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Supplementary Note 1 

OmicVerse is a unified resource for bulk-seq and single cell RNA-seq 

data analysis 

OmicVerse serves as a comprehensive resource for the analysis of both bulk-seq 
and single-cell RNA-seq data. The bulk RNA-seq analysis pipeline involves several 
essential steps. Initially, the data needs to be prepared in a raw matrix format (TPM or 
FPKM), which can be in txt, csv, tsv, or excel format. Subsequently, a meta matrix is 
required to label the sample features for subsequent analysis. OmicVerse offers a variety 
of data cleaning methods, including Deseq2 normalization1, gene ID conversion, 
duplicate removal, and sample quality control2. Finally, OmicVerse facilitates 
downstream analysis such as differential expression analysis (pyDEG1), pathway 
enrichment analysis (pyGSEA3), weighted gene co-expression module construction 
(pyWGCNA4), protein interaction network analysis (pyPPI5), and bulk-seq to single-
seq transformation (bulk2single6). 

Similarly, the single-cell RNA-seq analysis pipeline consists of several steps. 
Initially, the data is organized within a data object using Scanpy7 packages. OmicVerse 
provides a convenient function that automates normalization, scaling, log2 
transformation, high variable gene filtering, dimensionality reduction, and differential 
expression analysis. Based on the results of pre-processed benchmark tests, omicverse 
provides a normalisation based on pearson residuals with highly variable gene 
extraction methods and optimises the logic of the scaled, progressive functions8. For 
more details please refer to our tutorial at 
https://omicverse.readthedocs.io/en/latest/Tutorials-single/t_preprocess/ . Additionally, 
OmicVerse currently implements models for various downstream analyses, including 
batch correction to integrate several samples (pyHarmony9, pyCombat10, scanorama11), 
automatic cell-type annotation (pySCSA12), trajectory inference (pyVIA13, scLTNN14), 
pathway enrichment (pyGSEA3, AUCell15), cell-cell interaction (CellPhoneDB16), 
factor analysis (pyMOFA17), single to spatial transformation (single2spatial6), metacell 
analysis (SEACells18) and drug response prediction (scDrug19). 

Each model in OmicVerse is equipped with a simple and consistent application 
programming interface (API). These models rely on the pandas and AnnData formats 
to perform the analysis, allowing easy integration with Scanpy and scvi-tools 
20workflows. This seamless integration enables users to leverage the wider Python 
community for both single-cell RNA-seq and bulk RNA-seq analyses.  
  



Supplementary Note 2 

BulkTrajBlend reconstruction of mouse dentate gyrus neurons 

To assess the effectiveness of BulkTrajBlend in generating "omitted" cells, we 
conducted an analysis utilizing single-cell RNA sequencing (scRNA-seq) data acquired 
from the dentate gyrus of the hippocampus in mice, in conjunction with bulk RNA-seq 
data. Within the single-cell data, we initially observed a neural differentiation trajectory 
spanning from neuronal intermediate progenitor cells (nIPC) to neuroblast to Granule 
immature to Granule mature. Interestingly, other cell types were seemingly 
disconnected from the nIPC trajectory, as illustrated in Supplementary Fig. 1g. A 
previous study had identified two distinct lineages, namely the nIPC to cortical 
projection neuron (CPN) and glial intermediate progenitor cell (gIPC) to 
oligodendrocyte progenitor cell (OPC) lineages21. Our primary objective was to 
validate the nIPC differentiation trajectory by linking OPC cells to nIPC cells within 
the "omission" single-cell data. 

Leveraging the capabilities of BulkTrajBlend, we initiated the deconvolution of the 
single-cell data, which consisted of 13 distinct cell types, using the bulk RNA-seq data 
from the dentate gyrus. We also filter out noisy subpopulations with unsupervised 
clustering. In the generated single cell profile, cell types that exhibited high expression 
patterns similar to those observed in the marker genes from the original single-cell 
profile, as evident in Supplementary Fig. 1a and Fig. 1b, respectively. 

Subsequently, BulkTrajBlend quantified the overlap of cell types in the generated 
single-cell data using GNN-based Neural Overlapping Community Detection (NOCD), 
visually represented in the form of an adjacency matrix within a heatmap, as seen in 
Supplementary Fig. 1c and 1d. Within this generated single-cell data, we further 
characterized the overlapping cell community and specifically focused on the single-
cell profile where OPCs were associated with nIPC in overlapping cell community, as 
depicted in Supplementary Fig. 1e-1f. 

