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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Multimodal integration pipeline could diagnose pulmonary infections based on clinical characteristics, CT images, and

laboratory test results.

- The pipeline achieved diagnostic performance comparable with senior physicians.

- In addition to assessing pulmonary infections, the automated system could also predict progression to critical illness and
facilitate early intervention.
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Pulmonary infections pose formidable challenges in clinical settings with
high mortality rates across all age groups worldwide. Accurate diagnosis
and early intervention are crucial to improve patient outcomes. Artificial in-
telligence (AI) has the capability to mine imaging features specific to
different pathogens and fuse multimodal features to reach a synergistic
diagnosis, enabling more precise investigation and individualized clinical
management. In this study, we successfully developed a multimodal inte-
gration (MMI) pipeline to differentiate among bacterial, fungal, and viral
pneumonia and pulmonary tuberculosis based on a real-world dataset of
24,107 patients. The area under the curve (AUC) of the MMI system
comprising clinical text and computed tomography (CT) image scans
yielded 0.910 (95% confidence interval [CI]: 0.904–0.916) and 0.887 (95%
CI: 0.867–0.909) in the internal and external testing datasets respectively,
which were comparable to those of experienced physicians. Furthermore,
the MMI system was utilized to rapidly differentiate between viral subtypes
with a mean AUC of 0.822 (95% CI: 0.805–0.837) and bacterial subtypes
with amean AUC of 0.803 (95% CI: 0.775–0.830). Here, theMMI system har-
bors the potential to guide tailored medication recommendations, thus miti-
gating the risk of antibiotic misuse. Additionally, the integration of multi-
modal factors in the AI-driven system also provided an evident advantage
in predicting risks of developing critical illness, contributing to more
informed clinical decision-making. To revolutionizemedical care, embracing
multimodal AI tools in pulmonary infections will pave the way to further
facilitate early intervention and precise management in the foreseeable
future.
INTRODUCTION
Lower respiratory tract infections are one of the leading causes of deathworld-

wide and contribute to a significant disease burden, which impacted 344 million
people and resulted in 2.18million deaths according to the 2021Global Burden of
Diseases study.1,2 Pneumonia—attributable to bacteria, viruses, and fungi—is
recognized as the most pervasive infectious disease globally, further aggravated
by the COVID-19 pandemic.3 In addition,Mycobacterium tuberculosis also poses
a significant lung infection risk, with 6.2million people diagnosedwith pulmonary
tuberculosis (PTB) worldwide.4,5 There are variations in the treatment strategies
for different pathogens, but a staggering 62% of patients lack a definitive path-
ogen diagnosis.6–8 The traditional diagnostic gold standard requires obtaining
respiratory samples for microbial smears or cultures, which is plagued by insen-
sitivity and protracted processing time.3,9 Once pulmonary infections patients
receive delayed treatment and develop severe disease, their mortality rate soars
to 50%.10 Hence, a rapid and accuratemethod for pulmonary infection diagnosis,
pathogen detection, and severe disease prediction is urgently needed in clinical
scenarios.

The diagnosis of pulmonary infections calls for a multifaceted approach
encompassing clinical assessments, laboratory tests, and other indica-
tors.3,11 The predominant symptoms, cough and expectoration, are com-
mon clinical manifestations. Additionally, peripheral blood leukopenia has
ll
significance in bacterial infection, signaling critical illness and an unfavor-
able prognosis. Chest computed tomography (CT) also acts as a crucial
supportive tool for diagnosing pulmonary infections, offering three-dimen-
sional representations of pulmonary structures.12 Discrepancies exist in
the imaging manifestations of different types of pathogenic infections.
For example, the imaging of bacterial pneumonia typically reveals alveolar
infiltrates or solid changes, whereas the imaging of viral pneumonia is
characterized mostly by ground-glass opacities (GGOs) alongside solid
shadows.11 In cases of severe pneumonia, the percentage of lesion-
involved areas in the chest CT images of patients frequently exceeds
50%.13 However, the radiographic manifestations of pneumonia exhibit
an overlap across diverse pathogens, and the imaging signs of specific
pathogenic infections can vary among individuals. This phenomenon com-
plicates the accurate diagnosis of pulmonary infections for physicians and
renders the non-invasive identification of the pathogen even more
challenging.
The rapid development of artificial intelligence (AI) technology has cata-

lyzed innovation regarding medical tasks.14–18 AI models have garnered
remarkable results in skin cancer subtype classification, diabetic retinop-
athy diagnosis, respiratory disease diagnosis, and prognosis assess-
ment.19–24 With the evolution of AI technology, a trend of multimodal
fusion has emerged, providing a more comprehensive approach that reso-
nates with real-world clinical applications.25–28 In terms of pulmonary in-
fections, a surge of intelligent diagnostic models has been noted in recent
years.29–37 For instance, advanced diagnostic architectures employing the
DenseNet-121 deep learning network have been established to identify
viral, non-viral, and COVID-19 pneumonia based on chest X-ray (CXR) im-
ages, demonstrating impressive discrimination capabilities (area under
the curve [AUC]: 0.867–0.966).29 Another convolutional neural network
model using CXR images was constructed to diagnose PTB with an AUC
of 0.992 (95% confidence interval [CI]: 0.961–1.000), and the performance
of the pre-trained network was 11% higher than that of the untrained
network.30 However, CXR is a two-dimensional imaging technique with
inherent limitations regarding diagnostic utility. Furthermore, an AI model
based on the quantitative analysis of CT images was constructed to auto-
matically localize typical foci of pneumonia, such as GGOs and solid
changes, accurately distinguishing pneumonia with remarkable preform-
ance (AUC: 0.975).31 Additionally, investigations have integrated CT images
with clinical information from diverse cohorts to rapidly diagnose pulmo-
nary infections patients, outperforming the single-modality model (AUC:
0.92 vs. 0.80).32 However, the majority of studies focus narrowly on individ-
ual pathogen but ignore the complexity of multiple infection types. More-
over, merely utilizing unimodal imaging data for detecting pneumonia
have curtailed the ability of these AI models to make a more detailed
and accurate diagnosis compared to the use of multimodal information,
which integrates data from various dimensions.
In this study, we developed a multimodal integration (MMI) pipeline to assist

with the precise diagnosis of bacterial, fungal, and viral pneumonia as well as
PTB and to facilitate pathogen prediction (Figure 1). In addition, crucial features
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Figure 1. Overview of the multimodal integration (MMI) pipeline for pulmonary infection management (A) Patients were identified and divided into training (WCH, N = 19,046),
validation (WCH, N = 2,432), internal (WCH, N = 2,433), and external testing (CSJH; N = 196) datasets for the MMI system. (B) Development of the MMI system through the integration
ofmultimodal data. It integratedmultimodal information, including unstructured text, images, lab assay results, and structured text to construct the system. (C) Application of theMMI
system in clinical settings for the diagnosis of infectious diseases, identification of pathogens, and risk prediction of critical patients, showcasing the actual utility of the AI model in
managing pulmonary infections. CSJH, Chengdu ShangJin Nanfu Hospital; ICU, intensive care unit; WCH, West China Hospital.
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were filtered to predict the probability of severe pneumonia. The MMI system
holds the potential to assist physicians with improving clinical efficiency and
personalizing the fine management of patients with pulmonary infections.

RESULTS
Participant characteristics

An extensive large dataset of 161,258 chest CT scans from 54,581 patients
with associated clinical information and laboratory examinationswas assembled
from West China Hospital (WCH) of Sichuan University and Chengdu ShangJin
Nanfu Hospital (CSJH). The data from WCH were employed for training, valida-
tion, and internal testing, while the data from CSJH served as an external testing
set to ensure the robustness of the model. The study population (subset 1, pri-
mary prediction) consisted of 24,107 patients to discriminate pulmonary infec-
tions (Table S1).

