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Text S1. Establishment of off-target panel  

In vitro analyzing of candidate drugs against a wide range of targets is an important component 

of the compound selection process. Compared to screening compounds on known therapeutic targets, 

promiscuous screening (off-target screening) of compounds is challenging due to the lack of 

boundaries. Conducting extensive screening on numerous targets can be cost-prohibitive and it may 

be challenging to predict the relevance of compound-target interactions [1]. To mitigate these 

challenges, major pharmaceutical companies such as AstraZeneca, GlaxoSmithKline, Novartis, and 

Pfizer have established internal off-target panels for screening compounds, which reduce the 

number of molecules tested in subsequent assays. Based on the targets established by these 

companies, Bowes et al. proposed 44 early drug safety targets that include the toxicity of the central 

nervous system, immune system, gastrointestinal tract, and heart [2]. AbbVie obtained 70 safety-

related targets via a literature search, most of which are included in Eurofins' testing panel [3]. To 

obtain an optimized target panel, Roche utilized experimental data based on the Bioprint® database 

[4] and employed a statistical ranking method, resulting in a panel of 50 safety targets [1]. 

Combining the above targets, we can get an off-target panel containing 90 targets. This panel 

comprises 50 G protein-coupled receptor protein-related targets, 16 Ion channel-related targets, 9 

Enzyme-related receptors, 6 Kinase-related targets, 4 Nuclear receptor-related targets, 4 

Transporter-related targets and two other targets.  

 

Text S2. Compound-protein interaction data collection and processing 

The data collection and processing process for the ChEMBL database is below, and the 

PubChem database is collected similarly. According to the gene names of the targets, the steps to 

collect the corresponding compounds under the corresponding targets from UniProt and ChEMBL 

databases are as follows： 

1. The Retrieve/ID mapping module in UniProt was utilized to convert gene names of safety 

targets to UniProtKB/Swiss Prot identifiers. The UniProt IDs assigned to this entry were 

manually annotated with high credibility and low redundancy. The organisms mainly 

selected were Human, Rat, and Mouse. 

2. The corresponding ChEMBL ID in the ChEMBL database (Release 30) was obtained based 

on the UniProt ID of the safety target. 

3. Relevant data was retrieved from the ChEMBL database using PostgreSQL, a powerful 

relational database management system (RDBMS) that supports crawling data from 

databases based on filtering conditions. The data filtering condition set for this task is: 

（1）target_type = 'SINGLE PROTEIN' 

The target types that ChEMBL supports include single protein, protein complex, and protein 

family. Here, we had chosen single protein. 

（2）molecule_type = 'Small molecule' 

The selectable molecule types in ChEMBL include oligosaccharides, proteins, small 

molecules, etc. Here we chose small molecule. 

（3）assay_type IN 'B','F' 

There are multiple experimental categories supported by ChEMBL, and we had chosen to 

use the binding ('B') and function ('F') data. 

（4）confidence_score = 9 

ChEMBL assigns confidence scores to the assay-to-target relationships, reflecting the 



reliability of a specific experimental result for a given target type. The scores range from 0 to 9, 

with a minimum confidence of 4 for known protein targets. We only selected confidence score of 9, 

ensuring precise experimental data for individual protein targets. 

Activity thresholds were determined based on the target protein family, using the guidelines 

provided by the Illuminating the Druggable Genome consortium (IDG) 

(https://druggablegenome.net/ProteinFam) [5]. The specific thresholds for each protein family are 

summarized in Supporting Information Table S3. 

 

Text S3. Principles of enrichment analysis 

The p-value is the probability of obtaining the observed sample results, or more extreme results, 

when the null hypothesis is true. If the p-value is very small, it indicates that the probability of such 

a situation occurring is very low. If it does occur, according to the principle of small probability, we 

have reason to reject the null hypothesis. The smaller the p-value is, the more sufficient our reason 

to reject the null hypothesis, meaning our results are more significant. In our enrichment analysis, 

the p-value is calculated using the following formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = ∑
(

𝑀
𝑖 ) ∗ (
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In Eq. (1), the denominator is the process of binding 𝑛 targets from a total of 𝑁 targets for 

drugs. The numerator is 𝑀 targets denoting the number of targets belonging to the specific ADR 

term, of which, 𝑖 is predicted as positive targets for the drug. The p-value refers to the sum of 

probabilities of observing 𝑚 targets in a certain ADR term or more extreme results, so 𝑖 ranges 

from 𝑚 to 𝑀. This represents all possibilities of seeing more targets fall into this ADR term. As 

the number of hypothesis tests increases, the probability of making error decisions rapidly increases. 

