
The Innovation, Volume 5
Supplemental Information
A multimodal integration pipeline for accurate diagnosis, pathogen

identification, and prognosis prediction of pulmonary infections

Jun Shao, Jiechao Ma, Yizhou Yu, Shu Zhang, Wenyang Wang, Weimin Li, and Chengdi
Wang



Supplemental Information 

A multimodal integration pipeline for accurate diagnosis, pathogen identification, 

and prognosis prediction of pulmonary infections 

Jun Shao, Jiechao Ma, Yizhou Yu, Shu Zhang, Wenyang Wang, Weimin Li, Chengdi 

Wang 

Table of Contents 

Figure S1. Overview of patient selection and data categorization. 

Figure S2. Performance of the MMI system for identifying four categories pneumonia 

in the internal testing set. 

Figure S3. Multimodal data fusion architecture. 

Figure S4. Performance of different fusion methods in the validation and internal 

testing datasets. 

Supplementary Table 1. Summary of clinical characteristics of enrolled patients for 

the training, validation, internal testing and external testing datasets.  

Supplementary Table 2. Performance of MMI system in identifying pulmonary 

infections.  

Supplementary Table 3. Performance of MMI system in identifying single infection 

and mixed infections.  

Supplementary Table 4. Performance of MMI system in identifying various 

pulmonary infections based on different fusion methods. 

Supplementary Table 5. Weighted error results of the MMI system vs. physicians in 

diagnosing pulmonary infections. 

Supplementary Table 6. Performance of different architectures in identifying 

pulmonary infections. 

MATERIALS AND METHODS 

Data acquisition 

Pre-processing 

Microbiological analysis  

Schema design 

Diagnosis system and network architectures 

NLP model development 

Multimodal data fusion 

Network training strategy 

Comparison of AI and physicians 

Prognosis analysis for integrating multimodal features 

Quantification and statistical analysis 



 

Figure S1. Overview of patient selection and data categorization. The study flow 

diagram presented the screening and categorization of patients with respiratory 

conditions at West China Hospital of Sichuan University and Chengdu ShangJin Nanfu 

Hospital. The process involved exclusion criteria application, resulting in 24,107 

eligible patients. Data were subdivided for various analyses: primary prediction of 

respiratory diseases, classification of infections, virus and bacteria prediction, and 

severe pneumonia identification. 

Abbreviations: A.baumannii, Acinetobacter baumannii; BP, bacterial pneumonia; 

E.coli, Escherichia coli; FP, fungal pneumonia; HMPV, human metapneumovirus; 

H.influenzae, Haemophilus influenzae; MRSA, Methicillin-resistant Staphylococcus 

aureus; M.tuberculosis, Mycobacterium tuberculosis; P.maltophilia, Pseudomonas 

maltophilia;  P.aeruginosa, Pseudomonasaeruginosa; PTB, pulmonary tuberculosis; 

RSV, respiratory syncytial virus; VP, viral pneumonia.



Figure S2 | Performance of the MMI system for identifying four categories 

pneumonia in the internal testing sets. A-C, The confusion matrix for identifying 

pneumonia based on clinical model (A), image model (B) and MMI system (C) in the 

internal testing set. 

Abbreviations: BP, bacterial pneumonia; FP, fungal pneumonia; MMI, multimodal 

integration; PTB, pulmonary tuberculosis; VP, viral pneumonia. 
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Figure S3 | Multimodal data fusion architecture. Upper left panel: Pre-processing and feature extraction stages for image, laboratory, and 

clinical text data inputs using Swin-Transformers and convolutional operations. Upper right panel: Depiction of the fusion process utilizing the 

Multimodal Cross-Attention Modules (MCAM), comparing early and late fusion methodologies. Lower panel: Detailed internal structure of the 

MCAM. 



 
Figure S4 | Performance of different fusion methods in the validation and internal 

testing datasets. A-B, The ROC curves of different fusion methods for identifying 

pulmonary infections in internal validation cohort (A) and internal testing cohort (B). 

A B



Supplementary Table 1. Summary of clinical characteristics of enrolled patients 

for the training, validation, internal testing and external testing datasets. 

