Specific Glycine Dependent Enzyme Motion Determines the Potency of Conformation Selective Inhibitors of Threonyl-tRNA Synthetase

Hang Qiao^{1,#}, Zilu Wang^{1,#}, Hao Yang^{2,#}, Mingyu Xia¹, Guang Yang³, Fang Bai^{2,4,5*}, Jing Wang^{1,3*}, Pengfei Fang^{1,3,6*}

CONTENTS

I. Legends for Supplementary Movies	3
II. Supplementary Tables	4
Supplementary Table 1	4
Supplementary Table 2	5
Supplementary Table 3	6
Supplementary Table 4	7
Supplementary Table 5	8
III. Supplementary Figures	9
Supplementary Figure 1	9
Supplementary Figure 2	11
Supplementary Figure 3	13
Supplementary Figure 4	14
Supplementary Figure 5	15
Supplementary Figure 6	16
Supplementary Figure 7	17
Supplementary Figure 8	18
Supplementary Figure 9	19
Supplementary Figure 10	20
Supplementary Figure 11	21
Supplementary Figure 12	22
Supplementary Figure 13	23
Supplementary Figure 14	24

Supplementary Figure 15	25
Supplementary Figure 16	26
Supplementary Figure 17	27
IV. Supplementary Note 1	28
Key resources table	28
Coding sequence of <i>Ec</i> ThrRS_WT	31
Protein sequence of <i>Ec</i> ThrRS_WT	31
Coding sequence of ObaO_WT	32
Protein sequence of ObaO_WT	32
Abbreviations	33
V. Supplementary References	34

I. Legends for Supplementary Movies

Supplementary Movie 1

This movie shows the different dynamic behaviours of *Ec*ThrRS_WT (shown as blue ribbon) and G463S (shown as light cyan ribbon) compared to a static *apo* state structure (shown as pink ribbon). Residues 422–448 are highlighted in red. During MD simulation, the WT underwent larger conformational changes, while the G463S tended to remain in a closed state and move within a smaller range.

Supplementary Movie 2

This movie shows the proposed binding process of OB to *Ec*ThrRS_WT. *Ec*ThrRS_WT undergoes larger conformational changes, which allow OB to bind the tRNA site instead of the ATP site to form a covalent bond with Tyr462 and prevent ThrRS from binding ATP. The *Ec*ThrRS_G463A–OB (PDB code: 8WII) and *Ec*ThrRS_WT–OB (PDB code: 8H98) complex structures were used as models for morph operation. This movie was prepared with ChimeraX (https://www.cgl.ucsf.edu/chimerax).

Supplementary Movie 3

This movie shows the proposed unstable binding of OB to EcThrRS_G463A. Because the structure of this mutant is relatively rigid, OB cannot reach the tRNA A76 binding site. When it binds to ThrRS's ATP site, it can be competed out by ATP. The *Ec*ThrRS_G463A–OB (PDB code: 8WII) and EcThrRS_G463A–ATP (PDB code: 8WIH) complex structures were used as models for morph operation. This movie was prepared with ChimeraX (https://www.cgl.ucsf.edu/chimerax).

II. Supplementary Tables

	EcThrRS_G463S
PDB code	8WIA
Data collection	
Space group	P2 ₁ 2 ₁ 2 ₁
Cell dimensions	
a, b, c (Å)	90.96, 107.41, 112.80
α, β, γ (°)	90.00, 90.00, 90.00
Resolution (Å)	42.18-1.96 (2.03-1.96)*
R _{sym} or R _{merge} (%)	8.9 (92.2)
l/sl	12.9 (2.5)
Completeness (%)	97.2 (99.9)
Redundancy	7.3 (7.5)
Refinement	
No. reflections	77735 (7919)
R _{work} / R _{free} (%)	21.3/23.8
No. atoms	
Protein	6551
Metal	2
Solvent	574
<i>B</i> -factors (Å ²)	
Protein	37.05
Metal	37.68
Solvent	41.93
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.48
Ramachandran plot	
Most favored [%]	99.62
Additional allowed [%]	0.38

Supplementary Table 1. Statistics of X-ray crystallographic data collection and model refinements of *Ec*ThrRS_G463S.

	EcThrRS_L489M-OB
PDB code	8WIJ
Data collection	
Space group	P212121
Cell dimensions	
a, b, c (Å)	103.25, 84.24, 102.59
α, β, γ (°)	90.00, 90.00, 90.00
Resolution (Å)	36.39-3.08 (3.19-3.08)*
R _{sym} or R _{merge} (%)	19.0 (105.1)
l/s/	9.4 (2.6)
Completeness (%)	91.3 (99.7)
Redundancy	6.4 (6.7)
Refinement	
No. reflections	15640 (1680)
Rwork / Rfree (%)	24.0/28.0
No. atoms	
Protein	6515
Ligand	52
Metal	2
Solvent	12
<i>B</i> -factors (Å ²)	
Protein	70.12
Ligand	76.72
Metal	61.70
Solvent	60.87
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.45
Ramachandran plot	
Most favored [%]	98.74
Additional allowed [%]	1.26

Supplementary Table 2. Statistics of X-ray crystallographic data collection and model refinements of *Ec*ThrRS_L489M_OB.