To control the false positive rate, we have performed multiple hypothesis testing correction, namely 

FDR (False Discovery Rate, FDR) correction (Eq. (2)) which is based on Bonferroni correction. 

Multiple testing correction adjusts each p-value to keep the overall error rate less than or equal to 

the user-specified p-cutoff value. 

𝐹𝐷𝑅 = 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐹𝑃

(𝑇𝑃 + 𝐹𝑃)
(2) 

 

 

Text S4. Introduction of MLKNN and the data splitting method for ATC classification 

Multi-label learning algorithms can be roughly divided into two categories: transformation 

algorithms and adaptive algorithms. Here, we used an adaptive algorithm, multi-label k-nearest 

neighbours (MLKNN), to perform multi-label classification [6, 7]. The MLKNN algorithm follows 

four steps: 1. Finding the K nearest samples to the input sample; 2. Counting the occurrences of 

each category in the K samples; 3. Utilizing a Bayesian algorithm with the statistics from step 2 to 

calculate the label probabilities; 4. Outputting class probabilities. In our project, we have a dataset 

of n drugs represented by{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where 𝑥𝑖 and 𝑦𝑖 are m-dimensional feature vectors and n-

dimensional side effect vectors for drug 𝑖, respectively. MLKNN is used to model the relationship 

between feature vectors and side effect vectors, i.e., 𝑌 = 𝐹(𝑋): 2𝑚 → 2𝑛.  

To conduct multi-label ATC classification, we processed the collected drug-ATC code pairs 

into a multi-label data format, where a single drug may correspond to multiple ATC code labels. 



Initially, the test dataset was divided using the iterative hierarchical partitioning method of data in 

multi-label learning, implemented through the iterative_train_test_split function in 

skmultilearn.model_selection, with a scale of 0.1. The remaining data was subsequently split into 

five folds for cross-validation, yielding training and validation datasets for each fold. 

 

 

Text S5. Introduction of LightGBM, data processing and hyperparameter search 

LightGBM, in comparison to XGBoost, primarily adopts some optimization strategies to 

obtain superior performance in terms of prediction accuracy, model stability, and computational 

efficiency [8]: 

1) Histogram-based decision tree algorithm, which constructs a histogram of width K by 

discretizing continuous floating-point eigenvalues to find the optimal segmentation point to reduce 

the computation. 

2) Gradient-based One-Side Sampling (GOSS), which retains data instances with large gradients 

and randomly sampling instances with small gradients to reduce the data volume while maintaining 

the data distribution. 

3) Exclusive Feature Bundling (EFB) algorithm, which achieves dimensionality reduction by 

bundling a set of mutually exclusive features into one feature. 

4) Leaf-wise leaf growth strategy with depth restriction, which improves convergence speed by 

paying more attention to data with large errors, compared to the traditional level-wise growth 

strategy. 

To conduct toxicity prediction, after data cleaning and deduplication, we obtained a total of 

877 toxic compounds and 1229 non-toxic compounds where we labeled toxic drugs as 1, and non-

toxic compounds as 0. We first divided the test set at a scale of 0.2. The remaining data was 

subsequently split into five folds for cross-validation, yielding training and validation datasets for 

each fold. Different models were evaluated on the same test set. 

Optuna is a hyperparameter optimization framework for automated hyperparameter search that 

can be applied to machine learning and deep learning models [9]; Optuna uses a sampling and 

pruning algorithm to optimize the hyperparameters, so it is very fast and efficient; it also 

dynamically constructs the hyperparameter search space in an intuitive way. We use Optuna here to 

select the best hyperparameters for the model. The hyperparameter settings of LightGBM and 

ECFP_LightGBM are shown in Supporting Information Table S11. 