 Subset 1 (N=24,107)    

Demographics 
Training 

(N=19,046) 

Validation 

(N=2,432) 

Internal Testing 

(N=2,433) 

External Testing 

(N=196) 

Age (years) 55.53±18.99 56.21±19.00 56.09±18.72 57.71±19.43 

Sex (male) 11,620(61.0%) 1,449(59.6%) 1,464(60.2%) 112(57.1%) 

Scans 59,490 7,497 7,554 625 

Infections     

Yes 11,439(60.1%) 1,389(57.1%) 1,422(58.4%) 154(78.6%) 

No  7,607(39.9%) 1,043(42.9%) 1,011(41.6%) 42(21.4%) 

 Subset 2 (N=13,361)    

Demographics 
Training 

(N=10,578) 

Validation 

(N=1,325) 

Internal Testing 

(N=1,325) 

External Testing 

(N=133) 

Age (years) 52.33±20.07 52.67±20.07 52.34±20.03 53.13±19.12 

Sex (male) 6,391(60.0%)  801(60.5%) 774(58.4%) 79(59.4%) 

Scans 33,411 4,267 4,094 425 

Infections types     

BP 5,278(49.5%) 686(51.8%) 688(51.9%) 72(54.1%) 

FP 3,702(35.7%) 484(36.5%) 480(36.2%) 51(38.3%) 

VP 2,321(21.8%) 266(20.1%) 270(20.4%) 29(21.8%) 

PTB 3,103(29.1%) 370(27.9%) 355(26.8%) 32(24.1%) 

Abbreviations: BP, bacterial pneumonia; FP, fungal pneumonia; VP, viral pneumonia; 

PTB, pulmonary tuberculosis.  



Supplementary Table 2. Performance of MMI system in identifying pulmonary 

infections.  

 Datasets 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Clinical model 

Validation 0.808(0.797–0.818) 0.765(0.754–0.779) 0.782(0.775–0.790) 0.868(0.861–0.875) 

Internal testing 0.787(0.776–0.798) 0.795(0.784–0.806) 0.792(0.784–0.800) 0.879(0.870–0.885) 

External testing 0.624(0.582–0.685) 0.775(0.732–0.822) 0.692(0.665–0.735) 0.770(0.737–0.815) 

Image model 

Validation 0.852(0.841–0.862) 0.831(0.819–0.842) 0.835(0.828–0.842) 0.918(0.913–0.923) 

Internal testing 0.845(0.836–0.855) 0.848(0.839–0.857) 0.836(0.830–0.842) 0.926(0.922–0.930) 

External testing 0.770(0.721–0.815) 0.777(0.732–0.821) 0.759(0.736–0.791) 0.830(0.792–0.867) 

MMI system 

Validation 0.864(0.855–0.872) 0.840(0.829–0.849) 0.846(0.839–0.852) 0.930(0.925–0.934) 

Internal testing 0.866(0.857–0.874) 0.838(0.829–0.848) 0.849(0.844–0.855) 0.935(0.932–0.939) 

External testing 0.852(0.813–0.889) 0.853(0.814–0.891) 0.919(0.898–0.937) 0.888(0.856–0.916) 

  



Supplementary Table 3. Performance of MMI system in identifying single 

infection and mixed infections.  

 Datasets 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Single 
infection 

Internal testing 0.864(0.841–0.890) 0.915(0.906–0.924) 0.904(0.895–0.912) 0.949(0.943–0.954) 

Mixed 
infections 

Internal testing 0.864(0.836–0.896) 0.765(0.728–0.805) 0.852(0.837–0.868) 0.876(0.861–0.890) 

  



Supplementary Table 4. Performance of MMI system in identifying various 

pulmonary infections based on different fusion methods.  

 Datasets 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Early fusion 
Validation 0.836(0.820–0.853) 0.850(0.840–0.861) 0.846(0.838–0.855) 0.905(0.900–0.910) 

Internal testing 0.846(0.830–0.860) 0.847(0.837–0.858) 0.848(0.838–0.856) 0.910(0.904–0.916) 

Intermediate 
fusion 

Validation 0.852(0.838–0.868) 0.879(0.869–0.889) 0.870(0.862–0.879) 0.922(0.918–0.927) 

Internal testing 0.849(0.833–0.863) 0.882(0.874–0.892) 0.870(0.862–0.879) 0.923(0.919–0.927) 

Late fusion 
Validation 0.867(0.852–0.883) 0.842(0.832–0.853) 0.851(0.843–0.860) 0.915(0.911–0.920) 

Internal testing 0.849(0.834–0.863) 0.865(0.856–0.875) 0.859(0.852–0.868) 0.917(0.913–0.923) 

  



Supplementary Table 5. Weighted error results of the MMI system vs. physicians 

in diagnosing pulmonary infections.  