To advance the retrospective diagnosis of infection subtypes and prognosti-
cate severe acute respiratory failure, we developed the multimodal system to
predict four infections, specific infectious pathogens, and severe pneumonia
utilizing distinct subsets (Figure S1). Subset 2 (infection classification, N =
13,361) was utilized to construct and validate the performance of the MMI sys-
tem in predicting primary infections. The infections were categorized into four
types: bacterial pneumonia (BP), fungal pneumonia (FP), viral pneumonia (VP),
and PTB. Additionally, subset 3 (virus subtypes prediction, N = 2,520) and sub-
set 4 (bacteria subtypes prediction, N = 535) were employed to identify the spe-
cific infectious pathogens associated with the viral and bacterial pneumonia.
2 The Innovation 5(4): 100648, July 1, 2024
Furthermore, subset 5, consisting of 2,672 patients with severe pneumonia,
was thoroughly examined. Severe pneumonia was defined based on criteria
including clinical need for transfer to the intensive care unit (ICU), the require-
ment for mechanical ventilation, or death. These patients were identified based
on their progression to critical outcomes after admission. This subset was spe-
cifically selected to evaluate the performance of our system in predicting crit-
ical outcomes that occurred 14 days after admission, specifically targeting pa-
tients at a higher risk of developing acute respiratory failure.

MMI system development
The proposed disease recognition system incorporated clinical medical re-

cords, laboratory test results, and CT images to expedite the identification of pul-
monary infections. To effectively extract information from medical records text,
we leveraged bidirectional encoder representations from transformers (BERT),
an advanced network-basedpre-training technique for natural language process-
ing.38,39 Additionally, to capture the spatial features of the CT image findings, we
utilized image-based backbone networks known as Swin-transformer struc-
tures.40,41 The Swin-transformer is an architecture based on transformer that hi-
erarchically process input tokens. This hierarchical processing allows for the
incorporation of larger patch sizes and deeper models, thus enhancing perfor-
mance in image recognition tasks while maintaining computational efficiency.
To further bolster the performanceand exploit the complementary information

from textual and image features, thismultimodal system integrated basic demo-
graphic details, chief complaints, laboratory test results, and CT scans to assess
www.cell.com/the-innovation

http://www.thennovation.org
http://www.thennovation.org


Figure 2. Performance of the MMI system in identifying patients with pulmonary infections (A) Comparison of the receiver operating characteristic (ROC) curves of the clinical
model, image model, and MMI system for detecting pulmonary infections in the validation, internal testing, and external testing datasets. (B–D), The ROCs for predicting four pul-
monary infection types (bacterial pneumonia, fungal pneumonia, viral pneumonia, and PTB) utilizing the clinical model (B), image model (C), and MMI system (D) in the validation,
internal testing, and external testing datasets. BP, bacterial pneumonia; FP, fungal pneumonia; PTB, pulmonary tuberculosis; VP, viral pneumonia.
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Table 1. Performance of the MMI system in identifying BP, FP, VP, and PTB

Dataset Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) AUC (95% CI)

Clinical model Validation 0.830 (0.816–0.847) 0.760 (0.747–0.772) 0.786 (0.777–0.795) 0.860 (0.855–0.867)

Internal testing 0.785 (0.764–0.804) 0.779 (0.767–0.792) 0.788 (0.777–0.798) 0.850 (0.844–0.856)

External testing 0.706 (0.644–0.765) 0.875 (0.846–0.904) 0.788 (0.755–0.821) 0.840 (0.824–0.860)

Image model Validation 0.838 (0.822–0.854) 0.832 (0.820–0.843) 0.832 (0.824–0.842) 0.896 (0.891–0.901)

Internal testing 0.847 (0.829–0.861) 0.806 (0.795–0.819) 0.821 (0.812–0.830) 0.894 (0.890–0.900)

External testing 0.883 (0.853–0.920) 0.711 (0.674–0.749) 0.755 (0.727–0.788) 0.856 (0.840–0.872)

MMI system Validation 0.836 (0.820–0.853) 0.850 (0.840–0.861) 0.846 (0.838–0.855) 0.905 (0.900–0.910)

Internal testing 0.846 (0.830–0.860) 0.847 (0.837–0.858) 0.848 (0.838–0.856) 0.910 (0.904–0.916)

External testing 0.880 (0.819–0.944) 0.800 (0.766–0.839) 0.835 (0.807–0.865) 0.887 (0.867–0.909)
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infectious diseases. Employing an attention architecture, we amalgamated the
unimodal feature spaces learned from clinical and image data into a unified rep-
resentation, forming the multimodal features. By extracting discriminative fea-
tures from the clinical and image data, this systemcaptured the specific informa-
tion characteristics of each modality. These features were then integrated into a
shared feature space, allowing the capture of intricate relationships and
leveraging complementary information across different modalities. This integra-
tion augmented disease identification accuracy, empowering theMMI system to
integrate multiple sources of information and effectively make precise
predictions.
Figure 3. Performance of the MMI system using different fusion approaches in identifyin
fusion, intermediate fusion, and late fusion. Further details were provided in Figure S4. (B)
mance, bacterial pneumonia, fungal pneumonia, viral pneumonia, and pulmonary tuberculo
boxplots representing the statistical distribution of AUCs, including maximum, minimum, me
A t test was used to calculate the p value between approaches: ****p < 0.0001.

4 The Innovation 5(4): 100648, July 1, 2024
Accurate diagnosis of pulmonary infections
In this primary prediction task, our findings demonstrated that both clinical fea-

tures and image features alone exhibited significant discriminative power in dis-
tinguishing infections from cases without infections, thus achieving a satisfac-
tory baseline performance (Figure 2A; Table S2). Specifically, the clinical model
achieved an AUC of 0.879 (95% CI: 0.870–0.885), while the image model
achieved an AUC of 0.926 (95% CI: 0.922–0.930) on the internal testing cohort.
These results underscore the potential of both clinical and image features as
valuable discriminators for infections amid lower respiratory tract conditions.
Nevertheless, integrating these features resulted in a substantial improvement
g pulmonary infections types (A) Structure diagram of different fusion strategies: early
Evaluation of the three fusion approaches to predict pneumonia types (average perfor-
sis) in the internal testing dataset. The performance measures were visualized through
dian, and upper and lower quartiles of a set of data (first/third quartile) as well as outliers.
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Figure 4. Benchmarking the MMI system vs. physicians in diagnosing pulmonary infections (A) The diagnostic performance of the MMI system and physicians for BP, FP, VP, and
PTB. (B) Weighted error results based on penalty scores. (C–E), The confusion matrix of the MMI system (C), junior physicians (D), and senior physicians (E) to differentiate among
various types of pulmonary infections.
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in the performance of the MMI system. When combined, the accuracy of MMI
system increased significantly to 0.849 (95% CI: 0.844–0.855), with a sensitivity
of 0.866 (95% CI: 0.857–0.874), specificity of 0.838 (95% CI: 0.829–0.848), and
AUC of 0.935 (95% CI: 0.932–0.939) (Table S2). These findings emphasized
the critical role of multi-information integration and the effectiveness of fusion
strategies in enhancing the accuracy of infection identification. The combination
of clinical and image features furnished amore comprehensive andmore robust
framework to accurately discriminate pulmonary infections from other diseases
with heightened accuracy.

Remarkably, themultimodal system demonstrated exemplary performance in
identifying infections within the external testing set. It achieved amean accuracy
of 0.919 (95% CI: 0.898–0.937), signifying a remarkably high level of overall cor-
rectness (Table S2). Additionally, the AUC exhibited a significant improvement,
increasing from 0.830 (95% CI: 0.792–0.867) of the image model to 0.888
(95% CI: 0.856–0.916) of the MMI system. This notable increase further corrob-
orated superior generalization ability of the MMI system in handling unknown
data distributions and highlights its robustness in accurately distinguishing be-
tween infected and non-infected cases.

Performance of MMI system in single and mixed infections
It is notable that the current AI models tend to focus on single infection,

often neglecting mixed infections. This narrow focus will potentially jeopar-
dize their efficacy and impede their practical applications. To solve this
problem, we utilized multilabel system to distinguish between single infec-
tion type and more than one infection type. This approach enabled us to
assess the performance of the model in a more diverse and clinically rele-
vant setting.