 

Text S6. Drug-ADR data collection and establishment of ADR prediction model 

The SIDER database (version 4.1, 2015) served as the primary source for drug-ADR data 

collection. We retained ADR information for 1178 drugs, focusing on frequently occurring ADRs 

with frequencies ranging from 0.01 to 1, utilizing Preferred Terms (PT)-level descriptions to prevent 

semantic redundancy. Consequently, we retained 2551 ADRs for 1178 drugs, where '1' represents 

drug-ADR interactions and '0' represents no interaction. 

ADR prediction was conducted using a multi-label KNN model proposed by Zhang et al. [7], 

with input features being the predicted results of the off-target profiles or molecular ECFP4. For 

drug-ADR interaction data, the test dataset underwent division using the iterative hierarchical 

partitioning method of data in multi-label learning, implemented through the 

iterative_train_test_split function in skmultilearn.model_selection, with a scale of 0.1. Employing 



a fixed test set, five-fold cross-validation was performed, and the best parameter combination 

obtained through hyper-parameter search was k=5 and s=1, where k represents the number of 

neighbors in the KNN model, and s is a smoothing parameter. In each round of five-fold cross-

validation, we calculated the optimal threshold for each ADR. The optimal threshold, determined 

based on the Youden Index [10], which serves as a summary measure of the receiver operating 

characteristic curve. It is the sum of sensitivity and specificity minus one. In binary classification, 

the Youden Index can be employed to select the optimal classification threshold. We applied the 

optimal threshold for each category to convert predicted probability values into binary classification 

labels, thereby obtaining the predicted relevant ADRs for each drug. 

Besides multi-label models, for each ADR, an RF classifier was established to determine 

whether a compound possesses this ADR, with the off-target representation or ECFP4 serving as 

input features. The performance for these models is presented in Supporting Information Table S18. 

 

Text S7. Drug-target-network analysis of Sertindole 

Sertindole, an atypical antipsychotic utilized for schizophrenia treatment, faced market 

withdrawal in 1998 across multiple countries due to cardiotoxic side effects, including arrhythmias 

and sudden cardiac death. In Supporting Information Fig. S5, we identified nine known targets of 

Sertindole that overlap with our off-target panel. Notably, our off-target model successfully 

predicted eight of these targets, attaining binding probabilities exceeding 0.7. On the one hand, the 

predicted new targets can help explain the known ADRs of drugs. Our predictions suggest 

Sertindole's interaction with SLC6A4 and HTR7. Inhibiting SLC6A4 [11] or binding to HTR7 [12] 

could induce insomnia, thereby furnishing a rationale for insomnia induced by Sertindole usage. 

Hyperglycemia, an infrequent side effect of Sertindole, finds potential association in our projected 

outcomes with the newly predicted targets HTR3A [13] and ADRB2 [14]. On the other hand, the 

drug's known binding targets can explain related ADRs. Sertindole's potential interaction with the 

new target HRH3 carries an affiliation with sedation [15]. Although sedation is linked to Sertindole's 

known target ADRA2B [16] and HRH1 [17], the prominence of HRH3 in our forecasts intimates a 

mechanistic link between the drug and new off-targets. Cardiotoxicity-related side effects of 

Sertindole can be associated with the known target KCNH2 [18], ADRA2B, as well as predicted 

new targets such as CHRNA4 and SCN2A, etc.  

 

Text S8. Molecular docking using Schrödinger software 

Virtual screening was carried out using Maestro (Schrödinger Release 2023-1: Glide, 

Schrödinger, LLC, New York, NY, 2023). The crystal structures of the targets were retrieved from 

the Protein Data Bank (PDB), and the PDB IDs for the utilized targets are presented in Supporting 

Information Table S18. Protein preparation was performed using Maestro's Protein Preparation 

Wizard with the OPLS3e force field. The prepared protein served as the basis for generating grid 

files for molecular docking through the Receptor Grid Generation model. The center of the ligand 

was used to define the receptor grid box's center, allowing docked molecules to sample a 10 × 10 × 

10 Å inner search space, with a 20 Å buffer in all directions. All other parameters remained at default 

settings. 