To assess false positives of predicted cells, we introduced the error overlap rate as 
a judgement of false positives of predicted cells, which is based on the following 
assumptions: 

1, we assumed that a particular type of cell deconvolved from Bulk has a steady 
state, and its particular cell in a non-steady state is regarded as a transition cell 

2, We assume that the transition cells have the characteristics of both types of cells 
and are seen as overlapping communities in terms of community, and that this fraction 
of transition cells can be captured using the GNN. 

We define False Overlap Rate (FOR) as the judgement of false positive rate, 
defined as follows: if the overlapping community OC, in which a certain type of cell is 
located, is not contained in his unique original community UC, we denote it as False 
Overlap FO, and the formula of False Overlap Rate FOR is defined as follows: 
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We found that the FOR of nIPC, Cck-TOX, and Neuroblast is higher than 0.3, while 
the OPC we used for interpolation is 0.21, indicating that wrongly overlapping cells 
only account for 20% of the overlapping communities, which we used for back-
interpolation (Supplementary Fig.1g). 

We then seamlessly integrated this selected data into the original single-cell data 
from the dentate gyrus. Remarkably, our analysis revealed that the OPCs in the 
integrated scRNA-seq data of the dentate gyrus were positioned on the differentiated 
branch of nIPC, as illustrated in Supplementary Fig. 1h-1i. This intriguing observation 
demonstrated the efficacy of BulkTrajBlend in generating a continuous cell trajectory, 
successfully addressing the challenge of "omitted" cells within the data. 

This analysis not only underscores the power of BulkTrajBlend but also contributes 
to a deeper understanding of the cellular dynamics and differentiation processes in the 
dentate gyrus. 

 

 

Supplementary Fig 1 | Application of BulkTrajBlend in Dentate Gyrus Neurogenesis.  
(a) - Number of Cell Types in scRNA-seq Data Generated from Bulk RNA-seq using BulkTrajBlend. 
(b) - Pairwise Expression Correlation of Cell-Type-Specific Marker Genes between Single Cells 
Generated by BulkTrajBlend and the Single-Cell Reference for Dentate Gyrus Neurogenesis. 
(c) - Distribution of Overlapping Cell Communities in scRNA-seq Data Generated. 
(d) - Heatmap displaying each cell's assignment to different cell communities in the adjacency matrix 



obtained from Graph Neural Networks (GNN). 
(e) - UMAP Visualization of Cell Types in scRNA-seq Data before (left panel) and after (right panel) 
noisy filtered. 
(f) - UMAP Visualization of Overlapping Cell Type Communities in scRNA-seq Data Generated. 
(g) - False Overlap Rate in generated cell types, NaN represents the absence of major cell clusters 
of such cells in overlapping communities  
(h) - Force-Directed Graph Comparison between Raw scRNA-seq (Upper) and Interpolated scRNA-
seq (Bottom) Data for Dentate Gyrus Neurogenesis, Color-Coded by Cell Type. 
(i) - Pseudo-time Analysis of Raw scRNA-seq (Upper) and Interpolated scRNA-seq (Bottom) Data for 
Dentate Gyrus Neurogenesis. 



Systematic benchmarking of interpolation performance 

 
Supplementary Fig 2 | Assessment of Similarity in Generated Single-Cell Profiles and Raw Single-Cell 
Profiles 
(a) - Correlation of Expression Trends of Marker Genes in Reference Single Cells between the 
Reference Single-Cell Profile and the Generated Single-Cell Profile. The upper panel represents the 
Dentate Gyrus profile, and the lower panel represents the Hematopoietic profile. From left to right, the 
methods examined are CGAN, ACGAN, and BulkTrajBlend. 
(b) - Similarity Analysis of Marker Genes in the Reference Single-Cell Profile and Marker Genes in the 
Generated Single-Cell Profile. The upper panel represents the Dentate Gyrus profile, and the lower 
panel represents the Hematopoietic profile. From left to right, the methods assessed are CGAN, 



ACGAN, and BulkTrajBlend. 

 

Supplementary Fig 3 | Training Process of Generation Models 
(a) - Discriminator Loss on the Dentate Gyrus Dataset, where the horizontal axis represents training 
epochs, and the vertical axis represents training losses. The methods presented from left to right are 
CGAN and ACGAN. 
(b) - Generator Losses on the Dentate Gyrus Dataset. The methods presented from left to right are CGAN 
and ACGAN. 
(c) - Beta-VAE Loss on the Dentate Gyrus Dataset. 