When comparing the diagnosis of single-infection patients to that of mixed in-
fections, the latter posed greater challenges, as indicated in Table S3. Remark-
ably, the performance of the single infection model yielded an impressive AUC
ll
of 0.949 (95% CI: 0.943–0.954), while the mixed infections cases still achieved
a respectable AUC of 0.876 (95% CI: 0.861–0.890). These results highlighted
the capability of ourmultilabelmultimodalmodel to deliver superior performance
in both the relatively simpler cases of single infection and the more complex
cases of mixed infections.

Precise classification of infectious diseases
Pulmonary infections encompass various subtypes, such as bacterial,

fungal, and viral pneumonia and PTB. Nevertheless, accurate differentia-
tion of respiratory tract infections presents a formidable challenge, even
for experienced physicians in tertiary hospitals. When considering clinical
features alone, the model achieved an accuracy of 0.788 (95% CI:
0.777–0.798) and an average mean AUC of 0.850 (95% CI: 0.844–0.856)
in the internal testing dataset (Figures 2B; Table 1). In a similar vein, exclu-
sively employing image features, the model achieved an accuracy of 0.821
(95% CI: 0.812–0.830) and an average mean AUC of 0.894 (95% CI: 0.890–
0.900) (Figure 2C). Significantly, amplification of the model’s efficacy by
supplementing information and purging noisy or incomplete data from
these modalities culminated in peak performance. The MMI system real-
ized an accuracy of 0.848 (95% CI: 0.838–0.856), a sensitivity of 0.846
(95% CI: 0.830–0.860), a specificity of 0.847 (95% CI: 0.837–0.858), and
an AUC of 0.910 (95% CI: 0.904–0.916) in the internal testing dataset
(Figure 2D). In external testing dataset, the AUC of the MMI system yielded
0.887 (95% CI: 0.867–0.909). These results demonstrated the iterative
improvements achieved by optimizing the model and incorporating
relevant information. By refining the fusion of multiple modalities, we ob-
tained optimal performance in accurately identifying and differentiating
the subtypes within the four-class task. A delineation of performance
breakdown for the individual four-class task is presented in Table 1 and
Figure S2.
The Innovation 5(4): 100648, July 1, 2024 5



Figure 5. Performance of our AI system in identifying different subtypes of viruses and bacterial subtypes (A) Mean ROCs demonstrating MMI system accuracy in identifying viral
infections within the internal validation and testing cohorts. (B) Boxplots showing MMI system performance for classifying nine viral subtypes. (C) Mean ROCs highlighting MMI
system accuracy in identifying bacterial infections within the internal validation and testing cohorts. (D) Boxplots presenting MMI system performance for classifying nine bacterial
subtypes. A.baumannii, Acinetobacter baumannii; E.coli, Escherichia coli; HMPV, human metapneumovirus; H.influenzae, Haemophilus influenzae; MRSA, Methicillin-
resistant Staphylococcus aureus; MMI, multimodal integration;M.tuberculosis, Mycobacterium tuberculosis; P.maltophilia, Pseudomonas maltophilia; P.aeruginosa, Pseudomona-
saeruginosa; RSV, respiratory syncytial virus.
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Multimodal data interconnection
The primary objective of themultimodal systemwas to elucidate associations

and shared information across diverse modalities. Then we aimed to gain new
insights into the AI-based diagnosis of pulmonary infections and potentially iden-
tify new biological signatures conducive to this process. To accomplish this, a
spectrum of various fusion approaches was employed, including early fusion, in-
termediate fusion, and late fusion, and we conducted extensive experiments to
evaluate their effectiveness (Figure S3).

In theseexperiments, cross-attention fusionmethodswereemployed toamal-
gamate the image and clinical results into a single layer, thereby engendering
multi-information, patient-level result features (Figure 3). The classic early fusion
model achieved ameanAUCof 0.910 (95%CI: 0.904–0.916) coupledwith 0.848
(95% CI: 0.838–0.856) accuracy in the internal testing dataset. It is noteworthy
that the intermediate fusion approach yielded a preeminent AUC of 0.923
(95% CI: 0.919–0.927) and an accuracy of 0.870 (95% CI: 0.862–0.879). Simi-
larly, the late fusion approach garnered an AUC of 0.917 (95% CI: 0.913–
0.923) and an accuracy of 0.859 (95% CI: 0.852–0.868) (Figure S4; Table S4).
Overall, the intermediate approach evinced superior performance compared
with the classic early fusion and late fusion models in both validation cohorts
for the infections identification tasks. These results highlighted the effectiveness
of the intermediate fusionapproach in integratingmultimodal data andelevating
the accuracy for infection identification.

Comparison of the MMI system against physicians
We conducted a comparative study involving four board-certified physicians

divided into two groups based on their experience (the junior group, consisting
of physicians with less than 10 years of professional experience, and the senior
group, consisting of physicians with over 10 years of experience). In order to
ensure a fair comparison, all physicians were provided with a uniform set of in-
6 The Innovation 5(4): 100648, July 1, 2024
formation encompassing CT scans, demographic details, chief complaints,
and laboratory assay results. The dataset comprised 400 cases including 94
cases of viral pneumonia, 55 cases of fungal pneumonia, 108 cases of bacterial
pneumonia, and 143 cases of PTB. Each physician was charged with the inde-
pendent assessment of whether patients had been diagnosed with one of the
four distinct infectious diseases. Subsequently, their performance was juxta-
posedwith that of theMMI system. The results indicated that the AI system sur-
passedeach junior physiciananddemonstratedperformancecomparable to the
senior physicians (Figure 4). Furthermore, the superiority of the AI system’s per-
formancewas evident numerically aswell.When comparing theweighted errors
in patient diagnosis between the AI system and the physicians, the AI system
yielded 13.52%. Conversely, the range of weighted errors by expert physicians
varied from 6.45% to 25.17%, with a mean of 8.98% for the senior group and
24.10% for the junior group (Table S5).

Pathogen identification of pulmonary infections
Furthermore, the MMI system also had the capability to play a pivotal role in

pinpointing specific pathogens to aid precision treatment decisions. Subset 3
covered a total of 11,375 CT scans from 2,520 patients, all of whom underwent
molecular testing for a spectrum of 9 common respiratory viruses: influenza B
virus, humanmetapneumovirus (HMPV), coronavirus, parainfluenza virus, respi-
ratory syncytial virus (RSV), influenza A virus, H1N1pdm09, adenovirus, and
rhinovirus. Subset 4 comprised 2,278 CT scans from 535 patients who had
been diagnosed with 9 bacterial subtypes: methicillin-resistant Staphylococcus
aureus (MRSA),Mycobacterium tuberculosis, Pseudomonas maltophilia, Escher-
ichia coli,Haemophilus influenzae,Klebsiella, Staphylococcus,Pseudomonas aer-
uginosa, and Acinetobacter baumannii. This comprehensive testing approach
ensured the accurate identification of pathogens. For the challenging task of
discerning viruses and bacteria, the system utilized transfer learning alongside
www.cell.com/the-innovation
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Figure 6. Risk factors and clinical prognosis anal-
ysis for critical illness (A) ROC for a binary classifi-
cation of progression to critical illness in the internal
testing dataset. (B) Diagnostic accuracy for critical
illness progression prediction represented by a
confusion matrix. (C and D) Predictive features for
critical illness progression through Shapley Additive
exPlanation (SHAP) value analysis. (E) Correlative
analysis of predictive features influencing progres-
sion to critical illness. (F) When patients were strati-
fied into high-risk and low-risk groups, the Kaplan-
Meier curves demonstrated a significant difference in
survival probabilities.

ARTICLE
a pre-trained transformer architecture initially trained ondifferent tasks involving
four types of infections and thenmeticulously fine tuned on specific datasets to
recognize the distinctive features and patterns indicative of pathogens from CT
images and clinical records.

The performance of the MMI system in accurately identifying viral infections
from CT images was exceptional, as evidenced by its mean AUC score of
0.850 (95% CI: 0.839–0.859) on the validation set and 0.822 (95% CI: 0.805–
0.837) on the testing set for the overall nine-way classification (Figures 5A and
5B). This remarkable performance underscored the high accuracy and reliability
of the system in correctly identifying cases of viral pneumoniawithminimal false
positives. To gauge the discriminatory power of the model, we calculated the
AUC for each viral subtype class, which quantified the ability of the MMI system
to differentiate between viral pneumonia cases and other individuals, with AUC
values spanning from 0.700 to 0.949 across the nine subgroups, which show-
cased its excellent capability to differentiate among the various virus subtypes.