 

Fig. S1. Physico-chemical spatial distribution of positive molecules and relative decoys under 

different target classes. (A) GPCR. (B) Ion channel. (C) Enzyme. (D) Kinases. (E) Nuclear receptor. 

(F) Transporter. (G) Other targets. 

  



 

Fig. S2. Establishing ADR-targets mappings. 

 

 

Fig. S3. Performance comparison of four off-target prediction models across all targets on AUROC, 

MCC, BACC, and F1 metrics. 

 

 

Fig. S4. Number of significantly enriched ADRs for three drugs under different thresholds. The 

horizontal axis represents drugs, the vertical axis represents the number of significantly enriched 

ADRs, and different colors indicate different thresholds. 



 

Fig. S5. Drug-target-ADR association diagram for Sertindole. Known targets in the figure are the 

known targets of the drug (obtained from databases such as ChEMBL, PubChem and DrugBank, 

which overlap with our off-target panel), Predict targets are the predicted off-targets, and probability 

is the predicted probability value. The targets with a blue background in the table are predicted 

targets that overlap with known targets. The side effect descriptions associated with each target are 

listed after it, and colored ADRs are associated with predicted new targets and correspond to the 

respective target's side effect description (e.g. Cardiotoxicity is marked in red, corresponding to “↓

/↑HR”, “prolongation of QT interval of ECG”, “cardiac hypertrophy” and so on in the target's side 

effect description; Sedation is marked in blue, corresponding to “sedation” in the target's side effect 

description; Hyperglycaemia is marked in green, corresponding to “hyperglycaemia” and “Blood 

glucose ↑” in the target's side effect description). BP: blood pressure; HR: heart rate; GI: glycemic 

index; ECG: electrocardiography; QT: the time from the start of the Q wave to the end of the T 

wave, time taken for ventricular depolarisation and repolarisation. 

  



Table S2 List of databases used in the work 

Database Description URL Reference 

ChEMBL 

A manually curated database of 

biologically active molecules with drug-

like properties. It brings together chemical, 

bioactive and genomic data to help 

translate genomic information into 

effective new drugs. 

https://www.ebi.ac.uk/chembl/  [19] 

PubChem 

An open chemical database provides 

information about molecules such as 

chemical structures, identifiers, chemical 

and physical properties, and biological 

activities. 

https://pubchem.ncbi.nlm.nih.gov/  [20] 

DrugBank 

A web-based database that provides 

extensive molecular information on drugs, 

including their mechanisms of action, 

interactions, and targets. 

http://www.drugbank.ca  [21] 

SIDER 

A database that provides information on 

marketed drugs and their adverse reactions 

records. 

http://sideeffects.embl.de  [22] 

ZINC 
A free commercial compound database for 

virtual screening. 
https://zinc15.docking.org/  [23] 

 

Table S3 Activity thresholds corresponding to different types of targets 

Target type Active Inactive 

GPCR <=100 𝑛𝑀 >100 𝑛𝑀 

Ion channel <=10 𝜇𝑀 >10 𝜇𝑀 

Enzyme <=1 𝜇𝑀 >1 𝜇𝑀 

Kinase <=1 𝜇𝑀 >1 𝜇𝑀 

Transporter <=1 𝜇𝑀 >1 𝜇𝑀 

Nuclear receptor <=100 𝑛𝑀 >100 𝑛𝑀 

Others <=1 𝜇𝑀 >1 𝜇𝑀 

 

Table S4 Hyperparameter search range for MTGNN 

Hyperparameter name Search Range 

num_layers [1, 2, 3, 4, 5, 6, 7, 8, 9] 

num_timesteps [1, 2, 3, 4, 5, 6, 7, 8, 9] 

graph_feat_size [100, 200, 300, 400, 500, 600, 700, 800] 

learning_rate [0.005, 0.0001, 0.00005] 

batch_size [64, 128, 256] 

weight_decay [0.0, 1e-7, 1e-5] 

  



Table S5 Hyperparameter settings of models corresponding to seven target types 

 n_layers n_timesteps graph_feat_size learning_rate batch_size weight_decay dropout 