	<i>Ec</i> ThrRS_G463S_Q484A
PDB code	8WIG
Data collection	
Space group	P2 ₁ 2 ₁ 2 ₁
Cell dimensions	
a, b, c (Å)	91.14, 108.11, 113.50
α, β, γ (°)	90.00, 90.00, 90.00
Resolution (Å)	56.21-3.22 (3.33-3.22)*
R _{sym} or R _{merge} (%)	11.4 (63.9)
l/s/	10.6 (2.5)
Completeness (%)	99.6 (99.8)
Redundancy	4.6 (4.5)
Refinement	
No. reflections	18371 (1808)
Rwork / Rfree (%)	21.0/22.4
No. atoms	
Protein	6539
Metal	2
B-factors (Å ²)	
Protein	68.44
Metal	60.14
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.43
Ramachandran plot	
Most favored [%]	99.25
Additional allowed [%]	0.75

Supplementary Table 3. Statistics of X-ray crystallographic data collection and model refinements of *Ec*ThrRS_G463S_Q484A.

	EcThrRS_G463A-OB
PDB code	8WII
Data collection	
Space group	P212121
Cell dimensions	
a, b, c (Å)	90.40, 108.81, 113.77
α, β, γ (°)	90.00, 90.00, 90.00
Resolution (Å)	78.64-2.98 (3.08-2.98)*
R _{sym} or R _{merge} (%)	13.1 (80.3)
1/s/	6.8 (2.4)
Completeness (%)	99.3 (99.5)
Redundancy	4.2 (4.4)
Refinement	
No. reflections	23476 (2313)
Rwork / Rfree (%)	0.250 (0.301)
No. atoms	
Protein	6545
Ligand	52
Metal	2
B-factors (Å ²)	
Protein	69.00
Ligand	92.53
Metal	81.58
R.m.s. deviations	
Bond lengths (Å)	0.007
Bond angles (°)	1.24
Ramachandran plot	
Most favored [%]	98.25
Additional allowed [%]	1.75

Supplementary Table 4. Statistics of X-ray crystallographic data collection and model refinements of *Ec*ThrRS_G463A–OB.

	<i>Ec</i> ThrRS_G463A–ATP
PDB code	8WIH
Data collection	
Space group	P212121
Cell dimensions	
a, b, c (Å)	87.18, 109.38, 113.79
α, β, γ (°)	90.00, 90.00, 90.00
Resolution (Å)	50.48-2.44 (2.52-2.44)*
R _{sym} or R _{merge} (%)	11.3 (81.4)
l/sl	14.2 (2.8)
Completeness (%)	88.6 (96.5)
Redundancy	8.9 (6.6)
Refinement	
No. reflections	36683 (3927)
Rwork / Rfree (%)	24.2 (26.4)
No. atoms	
Protein	6398
Ligand	50
Metal	2
Solvent	48
<i>B</i> -factors (Å ²)	
Protein	46.77
Ligand	40.30
Metal	38.45
Solvent	43.72
R.m.s. deviations	
Bond lengths (Å)	0.003
Bond angles (°)	0.56
Ramachandran plot	
Most favored [%]	98.87
Additional allowed [%]	1.13

Supplementary Table 5. Statistics of X-ray crystallographic data collection and model refinements of *Ec*ThrRS_G463A-ATP.

III. Supplementary Figures

Supplementary Figure 1. OB-resistant ThrRSs are more closely related to each other than to their housekeeping ThrRS equivalents.

Maximum likelihood tree of ThrRS amino acid sequences. 4 putative OB immune proteins clade with each other rather than housekeeping ThrRSs from the same species. The tree was constructed using Swiss-Prot reviewed ThrRS amino acid sequences retrieved from UniProtKB¹ using the ENZYME² entry identifier E.C.6.1.1.3, along with the nonredundant amino acid sequences of ObaO (*Pseudomonas fluorescens* ATCC 39502, NCBI entry: KX931446.1) and another 3 homologs identified from OB BGCs (*Pseudomonas fluorescens* ATCC 37 R 15, NCBI entry: NZ_CVTV01000010.1; *Burkholderia diffusa* INT-BP16, NCBI entry: NZ_LOUS01000041.1; *Chitiniphilus shinanonensis* DSM 23277, PDB entry: NZ_KB895358.1). MEGA7³ was applied to generate a variant phylogenetic tree and the tree was represented using iTOL v6⁴.