Weighted errors Junior physicians Senior physicians MMI system 

Mean 24.10% 8.98% 13.52% 

Physician 1 23.03% 11.51% - 

Physician 2 25.17% 6.45% - 

  



Supplementary Table 6. Performance of different architectures in identifying 

pulmonary infections.  

 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

ResNet 0.793(0.782–0.806) 0.787(0.776–0.799) 0.786(0.778–0.794) 0.873(0.867–0.879) 

DenseNet 0.909(0.902–0.917) 0.745(0.735–0.753) 0.803(0.797–0.809) 0.881(0.877–0.886) 

Swin-
Transformer 

0.832(0.822–0.842) 0.849(0.840–0.859) 0.829(0.823–0.836) 0.927(0.923–0.931) 

Swin-
Transformer with 

cross-shaped 
0.866(0.857–0.874) 0.838(0.829–0.848) 0.849(0.844–0.855) 0.935(0.932–0.939) 

 

  



MATERIALS AND METHODS  

Data acquisition 

In this study, a comprehensive analysis was conducted utilizing data from hospitalized 

inpatients who were admitted to West China Hospital (WCH) of Sichuan University 

and Chengdu ShangJin Nanfu Hospital (CSJH). The inclusion criteria were as follows: 

(1) over the age of 18 years old; (2) with clear diagnosis regarding the presence or 

absence of pulmonary infection; (3) with complete medical information, inclusive of 

chest CT scans. The exclusion criteria were as follows: (1) patients without chief 

complaint, demographics, laboratory test reports and discharge reports; (2) with 

incomplete or poor-quality CT images, such as scans < 25 slices, motion artifacts or 

significant resolution reductions; (3) the type of pulmonary infection was unclear. The 

studies involving human participants were reviewed and approved by the Institutional 

Review Board and Ethics Committee of West China Hospital. 

The dataset consisted of CT images acquired in the axial direction at a resolution of 

512×512 pixels. The slice spacing varied ranged from 0.625 to 5 mm. These images 

were procured utilizing apparatuses furnished by illustrious entities such as Philips, GE 

Healthcare, United Imaging, and Siemens Healthineers. During the CT examinations, 

a tube voltage of 120 kilovolts peak (kVp) was consistently employed. To optimize 

image quality and minimize radiation exposure, an automatic tube current modulation 

technique was employed to modulate the tube current. The range of the tube currents 

used was 30 to 70 milliamperes (mAs). A stringent quality control procedure was 

implemented to ensure the integrity and reliability of the collected data. 

 

Pre-processing 

Furthermore, to ensure uniformity and enhance the quality of the CT scans, 

standardized image pre-processing protocols were instituted. These corrective 

interventions were enacted to attenuate any potential variations or biases resulting from 

the imaging process or equipment used. This study adopted a two-step process for 

analysing the CT scans obtained during the same patient admission, with a specific 

focus on the chest sequences. First, an evaluation of the convolution kernel utilized to 

fabricate each set of CT scans was conducted. This analysis aimed to elucidate and 

compensate for the variations or disparities stemming from the specific convolution 

kernel utilized. To ensure optimal resolution, all radiographs were initially screened, 

eliminating low-quality scans or discontinuities. Subsequently, all the continuous 

DICOM sequences were merged to generate a cohesive three-dimensional (3D) volume 

representation of the scans.75 This merging process allowed the consolidation of 



multiple sequences into a single comprehensive dataset. To meet the input requirements 

of the model, the dimensions of the resulting 3D volume were modified to 64 × 256 × 

256. This resizing ensured compatibility and consistency across all the scans. By 

adhering to these protocols, the objective was to standardize the data and prepare it for 

further analysis, thereby guaranteeing that the input to the model remained uniform 

while focusing on the chest region. 

In contrast, clinical text data of each patient were extensively collected. This 

comprehensive dataset encompassed a myriad of aspects concerning patient health 

records. Basic demographic information was assembled such as age, sex, and the 

highest body temperature recorded at the time of admission. Furthermore, the chief 

complaints reported by the patients upon admission were diligently documented 

providing insight into their specific symptoms or concerns. This information provided 

a rich contextual backdrop for analyzing their health conditions. In addition to the 

patient demographic details and chief complaints, their laboratory test results were also 

collected. These laboratory test results covered various markers pertaining to different 

aspects of health evaluation. For instance, liver biochemical markers, including 

albumin, serum lactic dehydrogenase (LDH), and indirect bilirubin were recorded. 