GPCR 3 2 200 0.0001 128 0 0.1 

Ion channel 3 2 200 0.0001 128 0 0.1 

Enzyme 1 4 600 0.0001 64 0 0.1 

Kinase 3 2 200 0.0005 64 1e-7 0.1 

NR 3 2 200 0.0001 128 0 0.1 

Transporter 3 2 200 0.0005 64 0 0.1 

others 3 2 200 0.0001 128 0 0.1 

 

 

Table S6 Parameter settings of Roche's off-target prediction model in the work 

Model Hyperparameter name Hyperparameter search range 

/ hyperparameter setting 

NeuralNetworks Hidden units [256, 512, 1024, 2048] 

 Dropout input [0, 0.1, 0.2] 

 Dropout hidden [0.2, 0.3, 0.4] 

 Learning rate [0.01, 0.001, 0.0001] 

 Batch size [64, 128, 256] 

 Hidden layers 2 

 Kernel regularizer l2 0.001 

RandomForest n_estimators 100 

 min_samples_split 2 

 min_samples_leaf 1 

Auto-Sklearn time_left_for_this_task 120 

 per_run_time_limit=30 30 

 

  



Table S7 Model performance of different off-target prediction models under different target types 

Target type Model AUROC MCC BACC F1 

GPCR 

MTGNN 0.9722  0.7686  0.9238  0.7994  

NeuralNetworks 0.9665  0.7865  0.8954  0.8139  

RandomForest 0.8758  0.7766  0.8758  0.8028  

Auto-Sklearn 0.8987  0.7544  0.8987  0.7818  

Ion channel 

MTGNN 0.9703  0.8158  0.9280  0.8420  

NeuralNetworks 0.9685  0.8150  0.9022  0.8313 

RandomForest 0.8872  0.8133  0.8872  0.8252  

Auto-Sklearn 0.8936  0.7781  0.8936  0.7996  

Enzyme 

MTGNN 0.9657  0.7421  0.9080  0.7675  

NeuralNetworks 0.9499  0.7198  0.8556  0.7424  

RandomForest 0.8559  0.7466  0.8559  0.7625  

Auto-Sklearn 0.8850  0.7124  0.8850  0.7404  

Kinase 

MTGNN 0.9679  0.7746  0.9113  0.8069  

NeuralNetworks 0.9581  0.7555  0.8779  0.7822  

RandomForest 0.8484  0.7287  0.8484  0.7469  

Auto-Sklearn 0.8563  0.7083  0.8563  0.7341  

NR 

MTGNN 0.9656  0.7476  0.9179  0.7778  

NeuralNetworks 0.9687  0.7487  0.8885  0.7793  

RandomForest 0.8853  0.7622  0.8853  0.7954  

Auto-Sklearn 0.8983  0.7508  0.8983  0.7831  

Transporter 

MTGNN 0.9946  0.8926  0.9750  0.9074  

NeuralNetworks 0.9858  0.8575  0.9198  0.8743  

RandomForest 0.9071  0.8625  0.9071  0.8748  

Auto-Sklearn 0.8481  0.6730  0.8481  0.6940  

others 

MTGNN 0.9870  0.8664  0.9547  0.8866  

NeuralNetworks 0.9862  0.8625  0.9253  0.8839  

RandomForest 0.9197  0.8648  0.9197  0.8847  

Auto-Sklearn 0.9248  0.8495  0.9248  0.8721  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S8. Comparison between multitask off-target prediction models and benchmark models for 