(d) - Discriminator Loss on the Hematopoietic Dataset, with the horizontal axis representing training 
epochs. The methods presented from left to right are CGAN and ACGAN. 
(e) - Generator Losses on the Hematopoietic Dataset. The methods presented from left to right are CGAN 
and ACGAN. 
(f) - Beta-VAE Loss on the Hematopoietic Dataset.. 

 

Supplementary Fig 4 | UMAP Visualization of Single-Cell RNA Sequencing (scRNA-seq) Data 
(a) - UMAP plots illustrating the flow trend of cell developmental trajectories for neural progenitor cells 
(nIPC) within the Dentate Gyrus. Representations are provided for the RAW, CGAN, ACGAN, and 
BulkTrajBlend methods. 
(b) - UMAP plots illustrating the flow trend of cell developmental trajectories for hematopoietic stem 
cells (HSC) within the Hematopoietic system. Data is presented for the RAW, CGAN, ACGAN, and 
BulkTrajBlend methods. 
(c) - Directed Cell State Transfer Graph within the Trajectory of the PAGA Graph for the Dentate Gyrus. 
Results are displayed for the RAW, CGAN, ACGAN, and BulkTrajBlend approaches. 
(d) - Directed Cell State Transfer Graph within the Trajectory of the PAGA Graph for the Hematopoietic 
System. Findings are showcased for the RAW, CGAN, ACGAN, and BulkTrajBlend methodologies. 



  



Supplementary Note 3 

BulkTrajBlend Efficiently Reconstructs Cell Developmental Trajectories 

in simulated single-cell profile 

 

Supplementary Fig 5 | UMAP Visualization and Directed Graphs of Dentate Gyrus and Bone Marrow 
scRNA-seq Data 



(a-c) - Velocity stream representations from left to right: (a) raw Dentate Gyrus dataset, (b) dataset with 
simulated cell dropouts, and (c) dataset interpolated with BulkTrajBlend to address dropouts estimated 
by pyVIA. The UMAP embedding is color-coded by cell type based on original cluster annotations. 
(d-f) - Superimposed directed graphs on the UMAP embedding from left to right: (d) raw Dentate Gyrus 
dataset, (e) dataset with simulated cell dropouts, and (f) dataset interpolated with BulkTrajBlend to 
handle dropouts estimated by pyVIA. 
(g-i) - Velocity stream visualizations from left to right: (g) raw Bone Marrow dataset, (h) dataset with 
simulated cell dropouts, and (i) dataset interpolated with BulkTrajBlend to mitigate dropouts estimated 
by pyVIA. The UMAP embedding is color-coded by cell type following the original cluster annotations. 
(j-l) - Overlay of directed graphs onto the UMAP embedding from left to right: (j) raw Bone Marrow 
dataset, (k) dataset with simulated cell dropouts, and (l) dataset interpolated with BulkTrajBlend to 
address dropouts estimated by pyVIA. 
 

 

 
Supplementary Fig 6 | Analysis of Transition Confidence in scRNA-seq Data 
(a-c) - Pancreas Dataset: Transition confidence analysis for the raw dataset, simulated cell dropouts, and 
BulkTrajBlend interpolation. The color scheme reflects the confidence values. 
(d-f) - Bone Marrow Dataset: Transition confidence analysis for the raw dataset, simulated dropouts, and 
BulkTrajBlend interpolation. 
(g-i) - Dentate Gyrus Dataset: Transition confidence analysis for the raw dataset, simulated cell dropouts, 
and BulkTrajBlend interpolation. 
 



Supplementary Note 4 

OmicVerse provides a comprehensive analysis platform for bulk RNA-

seq data. 

Bulk RNA sequencing is widely used for transcriptomic analysis of pooled cell 
populations, tissue sections, or biopsies2. While it is commonly employed to measure 
gene expression patterns, isoform expression, alternative splicing, and single-
nucleotide polymorphisms, RNA-seq contains additional valuable biological 
information. This includes details on copy number alterations, microbial contamination, 
transposable elements, cell type deconvolution, and the presence of neoantigens. 
Recent advancements in bioinformatic algorithms have made it possible to extract this 
information from bulk RNA-seq data, expanding its scope. 