Moreover, coagulation markers such as thrombin time (TT), activated partial 

thromboplastin time (APTT), and platelet count were analyzed. These markers 

provided insights into the blood coagulation abilities and potential clotting disorders. 

To acquire a holistic view of the patients' health status, electrolyte and acid-base 

balance markers were also recorded such as Na+, K+, and HCO3
-. These markers were 

instrumental in assessing the patients' overall electrolyte levels and acid-base 

equilibrium. To assess the inflammatory response, inflammatory markers were 

incorporated into the dataset. These included C-reactive protein (CRP) level, white 

blood cell count, lymphocyte count, and neutrophil count. Additionally, procalcitonin 

(PCT) and interleukin 6 (IL-6) levels as indicators of inflammation were measured, 

which provided insightful information regarding the patients' immune responses. 

In the pre-processing of the structured data, a normalized approach was employed to 

capture and quantify over 50 factors that played a role in determining whether a patient 

had severe pneumonia. For the laboratory data, a median imputation technique was 

utilized to address missing values within the factors. When the missing rate for a 

specific marker was more than 50%, the factor was either excluded, its influence 

significantly diminished, or compensation for the absent markers was applied. By 

leveraging the median values of the available data for a particular marker, the missing 

values were effectively imputed, ensuring that the dataset remained as complete as 

possible for subsequent analysis. This approach helped mitigate the potential biases 



introduced by missing data and preserved the integrity and comprehensiveness of the 

dataset. On the other hand, when it came to unstructured data such as the chief 

complaints recorded in free-text format, a robust natural language processing (NLP) 

algorithm was leveraged to extract the corresponding tokens. This NLP algorithm was 

able to process and parse the textual data, extracting relevant information and 

converting it into a structured format suitable for further analysis. By employing this 

NLP technique, the unstructured data was effectively harnessed, extracting valuable 

insights to augment the analysis. By combining a normalized approach for structured 

data and leveraging NLP algorithms for unstructured data,76 the accuracy and 

completeness of the clinical record dataset information was ensured. 

 

Microbiological analysis  

To thoroughly investigate the various types of pulmonary infections in this study, the 

laboratory test results and benchmarked clinical diagnosis were comprehensively 

analyzed as the gold standard. To diagnose the specific viral subtypes, nucleic acid tests 

for respiratory pathogens were executed. These tests facilitated the discernment of an 

array of respiratory viruses, including influenza B virus, human metapneumovirus 

(HMPV), coronavirus, parainfluenza virus, respiratory syncytial virus (RSV), influenza 

A virus, H1N1pdm09, adenovirus, and rhinovirus. Similarly, for diagnosing bacterial 

pathogens, combined nucleic acid tests for respiratory pathogens were employed to 

analyze the distribution of different bacteria and isolate them for identification. This 

approach enabled the concurrent detection of clinically common lower respiratory tract 

bacterial pathogens, namely methicillin-resistant Staphylococcus aureus (MRSA), 

Mycobacterium tuberculosis, Pseudomonas maltophilia, Escherichia coli, 

Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus, Pseudomonas 

aeruginosa, and Acinetobacter baumannii. 

 

Schema design 

The schema employed in this study encompassed a series of modules that replicated the 

sequential diagnostic process undertaken by clinicians in real-world clinical settings. 

This schema was architected to extract relevant information from the symptoms, CT 

scans, and laboratory assay results to aid in diagnosing patients. The overall goal was 

to maximize data interoperability across diverse medical facilities for future research 

purposes. The diagnostic process began with the admission of a patient, whereupon the 

clinician initially assessed the patient's basic condition and laboratory examination 

results (subset 1). Based on this information, the clinicians determined whether the 

patient had an infectious disease. If the answer was affirmative, indicating the presence 



of an infectious disease, the diagnostic process proceeded further. In the next step, the 

clinicians focused on determining the specific categorical infection type for the patient 

and prescribing the appropriate antibiotic treatment (subset 2). Subsequently, if the 

patient was diagnosed with viral or bacterial pneumonia, the schema applied additional 

modules to identify more refined subtypes of infections (subset 3 and subset 4). This 

step enabled a more granular classification of the pneumonia subtype, which could 

guide treatment decisions and further inform the clinical management of the patient. 