drug-target interaction prediction 

Target type Model AUROC MCC BACC F1 

GPCR 

MTGNN 0.9722 0.7686 0.9238 0.7994 

TransformerCPI2.0 0.9730  0.8016  0.8946  0.7555  

TransformerCPI 0.9654 0.7464 0.8874 0.7944 

GraphDTA 0.9474 0.6515 0.8544 0.7178 

Ion channel 

MTGNN 0.9703 0.8158 0.9280 0.8420 

TransformerCPI2.0 0.9755  0.8102  0.9012  0.7760  

TransformerCPI 0.9769 0.7135 0.9006 0.7535 

GraphDTA 0.9475 0.6246 0.8534 0.6805 

Enzyme 

MTGNN 0.9657 0.7421 0.9080 0.7675 

TransformerCPI2.0 0.9673  0.7300  0.8791  0.6812  

TransformerCPI 0.9577 0.6924 0.8747 0.7410 

GraphDTA 0.9484 0.6539 0.8609 0.7084 

Kinase 

MTGNN 0.9679 0.7746 0.9113 0.8069 

TransformerCPI2.0 0.9787  0.8429  0.9067  0.8086  

TransformerCPI 0.9756 0.7382 0.8987 0.7849 

GraphDTA 0.9488 0.6498 0.8480 0.7146 

NR 

MTGNN 0.9656 0.7476 0.9179 0.7778 

TransformerCPI2.0 0.9700  0.7447  0.8807  0.6895  

TransformerCPI 0.9652 0.6989 0.8788 0.7535 

GraphDTA 0.9556 0.7259 0.8667 0.7755 

Transporter 

MTGNN 0.9946 0.8926 0.9750 0.9074 

TransformerCPI2.0 0.9883  0.8473  0.9263  0.8139  

TransformerCPI 0.9934 0.7700 0.9386 0.8001 

GraphDTA 0.9839 0.7036 0.9080 0.7446 

others 

MTGNN 0.9870 0.8664 0.9547 0.8866 

TransformerCPI2.0 0.9947  0.9205  0.9562  0.9047  

TransformerCPI 0.9963 0.9301 0.9653 0.9417 

GraphDTA 0.9889 0.7556 0.9245 0.7912 

 

 

 

 

 

 

 

 

 

 

 



Table S9 Drug data statistics under the first-level ATC code 

Code Anatomical/Pharmacological Group Drugs number 

A Alimentary tract and metabolism 453 

B Blood and blood-forming organs 103 

C Cardiovascular system 493 

D Dermatologicals 352 

G Genito urinary system and sex hormones 246 

H Systemic hormonal preparations, excl. sex hormones and insulins 120 

J Antiinfectives for systemic use 476 

L Antineoplastic and immunomodulating agents 336 

M Musculo-skeletal system 185 

N Nervous system 612 

P Antiparasitic products, insecticides and repellents 115 

R Respiratory system 308 

S Sensory organs 293 

V Various 161 

The number of Drug-ATC pairs 4253 

The number of unique SMILES sequences 3491 

 

Table S10 Comparison of model effects of MLKNN and its ablation experiment for ATC 

classification 

 AUROC mAP Rank loss 

MLKNN 0.609±0.009 0.376±0.009 0.377±0.006 

ECFP_MLKNN 0.560±0.012 0.310±0.009 0.415±0.010 

* Values in the table are the mean ± variance of the five-fold cross-training 

* The best values of different metrics are bold 

  



Table S11 The hyperparameter search range and optimal settings of LightGBM and 

ECFP_LightGBM for toxicity prediction 

Hyperparameter name 
Search Range 

[range1, range2, step] 

Best Hyperparameter 

LightGBM ECFP_LightGBM 

n_estimators [100, 1000, 100] 900 900 

learning_rate [0.1, 0.5, 0.05] 0.2 0.45 

num_leaves [20, 1000, 20] 540 940 

max_depth [3, 12, 1] 6 9 

min_data_in_leaf [100, 500, 100] 100 100 

lambda_l1 [0, 100, 5] 0 0 

lambda_l2 [0, 100, 5] 0 10 

min_gain_to_split [0, 15, 0.1] 0.2 0.0 

bagging_fraction [0.2, 1.0, 0.1] 1.0 1.0 

bagging_freq [1] 1 1 

feature_fraction [0.2, 0.9, 0.1] 0.4 0.5 

 

Table S12 Comparison of LightGBM with other toxicity prediction models 

Featurization Model AUROC Accuracy F1 BACC MCC 

off-target-based 

RF 0.896±0.002 0.775±0.002 0.735±0.003 0.792±0.003 0.563±0.006 

SVM 0.880±0.003 0.793±0.005 0.720±0.008 0.779±0.006 0.556±0.010 

XGBoost 0.904±0.003 0.809±0.008 0.753±0.010 0.807±0.008 0.601±0.017 

LightGBM 0.912±0.007 0.824±0.005 0.769±0.006 0.819±0.005 0.630±0.009 

structure-based 

ECFP_LightGBM 0.774±0.010 0.705±0.009 0.618±0.009 0.694±0.008 0.381±0.015 

STDNN-SE 0.883±0.006 0.789±0.014 0.749±0.013 0.783±0.012 0.569±0.026 

DTox 0.738±0.039 0.703±0.022 0.560±0.065 0.666±0.038 0.344±0.067 

* Values in the table represent the mean ± variance of the five-fold cross-training. 