Methods 

The dataset related to Alzheimer's disease, as previously described in a Nature Genetics 
publication, was obtained from the Gene Expression Omnibus (Accession ID: 
GSE174367). Associated metadata were also retrieved from the National Center for 
Biotechnology Information (NCBI) using the same Accession ID. To preprocess the 
bulk RNA-seq data, we performed two crucial steps: (1) the removal of duplicate gene 
IDs and (2) data normalization followed by logarithmic transformation. Within the 
metadata, we classified the samples into two groups: 'Normal - No Pathology Detected' 
as the control group and 'Alzheimer's disease' as the treatment group. This classification 
was stored in the `Neuropath.Dx.1` field of the metadata. The control group consisted 
of 8 samples, while the treatment group comprised 44 samples. 

To visualize the similarity between samples, we employed Principal Component 
Analysis (PCA). This analysis allowed us to calculate Pearson correlation coefficients. 

In the pyDEG analysis, we specified the following parameters: a fold change 
threshold of 0.15, a p-value threshold of 0.05, and the utilization of DESeq2 
normalization to mitigate batch effects. The ` omicverse.bulk.pyDEG.plot_volcano` 
and ` omicverse.bulk.pyDEG.plot_boxplot` functions were used to visualize the 
differentially expressed genes. Specifically, the top 10 genes with the highest fold 
changes were selected and displayed in the boxplot. 

For the pyGSEA analysis, we employed all 16,504 genes as input and employed 
the WikiPathway 2021 gene set (available at https://maayanlab.cloud/Enrichr/#libraries, 
under the name WikiPathway_2021_Human). The genes were ranked based on the 
metric (-log10(p-value)/sign(log2FC)). In addition, we set the `fraction` as 
matched_size/geneset_size, `num` as matched_size, and `log` as -log10(fdr+0.0001). 
To visualize the pyGSEA results, the ` omicverse.bulk.geneset_plot` function was 
applied. 

In the pyWGCNA analysis, the genes' Median Absolute Deviation (MAD) was 



calculated using the `statsmodels.robust.mad` method, and the top 5,000 genes with the 
highest MAD values were selected to construct co-expression modules. Default 
parameters were used throughout the analysis. The soft threshold for calculating the co-
expression network was set to 5, resulting in the identification of a total of 12 modules 
using the dynamiccuttree approach. We further calculated the Differential Expression 
Gene (DEG) rate for each module, defined as the number of differentially expressed 
genes in a module divided by the total number of modules. Module 4 displayed the 
highest DEG rate, and we identified the gene of interest, APP, within module 5. 
Visualizations of these two modules were created using the `plot_sub_network` 
function. 

All of the aforementioned analyses were conducted on a computer equipped with 
an NVIDIA GeForce RTX 2080Ti GPU. 
  



Supplementary Note 5 

OmicVerse provides a multi-type pipeline for single-cell RNA-seq 

analysis 

 
Supplementary Fig 7 | Training Process and Analysis of Metacells 



(a) - Distribution of cell type purity, indicating the frequency of the most represented cell type within 
each metacell. Higher purity signifies a more accurate metacell. The boxes and lines represent the 
interquartile range (IQR) and median, respectively, while the whiskers extend up to ±1.5 times the IQR. 
Metacell compactness (average diffusion component standard deviation) and separation (distance 
between the nearest metacell neighbor in diffusion space; see Methods) are assessed in the CRC single-
cell profile. 
(b) - Reconstruction error of the CRC data matrix for all cells. 
(c) - UMAP plot illustrating single-cell RNA sequencing (scRNA-seq) data of metacells in the CRC, 
color-coded by cell type annotations. 
(d) - UMAP plot representing CRC data and color-coded by pathway enrichment AUCell scores (B cell 
receptor signaling pathway on the left, T cell receptor signaling pathway on the right). 
(e) - Distribution of cell type purity, metacell compactness, and separation in the epithelial CRC profile. 
(f) - UMAP visualization highlighting metacells in the raw CRC data. 
(g) - UMAP plot illustrating single-cell RNA sequencing data of metacells in the CRC, color-coded by 
automated annotation of cancer cell subpopulations by pySCSA. 
(h) - UMAP plot illustrating the differentiation trajectory of metacells in the CRC profile. 
(i) - Cell state transfer directed graph within the trajectory of the PAGA graph in the CRC. 