Moreover, for patients confirmed to be infected, the schema incorporated a prospective 

prediction module to estimate the likelihood of progression into severe pneumonia 

(subset 5). This predictive analysis would serve as a valuable tool for assessing the 

potential severity of the infections, enabling proactive intervention strategies to prevent 

or manage the development of severe illness.  

 

Diagnosis system and network architectures 

The deep-learning model employed for subtyping of infectious diseases was based on 

the Swin-Transformer architecture.77 The model structure comprised multiple 

components, including a token embedding layer and four stage blocks. Each stage block 

was interfaced to a convolutional layer that performed subsampling of the feature maps. 

This design followed a similar pattern to a typical ResNet-50 architecture. The model 

harnessed a token-embedding layer to represent the input data in a suitable format for 

deep learning computations.78 The token embeddings captured the essential information 

from the input, serving as the input for subsequent stages of the model. To enhance the 

model's performance further, convolutional layers were strategically situated 

subsequent to each stage block. These convolutional layers undertook subsampling of 

the feature maps, thereby reducing their spatial dimensions while increasing the number 

of feature channels. This down-sampling process fortified the model's receptive scope 

and enhanced its ability to capture and characterize relevant features. The model 

architecture exhibited a methodical escalation in the number of dimensions after each 

down-sampling operation. This increase in dimensions contributed to the expansion of 

expressive capacity of the model and allowed for better feature representation and 

discrimination.  

Next, the pre-processed normalized 3D volume (64 × 256 × 256) was input into the 

convolutional token embedding (CTE) module. To optimize computational efficiency, 

a 2 × 7 × 7 convolution kernel with a stride of four was opted. This convolution 

operation directly embedded the input volume, thereby alleviating the computational 

burden while preserving the essential information within the data. Within each stage 

block, two stacked pre-normalization were incorporated to enhance the learning 



capability of the model. The first pre-normalization consisted of LayerNorm and Cross-

shaped window self-attention operations, along with a shortcut connection. The second 

pre-normalization step comprised LayerNorm and a multi-layer perceptron (MLP). 

Compared with the traditional Swin-Transformer architecture, the cross-shaped 

window blocks utilized in the model were designed to be computationally efficient 

(Table S6). By incorporating these pre-normalization layers and carefully managing the 

connections between them, a model that required fewer computations was achieved 

while maintaining strong representation and learning capabilities. 

The diagnostic results derived from the CT scans, along with the corresponding 

multimodal input data, were fed into the subtype diagnosis multilabel classification 

module to obtain predictions for a spectrum of pneumonia subtypes, including bacterial 

pneumonia (BP), fungal pneumonia (FP), viral pneumonia (VP), and PTB. To 

effectively capture discriminative features from both the image data and text data, the 

cross-attention mechanism was employed. This attention mechanism conferred the 

model to selectively concentrate on the relevant regions and textual information 

contributing to the subtype diagnosis. By attending to specific regions of the radiologic 

volume and relevant textual features, the model could learn the distinctive patterns and 

characteristics associated with different pneumonia subtypes. 

 

NLP model development 

Then a free-text information extraction model was developed to extract and reformat 

the chief complaint and history of present illness features from unstructured text data. 

This model employed NLP techniques (such as BERT) to analyze and extract relevant 

information from the textual input.79,80 BERT is trained on an expansive corpus of text 

data, enabling the generation of high-quality contextualized word embeddings. These 

embeddings were utilized for pre-processing and initial feature learning in this study. 

To manipulate the structured data, such as laboratory test results, a normalization 

technique was employed to generate vector representations for specific factors (such as 

CRP). This normalization process contributed to standardizing the data and rendering 

them suitable for analysis. Furthermore, to enhance the analysis, a multi-layer fusion 

module was introduced. This module facilitates the bidirectional feature embedding of 

structured laboratory features and unstructured medical record features. By leveraging 

this mechanism, the interdependencies and relationships between different data 

elements were captured. Additionally, a structured data extraction model was 

implemented, specifically designed for extracting features from laboratory 

examinations and basic demographic information. This model processed the structured 

data to extract and normalized meaningful features that were relevant to the diagnosis 



and classification of pneumonia. The combination of these information extraction 

models was able to transform unstructured free-text data and structured laboratory data 

into more structured and usable formats. 