E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	1 1 1 1 1	MPVITLPDGSC MPTITLPDGSC MVSIRLPDGSV MITLPDGSV MITLPDGSF MISIALPDGSF MISIALPDGSF MITISLPDGSF	RHYDHAVS RSFDHPVS RQYEHPV RQFEAL RDFPEAL RAYDHPV REFAEPIS	SPMDVALDIG SVAEVAASIG IVAEVAASIG IVAQVAASIG IVQQLAQSIG IVQALAQSIG SVHELACAIG	PGLAKACI AGLAKATV PGLAKATV AGLARAAL AGLARAAL PGLAKAAL PGLGAAAL	AGRVNGELV Agkvdgglv Agkvdgelv Agkvdgklv Ggkvdgklv Agkidgklv Agkidgklv	DACDLIEN DASDLITSI DTSTVUDR DTSYLIDR DTSYLIDR DASYLLETI DLDYLIDII DTAHLLRHI	AQUSII ASLQII ASLQII VQLAIV VQLAIV ATVEIV ATAEIV ATVEIV
E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	61 61 59 61 61	TAKDEEGLEI TPKDQEGLEI TDKDADGLDII TERDADGLDVI TKSPQALELI TEKHPDALSII TDRHPDALEVV	RHSCAHL RHSCAHL RHSTAHL RHSTAHL RHSTAHL RHSCAHL RHSTAHL	LGHAIKQLWE IGHAVKQLYE LAYAVKDLYE LAYAVKELFS MAQAVQRLYE LAQAVQRLYE LAQAVQRLYE	HTKMAIGP TAKMVIGP DAQVTIGP SAQVTIGP GTQVTIGP GTQVTIGP GTQVTIGP	VIDNGFYYD VIEEGFYYD VIDNGFYYD VIDNGFYYD VIDNGFYYD VIENGFYYD VIDNGFYYD	VDLDRTLTC IAYERPFTF FSYNRPFTF FSYRRPFTF FYAPRPFTF ISISPLSE FAGERPFTV	EDVEAL DDLAAI EDLEKI EDLEKI IDDLPLI IDDLPRI ZDDLPAI
E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	121 121 121 119 121 121 121	EKRMHELAEKN EQRMHALIEKI EKRMQELAKKI EKKMFELSKKI EAEMTRIVKEC EAEMRAIVAEA EAEMARIX	YDVIKKK YDVIKKV EPVTRRVI IPVERYE LPVTRSE VPVSRAV LPVTRSE	VSWHEARETE IPRAEVIDVE VSRDEAAGYI LSRDDAVAYI LPRDEALAFE LSRDDAIRFE KTREQAAQFE	ANRGESYK TARGEDYK RSLGEKYK KGIGEAYK SORGQTYK SORGQTYK EGLGEHYK	VSILDENIA LRLVE.DMP AEIIE.SIP AEIIE.SIP TQIID.AIP VEILR.DIA	HDDKPGLYF DEQAMGLYY SSDEIKLYS QNEVLSLYF AGETLSLYF EHEQLIYT DDQFLSLYT	THEEYVD YHEEYVD HEGGFTD REGGFTD CQGEFTD CQGEFTD CQGEFTD
E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	181 180 180 178 180 180 180	MCRGPHVPNTF MCRGPHVPNTF LCRGPHVPSTG LCRGPHVPSTG LCRGPHVPNTF LCRGPHVPNTF LCRGPHVPNTG	FCHHFKL FLKSFKL KLKVFKL KLGAFKL ALRAFKL KLRAFKL	MKTAGAYWRO IKLSGAYWRO MKVAGAYWRO MKVAGAYWRO MKVAGAYWRO MKVAGAYWRO MKVAGAYWRO	D SNNKM LO D AKNE Q LO D SKNEQ LO D SRNM IM LS D SNNEM L SNNEM LS	RIYGTAWAD RIYGTAWAD RIYGTAWAK RIYGTAWGN RYYGTAWGN RYYGTAWLN RIYGTAWLN	KKALNAYLC KKQLAAYIC KEDLQQYLF EKELKAYLN DADLQAYLF DKDLKAYLI	RLEEA RIEBAE IRLEBAE IRLEBAE IQLQEAE IQLEEAE IQLEBAE
E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	241 240 238 240 240 240 240	KRDHRKIGKOI KRDHRKIGKRI KRDHRKIGKOI KRDHRKIGKAI KRDHRKLAKOF RRDHRKLAKOF RRDHRKLAKI	D L Y H M O D N L F H L Q E D L F H M O D D L F H M O D L F H O D L F H O D L F H Q E	EAPGMVFWH BAPGMVFWH ESPGMVFWH EAPGMVFWH EAPGMVFWH EAPGMVFWH EAPGMVFWH	NDGWTIFRE NGWTLYQV KGWALWQS KGWSLWQS KGWSLWQT KGWSVWQV KGWALWQA	LEVFVRSKL LEQYMRKVQ VEQYMRRRV VEQYMRRVY VEQYMRRVY VEQYMRVY	KEYOYOBVI RENGYLJI NEAGYLJI RDGGYRDVI RDGGYRDVI RDGGYRDVI RDSGYRDVI	GPFMMD TPQVVD TPMIMD SPQVID SPQVID APQVID
E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	301 300 298 300 300 300	RVLWEKTGHW RSLWEKSGHW RSLWEKSGHW SLWEKSGHW STLWKKSGHW VSLWKRSGHW VSLWQRSGHW	NYKDAME NYADNMF NYRENMF NYRENMF NYKENMF NYKENMF NYKENMF	ITSSENREY ITOSENRDYA ITESEKRDYA ITESEKRDYA YTESENROYA ITESEKREYA ITESEKREYA ITESEKROYA	LKPMNCPG AIKPMNCPG AIKPMNCPG AIKPMNCPG AIKPMNCPG AIKPMNCPG AIKPMNCPG	HVQIFNQGL HVQVFNQGL HVQVFKHGL HIQIFKHGL HIQIFKHGL HIQIFKQGL	KSYRDLPH KSYRDLPH RSYRDLPH RSYRDLPH RSYRDLPH RSYRDLPH RSYRDLPH RSYRDLPH RSYRDLPH	MAEFG LAEFG VAEFG LAEFG VGEFG VGEFG VGEFG G
E_coli_ThrRS P_fluorescens_ThrRS B_diffusa_ThrRS C_shinanonensis_ThrRS P_fluorescens_ObaO B_diffusa_OBRes C_shinanonensis_OBRes	361 360 358 360 360 360	CHRNEPSGSLH CHRNEPSGALH CHRNEPSGALH CHRNEPSGALH CHRNEPSGALH CHRNEPSGALH CHRNEPSGALH	G I MRVRG G I MRVRG G I MRVRG G I MRVRG G I MRVRA G I MRVRA G I MRVRA	FTQDDAHIFC FTQDDAHIFC FTQDDAHIFC FTQDDAHIFC FTQDDGHIFC FTQDDGHIFC	TEEQIRDE TEEQMQAE TEEQFIAE TENQLIDE TERQIAAE TEAQIEDE TEEQIADE	VNGCIRLVY SAAFIKLTM SIAFNTLAM ARIFHALAM IKAFHYQAV VAAFHRQAM VQAFHRQAL	DMYSTFGF DVYRDFGFT SVYKDFGFF SVYDDFGFF KVYADFGFT KVYRDFGFC KVYRDFGFC	EKIVVKL EVEMKL HIDIKL GIAIKL DIAVKI DDSIAV NIAVKI

