MODIG AUROC 0.7603 0.7863 0.7812 0.7826 0.8001 0.8187 0.8243

5. Regarding the comparison with MODIG, my primary concern is the apparent novelty of 

CGMega, which, as noted by the authors in Response 2.6, seems primarily linked to the 

utilisation of different omics. Similar to CGMega's employment of Hi-C features, MODIG 

incorporates alternative structural features. The improvement in prediction accuracy with the 

addition of more features (or modalities) is an anticipated outcome. Therefore, I believe that 

the utilisation of a specific type of feature, such as Hi-C features, cannot be deemed the main 

contribution, unless the Hi-C data are primary data or necessitate a novel method for their 

incorporation into the model. The way CGMega uses Hi-C data also seems quite standard.

Response:

Actually as the reviewer pointed out, prediction accuracy will be improved when using additional 

biological features, this improvement was also observed in MODIG. However, Hi-C features is 

special compared to other features. First, Hi-C data have high dimension and low signal-to-noise 

ratio compared to other features such DNA sequence and ChIP-seq density. Second, Hi-C features 

are highly cell-type specific compared to other structural features such as PPI, GO, and Pathway. 

Third, chromatin structure information provides an independent view and is necessary to understand 

cancer mechanism (We have summarized this progress in a recent review, Junting Wang et al., 

Quantitative Biology, 2022). 

Together, employment of Hi-C features is not simple and there is no standard procedure has been 

provided so far. For example, we found that directly constructing a graph using contacts from Hi-C 





Reviewer #3 (Remarks to the Author)

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part 

of the Nature Communications initiative to facilitate training in peer review and appropriate 

recognition for co-reviewers.

Response:

We appreciate the time and energies that the reviewer poured into testing our framework. 



Reviewer #4 (Remarks to the Author)

The authors have made extensive revisions with additional experiments, which are very 

impressive. But I still have one minor comment:

Response:

We thank the reviewer for his/her recognition of our effort in last revision.

1. In Figure 5A for reviewer, is the result in the second row conducted with only ROCK2 

inhibitor? If so, how to prove that the combination of both BRCA2 and ROCK2 inhibitors are 

effective using this figure?

Response:

We are sorry for this unclear description in our last revision. The second row in Fig. 5A is the result 

with only ROCK inhibitor. We used this figure to show that ROCK2 protein level is repressed when 

treating with RKI-1447.

To test the effectiveness of combination of two inhibitors, we followed the general two-steps 

inhibitors combination experiments: First, we need to confirm that we have used the inhibitors in 

the right way. This can be done with Western Blot experiments to test whether the related protein 

have been repressed. Then, after this confirmation, we can test whether two inhibitors’ combination 

is effective to inhibit tumor cell proliferation.

Accordingly, in our work, we first treated MCF7 cell line with BRCA2 inhibitor olaparib and 

ROCK2 inhibitor RKI-1447, respectively. Western Blot results show that olaparib is effective to 

repress BRCA2 level (first row in Fig. 5A for reviewer) and RKI-1447 is effective to repress 

ROCK2 level (second row in Fig. 5A for reviewer). After confirming this, we then test the effect of 

these two inhibitors combination by utilizing Cell Counting Kit-8 (CCK-8) to determine the IC50, 

and our results showed that combining ROCK2 inhibitor could enhance the sensitivity of BRCA2 

inhibitor on MCF7 cells (Fig. 5C for reviewer).





Reviewer #2 (Remarks to the Author):

The authors have addressed all my concerns.

Reviewer #3 (Remarks to the Author):

My concerns have been addressed and I think the manuscript is ready to be published.

Reviewer #4 (Remarks to the Author):

The authors have explained the second row of Fig. 5A for reviewer clearly. However, when 

comparing Fig. 5B and Fig. 5C for reviewer, I can't be convinced about this claim made by the 

authors in the main text as well as the response letter: "IC50 value of inhibitors combination is 

lower than that of BRCA2 inhibitor alone, suggesting combining ROCK2 inhibitor could enhance the 

sensitivity of BRCA2 inhibitor on MCF7 cells."

First, the treatments with combination drugs lead to only slight lower IC50 than using Olaparib 

alone. I wonder if this difference can be significant and robust, not mention clinically effective.

Secondly, for the two left-most plots (24 hr), the combination treatment has slightly more 

significant lower IC50 and slope than using only Olaparib. However, the left-most figure of Fig. 5B 

(for reviewer) is a bit misleading. The highest value of vertical bar should be 80 like other plots, 

rather than 60 which would make the slope more steep. It is also suspecious that the starting IC50 

value of the left-most plot of Fig. 5B is much lower than 20, which also makes the curve look more 

steep.

Overall, the signals in comparing the two rows of plots are not strong enough to support the main 

conclusion that the drug combination leads to lower IC50. The authors need to double check the 

experimental results, and give some clarification and discussion.

Reviewer #4 (Remarks on code availability):

N/A



Reviewers' comments:

Reviewer #4 (Remarks to the Author):

The authors have explained the second row of Fig. 5A for reviewer clearly. However, when

comparing Fig. 5B and Fig. 5C for reviewer, I can't be convinced about this claim made by the

authors in the main text as well as the response letter: "IC50 value of inhibitors combination is

lower than that of BRCA2 inhibitor alone, suggesting combining ROCK2 inhibitor could

enhance the sensitivity of BRCA2 inhibitor on MCF7 cells."