By leveraging our multimodal AI system, we processed the CT images and
generated predictions for the specific pathogen subtypes in each scan
(Figures 5C and 5D). To evaluate the performance of our system across different
bacterial subtypes, we utilized boxplot visualizations to juxtapose theAUC scores
obtained from the system on both the validation cohort and testing cohort. The
specific bacteria diagnostic system achieved an AUC of 0.847 (95% CI: 0.834–
ll T
0.861) and 0.803 (95% CI: 0.775–0.830) on the
validation and testing cohorts. The MMI system
detected MRSA with an AUC exceeding 0.900.
The MMI system could accurately distinguish
among different bacteria subtypes based on CT
images and clinical records, holding promise for
aiding healthcare workers to make prompt and
accurate diagnoses.

Prognosis prediction for critical illness
Regarding more actual clinical deployment,

the MMI system demonstrated extraordinary
performance in identifying patients with se-
vere pneumonia. The multimodal model ex-
hibited a robust ability to differential among
varying degrees of disease severity, with an
AUC of 0.918 (95% CI: 0.905–0.930) in the in-
ternal testing dataset (Figures 6A and 6B),
paving the way for a deeper understanding
of the critical factors influencing disease
prognosis. Then, through comprehensive
analysis, we estimated the most influential
factors that played a crucial role in the pro-
gression toward critical illness, emphasizing
the necessity of considering multiple data di-
mensions when assessing patient outcomes
(Figures 6C and 6D). Notably, non-quantized
multimodal features score (M-score) played
a significant role in predicting the progres-
sion to critical illness, aligning with existing
research identifying them as determinants
of disease outcomes. Liver biochemical
markers, including albumin, serum lactate de-
hydrogenase (LDH), and indirect bilirubin, emerged as important prog-
nostic indicators, elucidating the association between liver dysfunction
and adverse clinical outcomes.42 Coagulation markers, including thrombin
time (TT), activated partial thromboplastin time (APTT), and platelet count,
were also prognostic factors, reflecting disturbances in the coagulation
system observed in critical illness.43 Furthermore, markers related to elec-
trolyte and acid-base balance, alongside inflammation markers including
C-reactive protein, lymphocyte count, and neutrophil count, contributed
significantly to predicting clinical prognosis, emphasizing their importance
in assessing disease severity and predicting outcomes, and were consis-
tent with previous research.44

These analyses revealed that clinical parameters and coagulation markers
played complementary roles in prognosis, without significant correlations
observed among the leading prognostic indicators (Figure 6E). In a specific clin-
ical case, elevated levels of TT and indirect bilirubin levels were found to be
associated with more severe outcomes. Notably, LDH and APTT factors
were particularly valuable for predicting non-critical disease. The high-risk
group, characterized by these prognostic markers, exhibited significantly lower
survival probability than the low-risk group, with a statistically significant
p value of less than 0.001 based on the log-rank test (Figure 6F). These find-
ings not only reaffirmed the expansive capability of the multimodal model in
he Innovation 5(4): 100648, July 1, 2024 7



Figure 7. Illustration of the AI system for prognosis estimation of pneumonia patients (A and B) Real-world cases for prognostic evaluation. One patient with critical illness (patient 1)
and the other with non-critical disease (patient 2), to demonstrate how lung lesion characteristics and clinical features serve as input variables to predict prognosis. The influence of
these inputs on risk assessment was depicted, with pink indicators increasing the projected risk on the right and blue indicators decreasing it on the left. (C) Comparative CT scans of
non-critical and critical pulmonary infection cases.

ARTICLE

w
w
w
.t
he

-in
no

va
tio

n.
or
g

predicting critical illness but also pinpointed the specific markers pivotal for an
accurate prognostic assessment using real-world examples (Figure 7).
Although CT images in critically ill patients had shown specific manifestations,
AI system recognized unique features that were previously unreadable to the
human eye. These results indicated that accurate prognostic prediction
required an integration of clinical data with lung lesion characteristics. This syn-
ergy enhanced our understanding and aided in the development of more accu-
rate prognostic predictive tools.

DISCUSSION
In this study, the MMI pipeline was constructed to facilitate accurate diag-

nosis of pulmonary infections based on a large-scale dataset and tested on
an external cohort. Integrating radiological, clinical, and laboratory multimodal
features, the MMI system enabled discriminative diagnosis of bacterial, fungal,
and viral pneumonia and PTB. Meanwhile, a critical illness prediction model
incorporating deep learning features and multidimensional parameters was es-
tablished to provide timely intervention for high-risk patients. This pipeline is
poised to significantly expedite the diagnostic process for pulmonary infectious
diseases and mitigate the overall disease burden.

Pulmonary infections constitute a substantial global disease burden,
epitomized by the high morbidity and mortality rates. Obstacles in ascer-
taining the pathogens lead to the misuse of antibiotics, thereby exacer-
bating the proliferation of drug-resistant bacteria.45 Existing studies mostly
focus on the diagnosis of specific pathogens, which is crucial for decision-
making regarding specific types of pneumonia in pandemics.46–49 A deep
learning-based automated detection algorithm developed using 60,989
CXR scans was used to identify active PTB and performed better than hu-
man experts.50 Another AI model based on a multicountry chest CT data-
set automatically located the parietal pleura and lung parenchyma and
8 The Innovation 5(4): 100648, July 1, 2024
classified COVID-19 pneumonia patients with an accuracy of 90.8%.51

However, there are still frequent types of pneumonia that require accurate
and rapid diagnosis. A model based on 432 CT scans was developed to
distinguish active PTB from community-acquired pneumonia.52 Recently,
the Pneumonia-Plus model based on a dataset of 2,763 patients was lever-
aged to identify bacterial, fungal, and viral pneumonia with a mean AUC of
0.822.53 By contrast, our study has advanced the field by developing an AI
model that not only broadens the spectrum of detectable diseases to
include bacterial, fungal, and viral pneumonia and PTB but also achieves
superior diagnostic precision with an elevated AUC of 0.910. Moreover,
the MMI system precisely targeted frequent pneumonia pathogens, thus
optimizing therapeutic interventions. Despite the constrained dataset of
patients with partially pathogen-positive infections resulting decent pre-
formance for pathogen prediction, these insights can still function as a crit-
ical reference for clinicians, guiding the decision-making for pathogen-spe-
cific treatments to enhance antibiotic efficacy.
Meanwhile, accurate disease diagnosis necessitates integrated multimodal

data analysis, encompassing clinical features, imaging, and laboratory
tests.25,54,55 However, previous studies were often limited by the relatively small
number of labeled samples.30,32 Here, our approach entailed the construction of
amultimodal fusionAImodel, leveraging a substantial dataset, which yieldedper-
formance on par with advanced physicians. The MMI system architecture was
refined based on IRENE, a transformer-based representation learning model
with unified processing of multimodal input for clinical diagnostics.27 Unpro-
cessed laboratory test indicators, clinical complaints, demographic information
(such as age and sex), and chest images were automatically coded and
embedded. It demonstrated superior diagnostic accuracy for pulmonary dis-
eases compared with the single-dimensional model (AUC: 0.887 vs. 0.840). In
this study, this normalized multimodal fusion architecture was employed to
www.cell.com/the-innovation
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diagnose pulmonary infections, which also surpassed the performance of single-
dimensionmodels. The development of AI technologies, including large language
models, heralds a future where medical AI models will incorporate a broader
array of clinically significant multimodal data, such as breath sounds, thereby
facilitating precise medical interventions.56–58

Thenwe compared three feature fusion strategies: early, late, and intermediate
fusion. Different fusion architectures could affect the diagnostic efficiency of the
model.59–61 Early fusion utilized global information from different sources,
providing a holistic feature representation. However, it may also introduce redun-
dancy or inconsistency, given the crucial disparities among information sources,
potentially overlooking unique information specific to each source. Late fusion
preserved the independence of each information source, but it lacked the capac-
ity to share global information during the feature extraction phase, potentially hin-
dering the exploitation of local advantages from one source to another. In
contrast, intermediate fusion sought to merge features from multiple sources
during the feature extraction process, generating a unified feature set for the final
classification. This approach enhanced information propagation among sources
and interactively optimized the feature extraction process.60,61Moreover, amulti-
stage fusion strategy was implemented in the proposed intermediate fusion ar-
chitecture, allowingmultimodal features to interact throughout the entire feature
extraction process.