Methods 

The colorectal cancer dataset, corresponding to single-cell RNA sequencing (scRNA-
seq) data, was sourced from the Gene Expression Omnibus (Accession ID: 
GSE178318), as initially reported in a Nature Genetics publication. Associated 
metadata were likewise collected from the National Center for Biotechnology 
Information (NCBI) using the same Accession ID. The scRNA-seq data underwent 
several preprocessing steps. Firstly, low-abundance genes were filtered 
(min_genes=200), and cells with low expression (min_cells=3) were identified for 
subsequent filtering. Additionally, a double-cell filtering process was implemented. 
Following this initial filtering, the data underwent normalization, logarithmic 
transformation to ensure suitability for downstream analyses. 

During the cell annotation process, the 'leiden' algorithm was employed for 
clustering. For the cell type annotation with pySCSA, the 'celltype' was set as 'cancer,' 
the 'target' as 'cellmarker,' and the 'tissue' as 'All.' In cases where manual annotation was 
required, cell markers were sourced from references17, specifically chosen for their 
relevance to colorectal cancer (CRC). To evaluate the performance of the pySCSA 
annotation, cells of the same types were merged to match the manual annotation process. 
The F1 score was computed using 'from sklearn.metrics import f1_score' to assess the 
annotation quality. 

In the pathway (genesets) enrichment analysis, we selected T cell/B cell receptor 
signaling pathway from the KEGG database. The `omicverse.single.geneset_aucell` 
was used to calculate the geneset score in all CRC cells. 

As for the metacell analysis, we used ` omicverse.single.SEACells` to train the 
metacell prediction model from the CRC single-cell data file and used 
`summarize_by_soft_SEACell`, setting the cell type as a parameter. After acquiring the 



metacells, we also performed pathway enrichment analysis in the same way as before. 
We also analysed cancer cell subpopulations, we first extracted epithelial cells and 
cancer stem cells from all cells of the CRC, a total of 11,410 cells. We then used 
PySCSA again for automatic annotation, except this time our `target` parameter was set 
to `cancersea`. And in the trajectory analysis module, pyVIA was used to infer the 
trajectory of cancer cells, the 'adata_key' was set as 'X_pca,' the 'basis' as 'X_umap,' and 
the start point was designated as 'Stemness.' We also used the same metacellular 
approach as above for cancer cells, and we used pyVIA for trajectory inference with the 
same parameters for metacells as well. 

In the context of predicting cell interactions, a subset of 14,000 cells was randomly 
selected from the raw data and used to train a model employing the 
'cpdb_statistical_analysis_method’ of CellPhoneDB. The training parameters were 
configured with 'iterations' set to 1000 and a 'threshold' of 0.1. 

All of the aforementioned analyses were conducted on a computer equipped with 
an NVIDIA GeForce RTX 2080Ti GPU. 

 
  



Supplementary Note 6 

OmicVerse performed multi-omics factor analysis with MOFA and 

GLUE 

 

 
Supplementary Fig 8 | Analysis of Cell Type Variability Using Source Features and Factors 
(a) - UMAP embedding illustrating the inferred MOFA factors, where green represents variability derived 
from positive factor values, and purple represents variability derived from negative factor values. 
(b) - Graph displaying the influence of two factors on the source of cell type variability. Each point 
represents an individual cell, with the horizontal and vertical coordinates indicating the factor values for 
each cell. 
(c) - Co-weight plot of weighted genes for each of the two factors. Each point represents a gene, and the 
horizontal and vertical coordinates illustrate the weight of a gene on each of the two factors. 

Methods 

The data utilized in this study encompassed unpaired single-nucleus RNA sequencing 
(snRNA-seq) along with single-nucleus Assay for Transposase-Accessible Chromatin 
using sequencing (snATAC-seq), which was procured from the Gene Expression 
Omnibus (Accession ID: GSE174367). 

For the snRNA-seq data, we undertook a series of preprocessing steps. This 
entailed normalizing, logging, and scaling the data to ensure uniformity and 
compatibility for subsequent analysis. We then employed Seurat version 3 (seurat_v3) 
to identify the top 2000 highly variable genes. Additionally, the top 100 principal 
component analysis (PCA) embeddings were calculated to capture essential features. 
 



In parallel, the snATAC-seq data underwent a low-expression filter. To facilitate 
integration, we leveraged the GLUE framework's graph linkage method to transfer the 
highly variable genes from the snRNA-seq data to the snATAC-seq dataset. The 
embedding features of cells were derived using latent semantic analysis (LSI). 