Thr-AMP/ tRNA binding
Within 4.5 Å of OB
Zinc binding
Diverse residues within 7.0 Å of OB

Supplementary Figure 2. Multiple sequence alignment of ThrRS homologs.

The Sequence alignment was generated using *Clustal Omega*⁵ and displayed by *Espript 3.0*⁶. ThrRS residues that interact with Thr-AMP and tRNA substrates or the catalytic Zn²⁺ ion are indicated with green triangles and blue triangles, respectively. Residues within 4.5 Å of OB are indicated with orange squares. Nonconserved residues of interest within 7.0 Å of OB are indicated with black arrows.

Supplementary Figure 3. 36j retains strong binding affinity for *Ec*ThrRS_WT, G463S, G463S_Q484A and G463A.

(a) Chemical structures of compound **36**j. (**b-e**) Surface plasmon resonance-based binding curves for **36**j binding to *Ec*ThrRS_WT, G463S, G463_Q484A and G463A. **36**j was set in a twofold dilution series from 125 nM to 7.8 nM (n = 1 for each series). Black lines show the fitting to a one-to-one kinetic binding model, RU, response unit. (**b**) *Ec*ThrRS_WT. Association rate constant (*ka*) = $5.56 \times 10^5 \cdot M^{-1} \cdot s^{-1}$ and dissociation rate constant (*kd*) = $4.08 \times 10^{-3} \cdot s^{-1}$, $K_D = 7.34 \times 10^{-9}$ M, Rmax = 32.4 Ru, $\chi^2 = 9.4 \times 10^{-2}$ RU². (**c**) *Ec*ThrRS_G463S. *ka* = $6.87 \times 10^5 \cdot M^{-1} \cdot s^{-1}$ and kd = $5.78 \times 10^{-3} \cdot s^{-1}$, $K_D = 8.41 \times 10^{-9}$ M, Rmax = 45.3 Ru, $\chi^2 = 1.9 \times 10^{-1}$ RU². (**d**) *Ec*ThrRS_G463S_Q484A. *ka* = $7.39 \times 10^4 \cdot M^{-1} \cdot s^{-1}$ and *kd* = $1.44 \times 10^{-3} \cdot s^{-1}$, $K_D = 1.95 \times 10^{-8}$ M, Rmax = 15.0 Ru, $\chi^2 = 2.0 \times 10^{-2}$ RU². (**e**) *Ec*ThrRS_G463A. *ka* = $4.46 \times 10^5 \cdot M^{-1} \cdot s^{-1}$ and *kd* = $8.45 \times 10^{-3} \cdot s^{-1}$, $K_D = 1.89 \times 10^{-8}$ M, Rmax = 39.5 Ru, $\chi^2 = 4.4 \times 10^{-1}$ RU². These data confirmed that **36**j retains strong binding affinity for the key mutants in this study.

Supplementary Figure 4. Mutation of Ala316 to asparagine does not confer resistance of OB to *Ec*ThrRS.

(a) Diagram of the Δ Tm values of *Ec*ThrRS_WT and *Ec*ThrRS_A316N in the presence or absence of OB and 36j. Evaluations were carried out in four repeats, and error bars indicate the respective standard deviation (n = 4, mean value ± SD). All the data points are shown as small circles. (b) The inhibitory curve of OB on the ATP hydrolysis activity of *Ec*ThrRS_A316N. Evaluations were carried out in four repeats, and error bars indicate the respective standard deviation (n = 4, mean value ± SD). All the data points are shown as pale deviation (n = 4, mean value ± SD). All the data points for *Ec*ThrRS_A316N are shown as pale purple dots.

Supplementary Figure 5. *Ec*ThrRS_L489M can be covalently inhibited by OB.