In addition, early warning of severe illness remains another tough chal-
lenge in the management of pulmonary infections. Previous studies have
confirmed that radiomics could quantify the severity of pneumonia, and
multiomics biomarkers, including clinical parameters, microbiome signa-
tures, and radiomics, have been identified as prognostic indicators for pa-
tients with pneumonia.62–67 For example, a regression model constructed
with age, BMI, CD4+ T lymphocytes, and serum interleukin-6 levels enabled
effective prediction of the risk of developing severe disease in patients with
viral pneumonia.62 The presence of Staphylococcus, Ralstonia, and Entero-
coccus was strongly associated with acute respiratory distress syndrome
by microbiome investigations.63 Additionally, a neural network model
based on CT images was utilized to assess disease severity in patients
with viral pneumonia (AUC: 0.75).67 The present study has pinpointed mul-
tiple risk factors from multimodal characteristics as potential predictors
of severe pneumonia. The integration of diverse data sources will allow
for a comprehensive approach to predicting critical illness, paving the
way for effective risk stratification of patients and preemptive medical
interventions.

Notably, co-infection with multiple pathogens increases the public health
burden.68 The present study provides an initial exploration of predicting co-
infection, but the intricate mechanism by which mixed infections affect im-
aging performance remains unclear. The advent of single-cell technology
makes it possible to unravel the dynamic interplays in the disease micro-
environment, which may be a promising opportunity.69–73 Several studies
have elucidated that T cells and natural killer cells in patients with bacterial
pneumonia complicated by sepsis exhibited activation and depletion char-
acteristics, respectively, and that the proportion of plasma cells is signifi-
cantly increased.71 In contrast, cell subsets such as DC_c4-LILRA4,
B_c05-MZB1-XBP1, and Neu_c3-CST7 in viral pneumonia are closely asso-
ciated with disease severity.72 Furthermore, gene expression profiles have
revealed distinct patterns: CCL7, CCL8, CCL13, and IFIT2 are highly ex-
pressed in viral pneumonia, while BAG3, HIF1A and IL1B are upregulated
in other types of pneumonia (including bacterial infections, etc.), and
CCL2, RNASE1, and MAFB genes were highly expressed in different types
of pneumonia.73 These specific molecular events forge new insights for
the deep excavation of biological mechanisms underpinning macroscopic
imaging observations, providing a pivotal foundation for more nuanced
diagnostic and therapeutic decision-making.

This study had several limitations that should be acknowledged. First, mixed
infections present as a prevalent yet intricate challenge in clinical scenarios.
We constructed a preliminary prediction model, but quantitative evaluation of
mixed infections needs to be explored in conjunction with high-throughput mo-
lecular detection methods. Second, the practical application of AI models neces-
sitates enhancements of both usability and accuracy. The integration of a predic-
tive AI model with a clinical workflow must be seamless to achieve optimal
results.74 The existing models still require further optimization to meet the de-
ll
mands of medical applications. Last but not the least, future research
should focus on validating these findings using a broader range of
central datasets, in this way reinforcing the generalizability of the AI system.
In summary, this study pioneered a multitask model based on multimodal

clinical data from over 20,000 patients. The MMI system fused clinical, im-
aging, and laboratory assay features to diagnose various types of pulmonary
infections and pathogens. It also incorporated key indicators to warn criti-
cally ill patients. This comprehensive approach could not only enhance the
accuracy of diagnostics, but also guide the accurate use of medication in
clinical settings. It holds the potential to evolve into a robust tool for precise
interventions among patients with pulmonary infections, propelling the
advancement into a new epoch of clinical care.
MATERIALS AND METHODS
For materials and methods, see the supplemental information.
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Figure S1. Overview of patient selection and data categorization. The study flow 

diagram presented the screening and categorization of patients with respiratory 

conditions at West China Hospital of Sichuan University and Chengdu ShangJin Nanfu 

Hospital. The process involved exclusion criteria application, resulting in 24,107 

eligible patients. Data were subdivided for various analyses: primary prediction of 

respiratory diseases, classification of infections, virus and bacteria prediction, and 

severe pneumonia identification. 

Abbreviations: A.baumannii, Acinetobacter baumannii; BP, bacterial pneumonia; 

E.coli, Escherichia coli; FP, fungal pneumonia; HMPV, human metapneumovirus; 

H.influenzae, Haemophilus influenzae; MRSA, Methicillin-resistant Staphylococcus 

aureus; M.tuberculosis, Mycobacterium tuberculosis; P.maltophilia, Pseudomonas 

maltophilia;  P.aeruginosa, Pseudomonasaeruginosa; PTB, pulmonary tuberculosis; 

RSV, respiratory syncytial virus; VP, viral pneumonia.



Figure S2 | Performance of the MMI system for identifying four categories 

pneumonia in the internal testing sets. A-C, The confusion matrix for identifying 

pneumonia based on clinical model (A), image model (B) and MMI system (C) in the 

internal testing set. 

Abbreviations: BP, bacterial pneumonia; FP, fungal pneumonia; MMI, multimodal 

integration; PTB, pulmonary tuberculosis; VP, viral pneumonia. 
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Figure S3 | Multimodal data fusion architecture. Upper left panel: Pre-processing and feature extraction stages for image, laboratory, and 

clinical text data inputs using Swin-Transformers and convolutional operations. Upper right panel: Depiction of the fusion process utilizing the 

Multimodal Cross-Attention Modules (MCAM), comparing early and late fusion methodologies. Lower panel: Detailed internal structure of the 

MCAM. 



 
Figure S4 | Performance of different fusion methods in the validation and internal 

testing datasets. A-B, The ROC curves of different fusion methods for identifying 

pulmonary infections in internal validation cohort (A) and internal testing cohort (B). 

A B



Supplementary Table 1. Summary of clinical characteristics of enrolled patients 

for the training, validation, internal testing and external testing datasets. 

 Subset 1 (N=24,107)    

Demographics 
Training 

(N=19,046) 

Validation 

(N=2,432) 

Internal Testing 

(N=2,433) 

External Testing 

(N=196) 

Age (years) 55.53±18.99 56.21±19.00 56.09±18.72 57.71±19.43 

Sex (male) 11,620(61.0%) 1,449(59.6%) 1,464(60.2%) 112(57.1%) 

Scans 59,490 7,497 7,554 625 

Infections     

Yes 11,439(60.1%) 1,389(57.1%) 1,422(58.4%) 154(78.6%) 

No  7,607(39.9%) 1,043(42.9%) 1,011(41.6%) 42(21.4%) 

 Subset 2 (N=13,361)    

Demographics 
Training 

(N=10,578) 

Validation 

(N=1,325) 

Internal Testing 

(N=1,325) 

External Testing 

(N=133) 

Age (years) 52.33±20.07 52.67±20.07 52.34±20.03 53.13±19.12 

Sex (male) 6,391(60.0%)  801(60.5%) 774(58.4%) 79(59.4%) 

Scans 33,411 4,267 4,094 425 

Infections types     

BP 5,278(49.5%) 686(51.8%) 688(51.9%) 72(54.1%) 

FP 3,702(35.7%) 484(36.5%) 480(36.2%) 51(38.3%) 

VP 2,321(21.8%) 266(20.1%) 270(20.4%) 29(21.8%) 

PTB 3,103(29.1%) 370(27.9%) 355(26.8%) 32(24.1%) 

Abbreviations: BP, bacterial pneumonia; FP, fungal pneumonia; VP, viral pneumonia; 

PTB, pulmonary tuberculosis.  