Explicitly, the model accepted either the free-text input of the chief complaint and 

history of the present illness or the structured-text input of laboratory data. It processed 

these inputs and generated multiple discrete vector features as outputs. Patient records 

could vary significantly in terms of length and the density of data points. To ensure 

consistent and efficient processing, the data was vectorized into a structured format 

with multiple lines. Each line had a specified length of 200, which allowed for better 

data organization and handling. This vectorization approach was able to handle 

variable-length input data in a consistent manner, ensuring compatibility and ease of 

processing. The NLP model, with its vectorization scheme, affords the efficient 

extraction of features from the chief complaint, history of the present illness, and 

laboratory data, delivering valuable and fixed-length inputs for downstream tasks in 

pulmonary infections diagnosis and classification. 

 

Multimodal data fusion 

To enhance diagnostic accuracy and robustness, multimodal data fusion techniques 

have been utilized to combine multiple modalities, such as CT scans, chief complaints, 

and laboratory testing, to enhance diagnostic accuracy and robustness. In the infection 

diagnosis pipeline, different approaches were adopted based on the fusion level. These 

approaches encompassed early fusion, in which the raw modalities were combined 

before feature extraction; intermediate fusion, where the features from each modality 

were concatenated before classification; and late fusion, where the classification results 

from each modality were combined (Figure S4). To integrate the two modalities, an 

attention-based structure known as cross attention was also employed. This approach 

facilitated the efficacious capitalization of the complementary information in 

multimodal data, culminating in efficiency and reduced computational complexity. 

However, although the aforementioned self-attention module effectively captured 

intramodality relationships, it did not explore the inter-modality relationships, such as 

the relationship between image regions and sentence words. Therefore, the Cross-

Attention Module was utilized in this study, which modeled both the inter-modality and 

intra-modality relationships within a harmonized framework.81 

 

Network training strategy 

During the training process, the parameters of the Transformer model underwent initial 

pre-training using the unsupervised learning of visual features. This pre-training phase 



involved contrasting cluster assignments, allowing the model to forge meaningful 

representations from the input data without explicit labels or annotations. The goal was 

to capture rich visual features that could be leveraged in ensuing supervised tasks. To 

train and test this model, the PyTorch deep-learning framework was run on a system 

equipped with 8 NVIDIA TITAN RTX GPUs. The AdamW optimizer was employed 

to train the model, incorporating a weight decay of 0.0001, to train the model. The 

learning rate was initialized to 0.001, which was then decayed by a factor of 10 after 

the 35th, 40th, and 50th epochs to fine-tune the training process. All the models were 

trained for 60 epochs. Constrained by GPU memory limits, the batch sizes for optimal 

performance were adjusted. Specifically, the batch size of each GPU was set to 16. 

These batch-size configurations allowed for efficient processing and training of the 

model while maximizing the utilization of available computational resources. 

For the models based on subset 1 and subset 2, patient cases were randomly divided 

into two sets: a training set comprising 80% of the cases and a test set comprising the 

remaining 20%. These sets were utilized to train the models and evaluate their 

performance. Random splitting ensured the unbiased distribution of cases across the 

training and test sets. In the context of subset 3 and subset 4, where the focus was on 

less frequent diseases, additional measures were taken to account for the rarity of these 

conditions and to enhance the robustness of the AI system's identification capabilities. 

To achieve this, the representation of these rare diseases within the validation and 

testing sets were deliberately augmented. Particularly, in the testing subset, the rare 

diseases were represented 40%, exceeding their prevalence in the overall patient 

population. This strategy was devised to present a more challenging evaluation 

scenario and validate the ability of the model to accurately identify and classify these 

less frequent diseases. To broaden validation and generalize final results, a five-fold 

cross-validation approach was employed. The experiment was replicated five times for 

each disease model. 