First, the treatments with combination drugs lead to only slight lower IC50 than using Olaparib

alone. I wonder if this difference can be significant and robust, not mention clinically effective.

Secondly, for the two left-most plots (24 hr), the combination treatment has slightly more

significant lower IC50 and slope than using only Olaparib. However, the left-most figure of Fig.

5B (for reviewer) is a bit misleading. The highest value of vertical bar should be 80 like other

plots, rather than 60 which would make the slope more steep. It is also suspecious that the

starting IC50 value of the left-most plot of Fig. 5B is much lower than 20, which also makes the

curve look more steep.

Overall, the signals in comparing the two rows of plots are not strong enough to support the

main conclusion that the drug combination leads to lower IC50. The authors need to double

check the experimental results, and give some clarification and discussion.

Response:

Thanks for pointing out the misleading figure of drug combination treatment. To address these

concerns, we have revised the figure, added statistical analysis, and made rigorous claims as

follows:

First, we have revised the range of vertical bar to fairly show the inhibition of different treatments

(Fig. 1A for reviewer). As described in Methods of our manuscript, we repeated drug (or drugs

combination) treatment experiments three times under 8 inhibitor dose points. The IC50 and

HillSlope values were calculated using GraphPad Prism, a software using for statistical analysis and

graphical visualization. This calculation was done on LOG concentration values, and thus the

starting value was calculated with 1 nM/L concentration (which is 0 with LOG operation). In this

experiment, IC50 is the estimated concentration when the inhibition rate is 50%, and low IC50 value

represents high inhibitor sensitivity. Moreover, we examined the difference in inhibition rates

between these two conditions (Fig. 1B for reviewer). After 24 hr olaparib/RKI-1447 combination

treatment, IC50 value decreased from 6.437 to 5.418 and the inhibition rates were overall high

compared to treated with olaparib alone. But this difference was slight after 48 hr and 72 hr



treatments.

Fig. 1 for reviewer

Then, we performed statistical analysis using GraphPad Prism to test whether the difference of

inhibition rates is significant. For each of the 8 inhibitor doses, the mean inhibition rate was

calculated based on three repeats data, generating a paired-sample dataset containing both the

inhibition rates of olaparib alone and olaparib/RKI-1447 combination under different doses. Then,

a paired t-test was performed on this paired dataset. As shown in Fig. 2 for reviewer (a statistical

representation of Fig. 1B for reviewer, and we used this plot in our revised manuscript), the

inhibition rates of olaparib combined with RKI-1447 is significantly higher than that of olaparib

alone after 24 hr treatment (p value = 0.0023). But it was comparable between two groups after 48

hr and 72 hr treatment. In addition, as the reviewer pointed out, the starting value of the upper left-

most plot of Fig. 1A for reviewer is much lower than 20, which may affect the significance. Although

this value was the real observation of the low-dose (1 nM/L, which is 0 with LOG operation)

olaparib treatment experiments, we still test the significance of removing this dose point (that is,

using data from another 7 inhibitor doses instead of 8 inhibitor doses), and the difference remains
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significant (p value was 0.0030).

Fig. 2 for reviewer

Together, above results showed that olaparib/RKI-1447 combination was more effective than using

olaparib alone in inhibiting MCF7 tumor cells after 24 hr treatment, suggesting a potential strategy

for enhancing BRCA2 inhibitor sensitivity. However, more experiments with finer time intervals

and inevitably laborious work are required to investigate what is the best effective time of

olaparib/RKI-1447 combination and why this effect of olaparib/RKI-1447 combination disappears

after 48 hr.

According to the helpful advice from the reviewer and our new results, we have revised our claims

more rigorously:

Previous version: “IC50 value of inhibitors combination is lower than that of BRCA2 inhibitor

alone, suggesting combining ROCK2 inhibitor could enhance the sensitivity of BRCA2

inhibitor on MCF7 cells”

Current version: “IC50 value of inhibitors combination was lower than that of BRCA2 inhibitor

alone. Moreover, the inhibition rates of olaparib combined with RKI-1447 were significantly

higher than those of olaparib alone after 24hr treatment (p value = 0.0023, paired t-test). But

it was comparable between two groups after 48hr and 72hr treatment. These results showed

that the combination of BRCA2 and ROCK2 inhibitors was more effective than using BRCA2

inhibitor alone in inhibiting MCF7 tumor cells after 24 hr treatment, suggesting a potential

strategy for enhancing BRCA2 inhibitor sensitivity.”

Also, we have added new discussion in our revised manuscript as “Combination of ROCK2 inhibitor

RKI-1447 provides a potential strategy for enhancing BRCA2 inhibitor sensitivity, but more

experiments are required to investigate what is the best effective time of olaparib/RKI-1447

combination and why this effect of olaparib/RKI-1447 combination disappears after 48 hr.”

All the above analysis and discussion have been added into our revised manuscript, and we truly

appreciate the efforts from the reviewer to help improve our work.
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Reviewer #4 (Remarks to the Author):

The authors' response is neat. I have no more comment. Thanks.

Reviewer #4 (Remarks on code availability):

N/A