Supplementary Table 2. Performance of MMI system in identifying pulmonary 

infections.  

 Datasets 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Clinical model 

Validation 0.808(0.797–0.818) 0.765(0.754–0.779) 0.782(0.775–0.790) 0.868(0.861–0.875) 

Internal testing 0.787(0.776–0.798) 0.795(0.784–0.806) 0.792(0.784–0.800) 0.879(0.870–0.885) 

External testing 0.624(0.582–0.685) 0.775(0.732–0.822) 0.692(0.665–0.735) 0.770(0.737–0.815) 

Image model 

Validation 0.852(0.841–0.862) 0.831(0.819–0.842) 0.835(0.828–0.842) 0.918(0.913–0.923) 

Internal testing 0.845(0.836–0.855) 0.848(0.839–0.857) 0.836(0.830–0.842) 0.926(0.922–0.930) 

External testing 0.770(0.721–0.815) 0.777(0.732–0.821) 0.759(0.736–0.791) 0.830(0.792–0.867) 

MMI system 

Validation 0.864(0.855–0.872) 0.840(0.829–0.849) 0.846(0.839–0.852) 0.930(0.925–0.934) 

Internal testing 0.866(0.857–0.874) 0.838(0.829–0.848) 0.849(0.844–0.855) 0.935(0.932–0.939) 

External testing 0.852(0.813–0.889) 0.853(0.814–0.891) 0.919(0.898–0.937) 0.888(0.856–0.916) 

  



Supplementary Table 3. Performance of MMI system in identifying single 

infection and mixed infections.  

 Datasets 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Single 
infection 

Internal testing 0.864(0.841–0.890) 0.915(0.906–0.924) 0.904(0.895–0.912) 0.949(0.943–0.954) 

Mixed 
infections 

Internal testing 0.864(0.836–0.896) 0.765(0.728–0.805) 0.852(0.837–0.868) 0.876(0.861–0.890) 

  



Supplementary Table 4. Performance of MMI system in identifying various 

pulmonary infections based on different fusion methods.  

 Datasets 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Early fusion 
Validation 0.836(0.820–0.853) 0.850(0.840–0.861) 0.846(0.838–0.855) 0.905(0.900–0.910) 

Internal testing 0.846(0.830–0.860) 0.847(0.837–0.858) 0.848(0.838–0.856) 0.910(0.904–0.916) 

Intermediate 
fusion 

Validation 0.852(0.838–0.868) 0.879(0.869–0.889) 0.870(0.862–0.879) 0.922(0.918–0.927) 

Internal testing 0.849(0.833–0.863) 0.882(0.874–0.892) 0.870(0.862–0.879) 0.923(0.919–0.927) 

Late fusion 
Validation 0.867(0.852–0.883) 0.842(0.832–0.853) 0.851(0.843–0.860) 0.915(0.911–0.920) 

Internal testing 0.849(0.834–0.863) 0.865(0.856–0.875) 0.859(0.852–0.868) 0.917(0.913–0.923) 

  



Supplementary Table 5. Weighted error results of the MMI system vs. physicians 

in diagnosing pulmonary infections.  

Weighted errors Junior physicians Senior physicians MMI system 

Mean 24.10% 8.98% 13.52% 

Physician 1 23.03% 11.51% - 

Physician 2 25.17% 6.45% - 

  



Supplementary Table 6. Performance of different architectures in identifying 

pulmonary infections.  

 
Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

ResNet 0.793(0.782–0.806) 0.787(0.776–0.799) 0.786(0.778–0.794) 0.873(0.867–0.879) 

DenseNet 0.909(0.902–0.917) 0.745(0.735–0.753) 0.803(0.797–0.809) 0.881(0.877–0.886) 

Swin-
Transformer 

0.832(0.822–0.842) 0.849(0.840–0.859) 0.829(0.823–0.836) 0.927(0.923–0.931) 

Swin-
Transformer with 

cross-shaped 
0.866(0.857–0.874) 0.838(0.829–0.848) 0.849(0.844–0.855) 0.935(0.932–0.939) 

 

  



MATERIALS AND METHODS  

Data acquisition 

In this study, a comprehensive analysis was conducted utilizing data from hospitalized 

inpatients who were admitted to West China Hospital (WCH) of Sichuan University 

and Chengdu ShangJin Nanfu Hospital (CSJH). The inclusion criteria were as follows: 

(1) over the age of 18 years old; (2) with clear diagnosis regarding the presence or 

absence of pulmonary infection; (3) with complete medical information, inclusive of 

chest CT scans. The exclusion criteria were as follows: (1) patients without chief 

complaint, demographics, laboratory test reports and discharge reports; (2) with 

incomplete or poor-quality CT images, such as scans < 25 slices, motion artifacts or 

significant resolution reductions; (3) the type of pulmonary infection was unclear. The 

studies involving human participants were reviewed and approved by the Institutional 

Review Board and Ethics Committee of West China Hospital. 

The dataset consisted of CT images acquired in the axial direction at a resolution of 

512×512 pixels. The slice spacing varied ranged from 0.625 to 5 mm. These images 

were procured utilizing apparatuses furnished by illustrious entities such as Philips, GE 

Healthcare, United Imaging, and Siemens Healthineers. During the CT examinations, 

a tube voltage of 120 kilovolts peak (kVp) was consistently employed. To optimize 

image quality and minimize radiation exposure, an automatic tube current modulation 

technique was employed to modulate the tube current. The range of the tube currents 

used was 30 to 70 milliamperes (mAs). A stringent quality control procedure was 

implemented to ensure the integrity and reliability of the collected data. 

 

Pre-processing 

Furthermore, to ensure uniformity and enhance the quality of the CT scans, 

standardized image pre-processing protocols were instituted. These corrective 

interventions were enacted to attenuate any potential variations or biases resulting from 

the imaging process or equipment used. This study adopted a two-step process for 

analysing the CT scans obtained during the same patient admission, with a specific 

focus on the chest sequences. First, an evaluation of the convolution kernel utilized to 

fabricate each set of CT scans was conducted. This analysis aimed to elucidate and 

compensate for the variations or disparities stemming from the specific convolution 

kernel utilized. To ensure optimal resolution, all radiographs were initially screened, 

eliminating low-quality scans or discontinuities. Subsequently, all the continuous 

DICOM sequences were merged to generate a cohesive three-dimensional (3D) volume 

representation of the scans.75 This merging process allowed the consolidation of 



multiple sequences into a single comprehensive dataset. To meet the input requirements 

of the model, the dimensions of the resulting 3D volume were modified to 64 × 256 × 

256. This resizing ensured compatibility and consistency across all the scans. By 

adhering to these protocols, the objective was to standardize the data and prepare it for 

further analysis, thereby guaranteeing that the input to the model remained uniform 

while focusing on the chest region. 

In contrast, clinical text data of each patient were extensively collected. This 

comprehensive dataset encompassed a myriad of aspects concerning patient health 

records. Basic demographic information was assembled such as age, sex, and the 

highest body temperature recorded at the time of admission. Furthermore, the chief 

complaints reported by the patients upon admission were diligently documented 

providing insight into their specific symptoms or concerns. This information provided 

a rich contextual backdrop for analyzing their health conditions. In addition to the 

patient demographic details and chief complaints, their laboratory test results were also 

collected. These laboratory test results covered various markers pertaining to different 

aspects of health evaluation. For instance, liver biochemical markers, including 

albumin, serum lactic dehydrogenase (LDH), and indirect bilirubin were recorded. 

Moreover, coagulation markers such as thrombin time (TT), activated partial 

thromboplastin time (APTT), and platelet count were analyzed. These markers 

provided insights into the blood coagulation abilities and potential clotting disorders. 

To acquire a holistic view of the patients' health status, electrolyte and acid-base 

balance markers were also recorded such as Na+, K+, and HCO3
-. These markers were 

instrumental in assessing the patients' overall electrolyte levels and acid-base 

equilibrium. To assess the inflammatory response, inflammatory markers were 

incorporated into the dataset. These included C-reactive protein (CRP) level, white 

blood cell count, lymphocyte count, and neutrophil count. Additionally, procalcitonin 

(PCT) and interleukin 6 (IL-6) levels as indicators of inflammation were measured, 

which provided insightful information regarding the patients' immune responses. 