 

Comparison of AI and physicians 

Then we compared the performance of an AI framework with that of physicians in 

analyzing CT scans, chief complaints, and laboratory tests from electronic health 

records (EHR) to diagnose infections. The gold standard for diagnosis was established 

on sputum culture, polymerase chain reaction (PCR) or molecular testing results. To 

ensure a fair comparison, four practicing physicians were recruited to partake in the 

study. The physicians were categorized into two groups based on their level of clinical 

tenure: a junior group, consisting of physicians with less than 10 years of experience, 

and a senior group, consisting of physicians with over 10 years of experience. The 



performances of the AI framework and the human physicians were evaluated using a 

weighted errors metric based on penalty scores. This evaluation metric was contrived 

to reflect the clinical performance of the AI system and physician expertise. During the 

testing phase, the AI framework and the physicians were furnished with the identical 

dataset, which comprised CT scans, corresponding chief complaints, and laboratory 

testing results from the electronic health records. The performance of each entity was 

assessed against the gold standard, evaluating their competence to gold standard 

accurately. 

 

Prognosis analysis for integrating multimodal features 

To decipher the influence of each factor on severe pneumonia, a machine-learning 

approach was employed to extract quantized factors and non-quantized multimodal 

feature (M-score) from clinical texts, images. These features were subsequently used in 

a prognostic prediction model, employing the widely recognized gradient-boosting 

decision tree algorithm (GBDT) as the classifier 82. To construct a comprehensive 

predictive score for the clinical outcome, the image features extracted by the AI system 

were combined with relevant clinical parameters, such as age, albumin levels, blood 

oxygen saturation, CRP, and other pertinent factors. This composite score was applied 

to predict the progression to critical illness, measured by the need for intensive care unit 

(ICU) transfer, mechanical ventilation, or death, and also considering the time elapsed 

since the initial hospital admission. Clinical and radiological features were selected 

predominantly based on their correlation with the severity status. The importance of 

these features was appraised by examining the magnitude of the log-rank test statistics 

using the Shapley Additive exPlanation (SHAP) method. This enabled physicians to 

visualize the impact of the relevant risk factors on the prognostic prediction of critical 

illnesses, providing valuable insights into the factors that influence disease progression. 

To ensure the robustness and reliability of the model, its performance was validated 

using a five-fold cross-validation approach, which allowed physicians to tune the 

optimal hyperparameters and assess the consistency and accuracy of the model across 

different data subsets. 

The random survival forest method was suitable for integrating high-dimensional 

features. In this study, this method was employed to analyse the data and engender a 

multi-model score ranging from 0 to 1. This score epitomizes the average expected 

number of events across all the random survival forest model trees. By instituting a cut-

off score of 0.5, patients were classified into two distinct groups: a high-risk group 

(with a score greater than 0.5) and a low-risk group (with a score less than 0.5). This 

stratification facilitated the differentiation of patients according to their predicted risks 



of adverse outcomes. To delve deeper into stratified groups, the Kaplan-Meier estimator 

was utilized to calculate the survival times for high-risk and low-risk groups. 

Additionally, a log-rank test was conducted to evaluate the statistical significance of 

the differences observed between the two groups regarding survival outcomes. 

 

Quantification and statistical analysis 

The MMI system was architected to perform multilabel classification and prognostic 

prediction tasks. To evaluate classification performance, the mean macro area under the 

receiver operating characteristic curve (AUC) was employed as a performance metric. 

Confidence intervals (CIs) were computed using a bootstrapping approach with 

nonparametric, unstratified resampling (1000 times) to estimate the uncertainty in the 

AUC estimates. Diagnostic performance of the system was quantified through the 

metrics of its sensitivity, specificity, and accuracy at the selected operating points. The 

operating point was selected to strike a balance between a low false negative diagnostic 

rate (sensitivity) and a low positive rate (1-specificity), with the thresholds adjusted 

accordingly. For statistical correlation significance, Pearson's and Spearman's 

correlation tests were used, supplemented by Holm-Bonferroni method for multiple 

comparisons. Normally distributed data were described using the mean and standard 

deviation (SD), while non-normally distributed data were described using the median 

and interquartile range (IQR). Categorical variables were presented as numbers and 

percentages. The deep learning models were trained, validated, and tested using 

PyTorch (v1.11.0), a renowned deep learning framework. For the data analysis, the 

scikit-learn library was utilized in Python. Graphs and visualizations were crafted using 

Python libraries (Matplotlib and Seaborn). Kaplan-Meier survival curves were 

generated to approximate the diagnosis time based on follow-up visits. The log-rank 

test compared the survival curves between the subgroups, allowing physicians to assess 

any significant differences in the time to diagnosis. The codes that support the findings 

of this study were available as follows: https://github.com/chiehchiu/MMI 
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