* The optimal values for various metrics are indicated in bold.  



Table S13 Drugs and their associated ADRs 

Pergolide Sertindole Sibutramine 
Phenylpropanolam

ine 

Abdominal pain Tremor Headache Angioedema Hypersensitivity Anxiety 

Dizziness Anxiety Insomnia Urticaria Suicidal ideation Arrhythmia 

Weight 

increased 

Weight 

decreased 

Orthostatic 

hypotension 

Body temperature 

increased 

Gastrointestinal 

disorder 

Central nervous 

system stimulation 

Asthenia Insomnia Sedation Anxiety Arrhythmia Neurotoxicity 

Hypercholestero

laemia 

Muscle 

twitching 
Ejaculation disorder 

Cardiac failure 

congestive 

Orthostatic 

hypotension 

Coordination 

abnormal 

Oedema 

peripheral 

Coordination 

abnormal 
Erectile dysfunction 

Salivary 

hypersecretion 

Ventricular 

tachycardia 

Electrocardiogram QT 

prolonged 

Diarrhoea Dysphagia Dizziness Confusional state Constipation Constipation 

Dyspepsia Hypersomnia Pallor Dysphagia Depression Confusional state 

Memory 

impairment 

Tardive 

dyskinesia 
Anxiety Dermatitis contact 

Anticholinergic 

syndrome 

Blood pressure 

increased 

Dyskinesia Rash Urinary retention Dizziness Dysuria Dizziness 

Hypertension Myoclonus Increased appetite Headache Cardiac arrest Hallucination 

Dysuria Tachycardia Hyperglycaemia Hypotension Nausea Hypersensitivity 

Constipation Haematuria Hyperprolactinaemia Nervousness Shock Nausea 

Extrapyramidal 

disorder 

Cardiac failure 

congestive 
Bone pain 

Cerebrovascular 

disorder  
Tachycardia Nervousness 

Body 

temperature 

increased 

Pulmonary 

hypertension 

Neuroleptic malignant 

syndrome 
Urinary retention 

Oedema 

peripheral 
Psychotic disorder 

Sleep disorder Nervousness Oedema Increased appetite Sleep disorder Tachycardia 

Headache Pain Galactorrhoea Insomnia Ureteral spasm Tremor 

Akathisia Palpitations Dyskinesia Dry skin  Vomiting 

Orthostatic 

hypotension 

Psychotic 

disorder 
Tardive dyskinesia   Dysphoria 

Heart rate 

increased 

Neuroleptic 

malignant 

syndrome 

Dystonia   Serotonin syndrome 

Intracranial 

pressure 

increased 

Urinary 

incontinence 
Akathisia   Insomnia 

  Parkinsonism   Sleep disorder 

  Miosis   Sensitisation 

  Sexual dysfunction   Cardiac failure 

  Tachycardia   Seizure 

 



Table S18 Comparison of ML-based ADR prediction models 

 AUROC mAP Rank loss 

off-target-based MLKNN 0.905±0.0008 0.389±0.0030 0.077±0.0006 

ECFP-based MLKNN 0.899±0.0006 0.345±0.0028 0.087±0.0008 

off-target-based RF 0.708±0.1460 Not Applicable Not Applicable 

ECFP-based RF 0.659±0.1250 Not Applicable Not Applicable 

 

 

Table S19 Molecular docking scores (kcal/mol) for pergolide and sertindole 

Drug name Target name PDB id Ref. Docking score 

Pergolide SLC6A4 5I73 [24, 25] -8.752 

Pergolide HTR7 7XTC [26] -6.458 

Sertindole CHRNA4 5KXI [27] -6.789 

Sertindole OPRK1 6B73 [28] -9.026 
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