In the pre-processing of the structured data, a normalized approach was employed to 

capture and quantify over 50 factors that played a role in determining whether a patient 

had severe pneumonia. For the laboratory data, a median imputation technique was 

utilized to address missing values within the factors. When the missing rate for a 

specific marker was more than 50%, the factor was either excluded, its influence 

significantly diminished, or compensation for the absent markers was applied. By 

leveraging the median values of the available data for a particular marker, the missing 

values were effectively imputed, ensuring that the dataset remained as complete as 

possible for subsequent analysis. This approach helped mitigate the potential biases 



introduced by missing data and preserved the integrity and comprehensiveness of the 

dataset. On the other hand, when it came to unstructured data such as the chief 

complaints recorded in free-text format, a robust natural language processing (NLP) 

algorithm was leveraged to extract the corresponding tokens. This NLP algorithm was 

able to process and parse the textual data, extracting relevant information and 

converting it into a structured format suitable for further analysis. By employing this 

NLP technique, the unstructured data was effectively harnessed, extracting valuable 

insights to augment the analysis. By combining a normalized approach for structured 

data and leveraging NLP algorithms for unstructured data,76 the accuracy and 

completeness of the clinical record dataset information was ensured. 

 

Microbiological analysis  

To thoroughly investigate the various types of pulmonary infections in this study, the 

laboratory test results and benchmarked clinical diagnosis were comprehensively 

analyzed as the gold standard. To diagnose the specific viral subtypes, nucleic acid tests 

for respiratory pathogens were executed. These tests facilitated the discernment of an 

array of respiratory viruses, including influenza B virus, human metapneumovirus 

(HMPV), coronavirus, parainfluenza virus, respiratory syncytial virus (RSV), influenza 

A virus, H1N1pdm09, adenovirus, and rhinovirus. Similarly, for diagnosing bacterial 

pathogens, combined nucleic acid tests for respiratory pathogens were employed to 

analyze the distribution of different bacteria and isolate them for identification. This 

approach enabled the concurrent detection of clinically common lower respiratory tract 

bacterial pathogens, namely methicillin-resistant Staphylococcus aureus (MRSA), 

Mycobacterium tuberculosis, Pseudomonas maltophilia, Escherichia coli, 

Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus, Pseudomonas 

aeruginosa, and Acinetobacter baumannii. 

 

Schema design 

The schema employed in this study encompassed a series of modules that replicated the 

sequential diagnostic process undertaken by clinicians in real-world clinical settings. 

This schema was architected to extract relevant information from the symptoms, CT 

scans, and laboratory assay results to aid in diagnosing patients. The overall goal was 

to maximize data interoperability across diverse medical facilities for future research 

purposes. The diagnostic process began with the admission of a patient, whereupon the 

clinician initially assessed the patient's basic condition and laboratory examination 

results (subset 1). Based on this information, the clinicians determined whether the 

patient had an infectious disease. If the answer was affirmative, indicating the presence 



of an infectious disease, the diagnostic process proceeded further. In the next step, the 

clinicians focused on determining the specific categorical infection type for the patient 

and prescribing the appropriate antibiotic treatment (subset 2). Subsequently, if the 

patient was diagnosed with viral or bacterial pneumonia, the schema applied additional 

modules to identify more refined subtypes of infections (subset 3 and subset 4). This 

step enabled a more granular classification of the pneumonia subtype, which could 

guide treatment decisions and further inform the clinical management of the patient. 

Moreover, for patients confirmed to be infected, the schema incorporated a prospective 

prediction module to estimate the likelihood of progression into severe pneumonia 

(subset 5). This predictive analysis would serve as a valuable tool for assessing the 

potential severity of the infections, enabling proactive intervention strategies to prevent 

or manage the development of severe illness.  

 

Diagnosis system and network architectures 

The deep-learning model employed for subtyping of infectious diseases was based on 

the Swin-Transformer architecture.77 The model structure comprised multiple 

components, including a token embedding layer and four stage blocks. Each stage block 

was interfaced to a convolutional layer that performed subsampling of the feature maps. 

This design followed a similar pattern to a typical ResNet-50 architecture. The model 

harnessed a token-embedding layer to represent the input data in a suitable format for 

deep learning computations.78 The token embeddings captured the essential information 

from the input, serving as the input for subsequent stages of the model. To enhance the 

model's performance further, convolutional layers were strategically situated 

subsequent to each stage block. These convolutional layers undertook subsampling of 

the feature maps, thereby reducing their spatial dimensions while increasing the number 

of feature channels. This down-sampling process fortified the model's receptive scope 

and enhanced its ability to capture and characterize relevant features. The model 

architecture exhibited a methodical escalation in the number of dimensions after each 

down-sampling operation. This increase in dimensions contributed to the expansion of 

expressive capacity of the model and allowed for better feature representation and 

discrimination.  

Next, the pre-processed normalized 3D volume (64 × 256 × 256) was input into the 

convolutional token embedding (CTE) module. To optimize computational efficiency, 

a 2 × 7 × 7 convolution kernel with a stride of four was opted. This convolution 

operation directly embedded the input volume, thereby alleviating the computational 

burden while preserving the essential information within the data. Within each stage 

block, two stacked pre-normalization were incorporated to enhance the learning 



capability of the model. The first pre-normalization consisted of LayerNorm and Cross-

shaped window self-attention operations, along with a shortcut connection. The second 

pre-normalization step comprised LayerNorm and a multi-layer perceptron (MLP). 

Compared with the traditional Swin-Transformer architecture, the cross-shaped 

window blocks utilized in the model were designed to be computationally efficient 

(Table S6). By incorporating these pre-normalization layers and carefully managing the 

connections between them, a model that required fewer computations was achieved 

while maintaining strong representation and learning capabilities. 

The diagnostic results derived from the CT scans, along with the corresponding 

multimodal input data, were fed into the subtype diagnosis multilabel classification 

module to obtain predictions for a spectrum of pneumonia subtypes, including bacterial 

pneumonia (BP), fungal pneumonia (FP), viral pneumonia (VP), and PTB. To 

effectively capture discriminative features from both the image data and text data, the 

cross-attention mechanism was employed. This attention mechanism conferred the 

model to selectively concentrate on the relevant regions and textual information 

contributing to the subtype diagnosis. By attending to specific regions of the radiologic 

volume and relevant textual features, the model could learn the distinctive patterns and 

characteristics associated with different pneumonia subtypes. 

 

NLP model development 

Then a free-text information extraction model was developed to extract and reformat 

the chief complaint and history of present illness features from unstructured text data. 

This model employed NLP techniques (such as BERT) to analyze and extract relevant 

information from the textual input.79,80 BERT is trained on an expansive corpus of text 

data, enabling the generation of high-quality contextualized word embeddings. These 

embeddings were utilized for pre-processing and initial feature learning in this study. 

To manipulate the structured data, such as laboratory test results, a normalization 

technique was employed to generate vector representations for specific factors (such as 

CRP). This normalization process contributed to standardizing the data and rendering 

them suitable for analysis. Furthermore, to enhance the analysis, a multi-layer fusion 

module was introduced. This module facilitates the bidirectional feature embedding of 

structured laboratory features and unstructured medical record features. By leveraging 

this mechanism, the interdependencies and relationships between different data 

elements were captured. Additionally, a structured data extraction model was 

implemented, specifically designed for extracting features from laboratory 

examinations and basic demographic information. This model processed the structured 

data to extract and normalized meaningful features that were relevant to the diagnosis 



and classification of pneumonia. The combination of these information extraction 

models was able to transform unstructured free-text data and structured laboratory data 

into more structured and usable formats. 