The Fo-Fc electron density was calculated with the OB-omitted structure model (made from the *Ec*ThrRS_L489M OB structure), contoured at 3.0 σ , and is shown as green meshes.

Supplementary Figure 6. The binding mode of OB in the catalytic pocket of *Ec*ThrRS_L489M.

(a) The catalytic center of *Ec*ThrRS_L489M with bound OB. The phenolic group of Tyr462 (green sticks) forms a new ester bond with OB (orange sticks). Interacting residues are shown as sticks. The 2Fo-Fc electron density of Tyr462–OB (contoured at 1.0 σ) is shown as gray transparent surface. (b) Close-up view of residues coordinated with a Zn²⁺ ion. Two hydroxyl groups on the *o*-diphenol moiety of OB coordinate with a Zn²⁺ ion. Residues Cys334, His385, His511, Tyr462 and OB are shown as sticks. The 2Fo-Fc electron density of these residues (contoured at 1.0 σ) is shown as a transparent surface.

- EcThrRS_G463S (Apo state)
- *Ec*ThrRS_Y462F ATP (Adenylation state)
- *Ec*ThrRS_WT OB (Open state)

Supplementary Figure 7. The catalytic pocket of EcThrRS slightly tightens when it binds to ATP and extends when it binds to OB.

(a) Superimposition of the structures of EcThrRS_Y462F-ATP (PDB code: 8H99, yellow cartoons) and EcThrRS_G463S (violet cartoons). (b) Superimposition of the structures of *Ec*ThrRS_WT–OB (PDB code: 8H98, marine cartoons) and *Ec*ThrRS_G463S (violet cartoons).

Supplementary Figure 8. Mutation of Ser464 of ObaO to glycine results in sensitivity to OB.

(a) Diagram of the Δ Tm values of ObaO_WT and ObaO_S464G in the presence or absence of OB and 36j. Evaluations were carried out in four repeats, and error bars indicate the respective standard deviation (n = 4, mean value ± SD). All the data points are shown as small circles. (b) Inhibitory curves of OB on the ATP hydrolysis activity of ObaO_WT and ObaO_S464G. Evaluations were carried out in four repeats, and error bars indicate the respective standard deviation (n = 4, mean value ± SD). All the data points for ObaO_WT and ObaO_S464G are shown as violet dots and orange dots, respectively.

Supplementary Figure 9. The distance between the centroids of Arg363 and Ala460 of *Ec*ThrRS changes when the protein binds different ligands.

(a) Superimposition of the structures of *Ec*ThrRS_WT–OB (PDB:8H98, marine cartoons) and *Ec*ThrRS_Y462F–ATP (PDB: 8H99, yellow cartoons). (b) Zoomed-in view of the catalytic pocket of *Ec*ThrRS_WT–OB. Arg363 and Ala460 are shown as violet sticks. The distances between the centroids of the two residues are shown as red directional arrows. (c) Zoomed-in view of the catalytic pocket of *Ec*ThrRS_Y462F–ATP. Arg363 and Ala460 are shown as violet sticks. The distances between the catalytic pocket of *Ec*ThrRS_Y462F–ATP. Arg363 and Ala460 are shown as violet sticks. The distances between the centroids of the two residues are shown as red directional arrows are directional arrows.

CD: Catalytic domain ABD: Anticodon-binding domain

Supplementary Figure 10. Schematic representation of the domain organization of *E. coli* ThrRS.

(a) Domain organization of *Ec*ThrRS. TGS: ThrRS, GTPase and SpoT-like domain; ED: editing domain; CD: catalytic domain; ABD: anticodon-binding domain. (b) Structural illustration of *E. coli* ThrRS (PDB code: 1QF6). TGS is shown as wheat cartoons, ED is shown as green cartoons, CD is shown as cyan cartoons, and ABD is shown as pink cartoons. There is an α -helix linker between the ED and CD domains, which divides ThrRS into two relatively independent fragments.

Supplementary Figure 11. Locations of residues 358-373 and residues 432-465 in the *Ec*ThrRS structure.

Residues 358-373 are shown as red cartoons and residues 432-465 are shown as violet cartoons.

Supplementary Figure 12. The inhibitory curve of OB on the ATP hydrolysis activity of *Ec*ThrRS_G463A.

Evaluations were carried out in four repeats, and error bars indicate the respective standard deviation (n = 4, mean value \pm SD). All the data points for *Ec*ThrRS_G463A are shown as red dots.

Supplementary Figure 13. Comparison of the conformational spaces of *Ec*ThrRS_WT, G463S and G463A.

The distance between the center masses of the amino acid residues Arg363 and Ala460 is defined as the width of the catalytic pocket. 8 sets of simulations with different random initial velocities were performed, and data were collected from 9 to 23 Å per angstrom. Conformational space shifts (n = 8, mean value \pm SD) are shown as curves (a) or columns (b).

Supplementary Figure 14. Superimposition of crystal structures with structures taken from the free energy landscape nadir

Suffix "Nadir" indicates the structures taken from the free energy landscape nadir.

Supplementary Figure 15. An unstable non covalent binding state of OB in *Ec*ThrRS_G463A.