A critical aspect of our analysis was the construction of a GLUE model, utilizing 
the original expression matrices from RNA and ATAC data. This model allowed us to 
capture the relationship between these two data modalities. All preprocessed and 
analysis step could be found in https://scglue.readthedocs.io/. 

Subsequently, GLUE embedding features (`X_glue` stored in .obsm) were 
calculated for each cell within the snRNA-seq and snATAC-seq histological layers. To 
connect cells across these layers, we employed `omicverse.single.GLUE_pair` method. 
Paired cells were used to construct a multi-omics factor analysis (MOFA) model, 
utilizing `omicverse.single.pyMOFA`. This facilitated the integration and exploration 
of data across modalities, further enhancing our understanding. 

To enhance the visualization of our findings, we conducted a downstream 
exploration analysis of the MOFA model employing `omicverse.single.pyMOFAART`. 

Throughout these analyses, default parameters were utilized. All computational 
processes were executed on a computer equipped with an NVIDIA GeForce RTX 
2080Ti GPU, enabling efficient processing and data integration. 
  



Supplementary Note 7 

Omicverse has a comprehensive and well-established ecosystem in RNA-

seq 

The accompanying overview Supplementary figure 9 presents the various stages of the 
RNA-seq analysis and highlights differences between popular frameworks used for this 
purpose. omicverse has the same well-established ecosystem for scRNA-seq analysis 
as seurat, which makes up for the analysis of advanced functions in scanpy, such as 
automatic annotation of cell types, gene perturbation analysis, cellular interaction 
analysis, and drug response prediction. In addition, unlike the seurat and scanpy 
ecosystems, omicverse has a unique Bulk RNA-seq analysis system. 

 
Supplementary Fig 9 | Overview of the RNA-seq analysis ecosystem. Python: scanpy and omicverse, R: 

Data reading

Start from count matrices ✓ ✓ ✓

Quality control QC metrices ✓ ✓ ✓

Doublet removal ✓ ✓ ✓

Highly Variable Gene Calculating seurat_v3|pearsonr seurat seurat_v3|pearsonr

Dimensionality reduction principal component analysis ✓ ✓ ✓

Latent Dirichlet Allocation (LDA) ✗ ✓ ✓

Visualization UMAP/TSNE UMAP/TSNE UMAP/TSNE/MDE

Annotation
Clustering Leiden/Louvain Leiden/Louvain Leiden/Louvain/

GaussianMixture

Find Marker T test/Wilcoxon
Wilcoxon/logistic 

regression/
ROC/DESeq2

T-test/Wilcoxon 
/DESeq2/COSG

Celltype automatically identity ✗ ✗ pySCSA/MetaTiME/
Celltypist

Data integration Batch correction Harmony/pyCombat/
FastMNN

CCA/RPCA/
Harmony/FastMNN

Harmony/pyCombat/scan
orama/SIMBA/scVI/Mira

Integration with scATAC-seq ✗ ✓ ✓

Metacells/pseudobulk ✗ ✓ ✓

Interpolation from Bulk RNA-seq ✗ ✗ ✓

Deconvolution Bulk RNA-seq ✗ ✗ ✓

Trajectory inference
Diffusion map ✓ ✓ ✓

Pseudotime Calculated PAGA graph monocle3 pyVIA/Palantir

Gene perturbation analysis ✗ ✗ ✓(using celloracle)

Cell structure
Cell interaction ✗ ✗ ✓(using CellPhoneDB)

Geneset score ✓ ✓ ✓

Drug Response predicted ✗ ✗ ✓(using scDrug)Cluster
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Seurat.  
For Seurat: "Seurat is an open-source R toolkit for single-cell RNA-seq data analysis, available under 
the MIT License (https://github.com/satijalab/seurat)." 
For Scanpy: "Scanpy is an open-source Python library for single-cell gene expression data analysis, 
available under the BSD-3 License (https://github.com/theislab/scanpy)." 
 

Data availability 

All processed data in this manuscript are available at 
https://github.com/Starlitnightly/omicverse-reproducibility. 

Code availability 

The code to reproduce the experiments of this manuscript is available at 
https://github.com/Starlitnightly/omicverse-reproducibility. The omicverse package 
can be found on GitHub at https://github.com/Starlitnightly/omicverse . Documentation 
and tutorials can be found at https://omicverse.readthedocs.io. 
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