Explicitly, the model accepted either the free-text input of the chief complaint and 

history of the present illness or the structured-text input of laboratory data. It processed 

these inputs and generated multiple discrete vector features as outputs. Patient records 

could vary significantly in terms of length and the density of data points. To ensure 

consistent and efficient processing, the data was vectorized into a structured format 

with multiple lines. Each line had a specified length of 200, which allowed for better 

data organization and handling. This vectorization approach was able to handle 

variable-length input data in a consistent manner, ensuring compatibility and ease of 

processing. The NLP model, with its vectorization scheme, affords the efficient 

extraction of features from the chief complaint, history of the present illness, and 

laboratory data, delivering valuable and fixed-length inputs for downstream tasks in 

pulmonary infections diagnosis and classification. 

 

Multimodal data fusion 

To enhance diagnostic accuracy and robustness, multimodal data fusion techniques 

have been utilized to combine multiple modalities, such as CT scans, chief complaints, 

and laboratory testing, to enhance diagnostic accuracy and robustness. In the infection 

diagnosis pipeline, different approaches were adopted based on the fusion level. These 

approaches encompassed early fusion, in which the raw modalities were combined 

before feature extraction; intermediate fusion, where the features from each modality 

were concatenated before classification; and late fusion, where the classification results 

from each modality were combined (Figure S4). To integrate the two modalities, an 

attention-based structure known as cross attention was also employed. This approach 

facilitated the efficacious capitalization of the complementary information in 

multimodal data, culminating in efficiency and reduced computational complexity. 

However, although the aforementioned self-attention module effectively captured 

intramodality relationships, it did not explore the inter-modality relationships, such as 

the relationship between image regions and sentence words. Therefore, the Cross-

Attention Module was utilized in this study, which modeled both the inter-modality and 

intra-modality relationships within a harmonized framework.81 

 

Network training strategy 

During the training process, the parameters of the Transformer model underwent initial 

pre-training using the unsupervised learning of visual features. This pre-training phase 



involved contrasting cluster assignments, allowing the model to forge meaningful 

representations from the input data without explicit labels or annotations. The goal was 

to capture rich visual features that could be leveraged in ensuing supervised tasks. To 

train and test this model, the PyTorch deep-learning framework was run on a system 

equipped with 8 NVIDIA TITAN RTX GPUs. The AdamW optimizer was employed 

to train the model, incorporating a weight decay of 0.0001, to train the model. The 

learning rate was initialized to 0.001, which was then decayed by a factor of 10 after 

the 35th, 40th, and 50th epochs to fine-tune the training process. All the models were 

trained for 60 epochs. Constrained by GPU memory limits, the batch sizes for optimal 

performance were adjusted. Specifically, the batch size of each GPU was set to 16. 

These batch-size configurations allowed for efficient processing and training of the 

model while maximizing the utilization of available computational resources. 

For the models based on subset 1 and subset 2, patient cases were randomly divided 

into two sets: a training set comprising 80% of the cases and a test set comprising the 

remaining 20%. These sets were utilized to train the models and evaluate their 

performance. Random splitting ensured the unbiased distribution of cases across the 

training and test sets. In the context of subset 3 and subset 4, where the focus was on 

less frequent diseases, additional measures were taken to account for the rarity of these 

conditions and to enhance the robustness of the AI system's identification capabilities. 

To achieve this, the representation of these rare diseases within the validation and 

testing sets were deliberately augmented. Particularly, in the testing subset, the rare 

diseases were represented 40%, exceeding their prevalence in the overall patient 

population. This strategy was devised to present a more challenging evaluation 

scenario and validate the ability of the model to accurately identify and classify these 

less frequent diseases. To broaden validation and generalize final results, a five-fold 

cross-validation approach was employed. The experiment was replicated five times for 

each disease model. 

 

Comparison of AI and physicians 

Then we compared the performance of an AI framework with that of physicians in 

analyzing CT scans, chief complaints, and laboratory tests from electronic health 

records (EHR) to diagnose infections. The gold standard for diagnosis was established 

on sputum culture, polymerase chain reaction (PCR) or molecular testing results. To 

ensure a fair comparison, four practicing physicians were recruited to partake in the 

study. The physicians were categorized into two groups based on their level of clinical 

tenure: a junior group, consisting of physicians with less than 10 years of experience, 

and a senior group, consisting of physicians with over 10 years of experience. The 



performances of the AI framework and the human physicians were evaluated using a 

weighted errors metric based on penalty scores. This evaluation metric was contrived 

to reflect the clinical performance of the AI system and physician expertise. During the 

testing phase, the AI framework and the physicians were furnished with the identical 

dataset, which comprised CT scans, corresponding chief complaints, and laboratory 

testing results from the electronic health records. The performance of each entity was 

assessed against the gold standard, evaluating their competence to gold standard 

accurately. 

 

Prognosis analysis for integrating multimodal features 

To decipher the influence of each factor on severe pneumonia, a machine-learning 

approach was employed to extract quantized factors and non-quantized multimodal 

feature (M-score) from clinical texts, images. These features were subsequently used in 

a prognostic prediction model, employing the widely recognized gradient-boosting 

decision tree algorithm (GBDT) as the classifier 82. To construct a comprehensive 

predictive score for the clinical outcome, the image features extracted by the AI system 

were combined with relevant clinical parameters, such as age, albumin levels, blood 

oxygen saturation, CRP, and other pertinent factors. This composite score was applied 

to predict the progression to critical illness, measured by the need for intensive care unit 

(ICU) transfer, mechanical ventilation, or death, and also considering the time elapsed 

since the initial hospital admission. Clinical and radiological features were selected 

predominantly based on their correlation with the severity status. The importance of 

these features was appraised by examining the magnitude of the log-rank test statistics 

using the Shapley Additive exPlanation (SHAP) method. This enabled physicians to 

visualize the impact of the relevant risk factors on the prognostic prediction of critical 

illnesses, providing valuable insights into the factors that influence disease progression. 

To ensure the robustness and reliability of the model, its performance was validated 

using a five-fold cross-validation approach, which allowed physicians to tune the 

optimal hyperparameters and assess the consistency and accuracy of the model across 

different data subsets. 

The random survival forest method was suitable for integrating high-dimensional 

features. In this study, this method was employed to analyse the data and engender a 

multi-model score ranging from 0 to 1. This score epitomizes the average expected 

number of events across all the random survival forest model trees. By instituting a cut-

off score of 0.5, patients were classified into two distinct groups: a high-risk group 

(with a score greater than 0.5) and a low-risk group (with a score less than 0.5). This 

stratification facilitated the differentiation of patients according to their predicted risks 



of adverse outcomes. To delve deeper into stratified groups, the Kaplan-Meier estimator 

was utilized to calculate the survival times for high-risk and low-risk groups. 

Additionally, a log-rank test was conducted to evaluate the statistical significance of 

the differences observed between the two groups regarding survival outcomes. 

 

Quantification and statistical analysis 

The MMI system was architected to perform multilabel classification and prognostic 

prediction tasks. To evaluate classification performance, the mean macro area under the 

receiver operating characteristic curve (AUC) was employed as a performance metric. 

Confidence intervals (CIs) were computed using a bootstrapping approach with 

nonparametric, unstratified resampling (1000 times) to estimate the uncertainty in the 

AUC estimates. Diagnostic performance of the system was quantified through the 

metrics of its sensitivity, specificity, and accuracy at the selected operating points. The 

operating point was selected to strike a balance between a low false negative diagnostic 

rate (sensitivity) and a low positive rate (1-specificity), with the thresholds adjusted 

accordingly. For statistical correlation significance, Pearson's and Spearman's 

correlation tests were used, supplemented by Holm-Bonferroni method for multiple 

comparisons. Normally distributed data were described using the mean and standard 

deviation (SD), while non-normally distributed data were described using the median 

and interquartile range (IQR). Categorical variables were presented as numbers and 

percentages. The deep learning models were trained, validated, and tested using 

PyTorch (v1.11.0), a renowned deep learning framework. For the data analysis, the 

scikit-learn library was utilized in Python. Graphs and visualizations were crafted using 

Python libraries (Matplotlib and Seaborn). Kaplan-Meier survival curves were 

generated to approximate the diagnosis time based on follow-up visits. The log-rank 

test compared the survival curves between the subgroups, allowing physicians to assess 

any significant differences in the time to diagnosis. The codes that support the findings 

of this study were available as follows: https://github.com/chiehchiu/MMI 
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