(a) Zoomed-in view of the catalytic pocket of *Ec*ThrRS_G463A, which was crystallized in the presence of OB. The 2Fo-Fc electron map (blue meshes, contoured at 1.0σ) is shown together with the protein structure model. The Fo-Fc electron map (green meshes, contoured at 3.0σ) showed positive peaks at the ATP binding site, which is circled by black dashed lines. The Cys334, His385, His511, Tyr462 and Ala463 residues are shown as cyan sticks. (b) The unoccupied electron map is filled with the OB structure.

Supplementary Figure 16. *Ec*ThrRS_G463A only binds ATP in the presence of OB and ATP.

The catalytic pocket of *Ec*ThrRS_G463A is shown as red cartoons. ATP is shown as sticks. The 2Fo-Fc electron density of ATP (contoured at 1.0 σ) is shown as a transparent surface.

Supplementary Figure 17. Relative ATP hydrolysis rates of *Ec*ThrRS_WT, Y462F, G463S and G463A.

Evaluations were carried out in four repeats, and error bars indicate the respective standard deviation (n = 4, mean value ± SD). The ATP hydrolysis rate of *Ec*ThrRS_WT was normalized to 100%.

IV. Supplementary Note 1

Key resources table

REAGENT	SOURCE	IDENTIFIER	
Bacterial strains			
BL21 (DE3)	Weidi	CAT#EC1002	
DH5α (DE3)	Weidi	CAT#DL1001	
	Chemicals, peptides and recombinant prot	eins	
obafluorin	GlpBio	GC45617	
borrelidin	GlpBio	GC11040	
∟-threonine	Sigma-Aldrich	T8375	
ATP	Sigma-Aldrich	A26209	
SYPRO [®]	Sigma-Aldrich	S5692	
Orange Dye			
Critical commercial assays			
Kinase-Glo®	Promega	V6713	
Luminescent			
Kinase Assays			
Morpheus® I	Molecular Dimension	MD 1-46	
Oligonucleotides			
Primers	Sequence (5' to 3')	Purpose	
FcThrRS-WT-B	GTGGTGGTGCTCGAGTTCCTCCAATTGTT	For <i>Ec</i> ThrRS_WT	
	TAAGACTGCG	expression	
nFT28a-F	CTTAAACAATTGGAGGAACTCGAGCACCA	For pET28a vector	
	CCACCAC	recombination	
nFT28a-B	GATTTTACGGTGGTCGCGCATGGTATATC	For pET28a vector	
	TCCTTCTTAAAGTTAAAC	recombination	
<i>Ec</i> ThrRS_G463	AACTGGGTGAAGGCGCTTTCTACTCTCC	For <i>Ec</i> ThrRS ^{G463S}	
S-F	GAAAA	construction	
<i>Ec</i> ThrRS_G463	TCAATTTTCGGAGAGTAGAAAGCGCCTTC	For EcThrRS ^{G463S}	

S-B	ACCC	construction	
EcThrRS_L489	TACAGTACAGCTGGACTTCTCTATGCCGT	For EcThrRS ^{L489M}	
M-F	СТС	construction	
EcThrRS_L489	GACGAGACGGCATAGAGAAGTCCAGCTG	For EcThrRS ^{L489M}	
M-B	TACT	construction	
EcThrRS_G463	GTGCGGTACAGTAGCGCTGGACTTCTCT	For EcThrRS ^{G463S_Q484A}	
S_Q484A-F	TTGCC	construction	
EcThrRS_G463	CAAAGAGAAGTCCAGCGCTACTGTACCG	For EcThrRS ^{G463S_Q484A}	
S_Q484A-B	CACTGCCA	construction	
EcThrRS_G463	AGGCGCTTTCTACGCACCGAAAATTGAAT	For EcThrRS ^{G463A}	
A-F	TTACCCT	construction	
EcThrRS_G463	AATTCAATTTTCGGTGCGTAGAAAGCGCC	For EcThrRS ^{G463A}	
A-B	TTCACC	construction	
EcThrRS_A316	AACTACAAAGATAACATGTTCACCACATCT	For EcThrRS ^{A316N}	
N-F	TCTGA	construction	
EcThrRS_A316	GAAGATGTGGTGAACATGTTATCTTTGTA	For EcThrRS ^{A316N}	
N-B	GTTGTC	construction	
	GAAGGTGCATTCTACGGTCCGAAGATCG	For ObaO ^{S464G}	
ObaO_5464G-F	AATACCACC	construction	
Obc0 \$4640 B	GTATTCGATCTTCGGACCGTAGAATGCAC	For ObaO ^{S464G}	
ObaO_5464G-B	CTTCGCCT	construction	
Plasmids			
	Protein expression vector used in <i>E. coli</i> ,		
pET-28a(+)	encoding N-terminal 6 × His-tag, kanamycin	Novagen	
	resistance		
nTDS	pET-28a (+) derivative, containing		
μικο	EcThrRS_242-642_WT_6×His		
nTRS C463S	pET-28a (+) derivative, containing	This study	
µ1K3-64033	EcThrRS_242-642_ G463S _6×His	i nis study	

pTRS-L489M	pET-28a (+) derivative, containing	This study	
	EcThrRS_242-642_L489M_6×His		
pTRS-	pET-28a (+) derivative, containing	This study	
G463S_Q484A	EcThrRS_242-642_ G463S_Q484A _6×His		
nTPS C463A	pET-28a (+) derivative, containing	This study	
p113-0403A	EcThrRS_242-642_G463A_6×His	This study	
	pET-28a (+) derivative, containing	This study	
PTRS-ASTON	EcThrRS_242-642_A316N_6×His		
	pET-28a (+) derivative, containing		
ροβάθ-νν τ	ObaO_241-637_6×His		
	pET-28a (+) derivative, containing		
pobao_5464G	ObaO_241-637_S464G_6×His		
Software			
Jalview	University of Dundee	https://www.jalview.org	
XDS	MPI for Medical Research	https://xds.mr.mpg.de	
CCP4	Research Complex at Harwell (RCaH),	https://www.ccp4.ac.uk	
	STFC Rutherford Appleton Laboratory,		
	Harwell Science and Innovation Campus		
СООТ	MRC Laboratory of Molecular Biology	https://www2.mrc-	
		lmb.cam.ac.uk/personal	
		/pemsley/coot	
Phenix	University of Cambridge, Duke University,	https://phenix-online.org	
	LANL, LBNL		
GraphPad Prism	GraphPad Software Inc	www.graphpad.com	
PyMOL	Schrödinger, LLC	www.pymol.org	
ChimeraX	University of California San Francisco	https://www.cgl.ucsf.ed	
		u/chimerax	
Schrödinger	Schrödinger, LLC	https://newsite.schrodin	
		ger.com	

The sequence of the open reading frame of the pTRS plasmid encoding *Ec*ThrRS_242-642_WT-6×His:

ATGCGCGACCACCGTAAAATCGGTAAACAGCTCGACCTGTACCATATGCAGGAAGAAGCG CCGGGTATGGTATTCTGGCACAACGACGGCTGGACCATCTTCCGTGAACTGGAAGTGTTT GTTCGTTCTAAACTGAAAGAGTACCAGTATCAGGAAGTTAAAGGTCCGTTCATGATGGAC CGTGTCCTGTGGGAAAAAACCGGTCACTGGGACAACTACAAAGATGCAATGTTCACCAC ATCTTCTGAGAACCGTGAATACTGCATTAAGCCGATGAACTGCCCGGGTCACGTACAAATT TTCAACCAGGGGCTGAAGTCTTATCGCGATCTGCCGCTGCGTATGGCCGAGTTTGGTAG CCCAGGATGACGCGCATATCTTCTGTACTGAAGAACAAATTCGCGATGAAGTTAACGGAT GTATCCGTTTAGTCTATGATATGTACAGCACTTTTGGCTTCGAGAAGATCGTCGTCAAACT CTCCACTCGTCCTGAAAAACGTATTGGCAGCGACGAAATGTGGGATCGTGCTGAGGCGG ACCTGGCGGTTGCGCTGGAAGAAAACAACATCCCGTTTGAATATCAACTGGGTGAAGGC GCTTTCTACGGTCCGAAAATTGAATTTACCCTGTATGACTGCCTCGATCGTGCATGGCAGT GCGGTACAGTACAGCTGGACTTCTCTTTGCCGTCTCGTCTGAGCGCTTCTTATGTAGGCG AAGACAATGAACGTAAAGTACCGGTAATGATTCACCGCGCAATTCTGGGGTCGATGGAAC GTTTCATCGGTATCCTGACCGAAGAGTTCGCTGGTTTCTTCCCGACCTGGCTTGCGCCG GTTCAGGTTGTTATCATGAATATTACCGATTCACAGTCTGAATACGTTAACGAATTGACGCA AAAACTATCAAATGCGGGCATTCGTGTTAAAGCAGACTTGAGAAATGAGAAGATTGGCTTT AAAATCCGCGAGCACACTTTGCGTCGCGTCCCATATATGCTGGTCTGTGGTGATAAAGAG GTGGAATCAGGCAAAGTTGCCGTTCGCACCCGCCGTGGTAAAGACCTGGGAAGCATGG ACGTAAATGAAGTGATCGAGAAGCTGCAACAAGAGATTCGCAGCCGCAGTCTTAAACAAT TGGAGGAACTCGAGCACCACCACCACCACCACTGA

The sequence of the *Ec*ThrRS_WT (242-642) protein:

MRDHRKIGKQLDLYHMQEEAPGMVFWHNDGWTIFRELEVFVRSKLKEYQYQEVKGPFMMD RVLWEKTGHWDNYKDAMFTTSSENREYCIKPMNCPGHVQIFNQGLKSYRDLPLRMAEFGS CHRNEPSGSLHGLMRVRGFTQDDAHIFCTEEQIRDEVNGCIRLVYDMYSTFGFEKIVVKLST RPEKRIGSDEMWDRAEADLAVALEENNIPFEYQLGEGAFYGPKIEFTLYDCLDRAWQCGTVQ LDFSLPSRLSASYVGEDNERKVPVMIHRAILGSMERFIGILTEEFAGFFPTWLAPVQVVIMNIT

DSQSEYVNELTQKLSNAGIRVKADLRNEKIGFKIREHTLRRVPYMLVCGDKEVESGKVAVRTR RGKDLGSMDVNEVIEKLQQEIRSRSLKQLEELEHHHHHH*

The sequence of the open reading frame of the pObaO plasmid encoding ObaO_241-637_WT-6×His:

ATGCGTGACCACCGTAAACTGGCTAAACAGTTCGACCTGTTCCACCAGCAAGAAGAAG CTCCAGGTATGGTCTTCTGGCATCCGAAAGGTTGGAGCCTGTGGCAGACCGTTGAACAG TACATGCGTCGTGTTTATCGTGATGGCGGTTACCGTGAAGTTAAATCTCCGCAGGTACTG GATTCTACTCTGTGGAAGAAGAGCGGCCACTGGGATAACTACAAAGAGAACATGTTCGTT ACCGAATCCGAGAACCGTCAGTACGCACTGAAACCGATGAACTGTCCGGGTCACATCCA AATCTTCAAACACGGTCTGCGTAGCCATCGTGAACTGCCGATCCGTTACGGTGAATTTGG TGGCTGCCACCGTAACGAACCATCTGGCGCTCTGCACGGCATCATGCGTGTTCGTGCAT TCACTCAAGATGATGGCCACATCTTCTGCACCGAAGAACAGATCGCGGCGGAAATCAAAG CATTCCACTATCAGGCGGTTAAAGTTTACGCGGATTTCGGTTTCACCGACATCGCTGTTAA GATCGCTCTGCGTCCGGAACCGGGTAAACGTCTGGGTTCCGACGAAGTTTGGGACAAAG CGGAGAACCTGCTGCGTGAAGCGCTGTCTGAATGCGACGTTGAATGGGAAGAACTGCCA GGCGAAGGTGCATTCTACAGTCCGAAGATCGAATACCACCTGCGTGATGCTATCGGTCGT GAATGGCAGGTTGGTACTATGCAGGTTGACTACCACATGCCAGATCGTCTGGGTGCAGAA TACGTTGATGAACACAGCCAGCGTCGTAAACCGGTTATGCTGCATCGTGCGATCGTGGGT AGCCTGGAACGCTTTCTGGGTATCTTGATCGAACACCACGCAGGTCAGTTCCCGCTGTG GCTGGCGCCGGTGCAGGCTATCGTGGTTACCGTTACCGACGCTCAGAACGATTACGCTG ACCAGACTCGTAACGATCTGGTTCAGTTGGGCTTCCGTGTGGAAGCGGACCTGCGTAAC GAGAAGATCGGCTACAAGATCCGTGAATCTACCTTGCAGCGTGTACCGTACCTGCTGGTA GGTGGTCTCGAGCACCACCACCACCACCACTGA

The sequence of the ObaO(241-637) protein:

MRDHRKLAKQFDLFHQQEEAPGMVFWHPKGWSLWQTVEQYMRRVYRDGGYREVKSPQ

VLDSTLWKKSGHWDNYKENMFVTESENRQYALKPMNCPGHIQIFKHGLRSHRELPIRYGEF GGCHRNEPSGALHGIMRVRAFTQDDGHIFCTEEQIAAEIKAFHYQAVKVYADFGFTDIAVKIAL RPEPGKRLGSDEVWDKAENLLREALSECDVEWEELPGEGAFYSPKIEYHLRDAIGREWQVG TMQVDYHMPDRLGAEYVDEHSQRRKPVMLHRAIVGSLERFLGILIEHHAGQFPLWLAPVQAI VVTVTDAQNDYADQTRNDLVQLGFRVEADLRNEKIGYKIRESTLQRVPYLLVVGEREKENGT VTVRSRAGEDLGSMTMEALHAFLLNEQSAGGLEHHHHHH

Abbreviations

T	
ThrRS	threonyl-tRNA synthetase
ObaO	a threonyl-tRNA synthetase homolog of Pseudomonas
	fluorescens which confers resistance to Obafluorin
WT	wild type
OB	obafluorin
BN	borrelidin
L-Thr	L-threonine
ATP	adenosine 5'-triphosphate
Tris	Tris(hydroxymethyl)aminomethane
MES	2-morpholinoethanesulphonic acid
HEPES	4-(2-Hydroxyethyl)-1-piperazine ethanesulfonic acid
MOPS	3-(N-Morpholino)propanesulfonic acid
MPD	2-methyl-2,4-pentanediol
PEG	polyethylene glycol
MME	monomethyl ester
TSA	thermal shift assay
Tm	mid-melting point
MD	molecular dynamics
DCCM	dynamic cross-correlation maps
D R-A	distance between Arg363 and Ala460 of E. coli ThrRS
FEL	free energy landscape
Rg	radius of gyration
IC ₅₀	half-maximal inhibitory concentration
SBVS	structure-based virtual screen
BTK	Bruton's Tyrosine Kinase
NRPS	non-ribosomal peptide synthetase
MoA	mechanism of action
PDB	protein data bank

V. Supplementary References

1. Consortium, T. U. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Research* **47**, D506-D515 (2018).

2. Bairoch, A. The ENZYME database in 2000. Nucleic Acids Research 28, 304-305 (2000).

3. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular Biology and Evolution* **33**, 1870-1874 (2016).

4. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. *Nucleic Acids Research.* gkae268 (2024).

5. Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. *Protein Science* **27**, 135-145 (2018).

6. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Research* **42**, W320-W324 (2014).