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S1 Appendix: Technical details of Baum-Welch 1 

The Baum-Welch algorithm [17] is a form of Expectation Maximization [21], 2 

which will iterate over solutions to reach a maximum likelihood estimate. While only 3 

convergence to a local maximum likelihood can be guaranteed, it has been found that for 4 

most applications Expectation Maximization is nevertheless highly effective. Like all 5 

Expectation Maximization techniques, in Baum-Welch, we assume a parameterization to 6 

start, which we use to compute probabilities of intermediate hidden values, which we then 7 

use to produce a new and better estimate of the parameters. For Baum-Welch, this means 8 

iteratively improving the transition and emission probabilities. 9 

The Baum-Welch algorithm is built partly upon the forward-backward algorithm. 10 

For any HMM we have a transition matrix and an emission matrix which define the model. 11 

Let 𝑋1:𝑇 represent the random variables which take one of 𝑁 possible values over 𝑇 time 12 

steps. Let 𝑌1:𝑇 represent the random variables representing the emission distribution. Let 𝑠 13 

denote the step in our Baum-Welch iteration process, and 𝜃(𝑠) represent our choice of 14 

parameters for step 𝑠, which includes our transition probabilities, emission distributions, 15 

and our initial conditions. Our transition matrix is given as: 16 

𝑇𝑗𝑖
(𝑠)

= 𝑝(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖, 𝜃(𝑠)) (4) 17 

In most introductory descriptions of Baum-Welch, the emission values are from a 18 

discrete set, and an emission matrix is given as the probability of seeing a particular indexed 19 

output given a particular state. In this application, our emissions are floating point values, 20 

and we find it more clarifying to instead have a different emission matrix for every time 21 

step, and to think of it as a diagonal matrix where the values represent the probability 22 
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density of the known observation at that time step. Letting 𝑡 denote the time step, and 𝑦𝑡 23 

denote the true observed value at time 𝑡. We define our emission matrix 𝑂(𝑠,𝑡) as follows: 24 

𝑂𝑖𝑖
(𝑠,𝑡)

= 𝑝(𝑌𝑡 = 𝑦𝑡|𝑋𝑡 = 𝑖, 𝜃(𝑠)) (5) 25 

We need to run the forward algorithm. We define our cumulative forward 26 

probabilities as: 27 

𝑓𝑖
(𝑠,𝑡)

= 𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡 = 𝑖|𝜃(𝑠)) (6) 28 

We can use dynamic programming to determine 𝑓𝑖
(𝑠,𝑡)

 for every value of 𝑖 and 𝑡, if 29 

given initial conditions 𝑓𝑖
(𝑠,0)

 for all 𝑖. The equation is: 30 

𝑓(𝑠,𝑡) = 𝑂(𝑠,𝑡)𝑇(𝑠)𝑓(𝑠,𝑡−1) (7) 31 

Or equivalently: 32 

𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡 = 𝑖|𝜃(𝑠)) 33 

= 𝑝(𝑌𝑡 = 𝑦𝑡|𝑋𝑡 = 𝑖, 𝜃(𝑠)) ∑ 𝑝(𝑋𝑡 = 𝑖|𝑋𝑡−1 = 𝑗, 𝜃(𝑠))𝑝(𝑌1:𝑡−1 = 𝑦1:𝑡−1, 𝑋𝑡−1 = 𝑗|𝜃(𝑠))

𝑗

 34 

(8) 35 

We also need to run the backward algorithm. We define the probabilities as: 36 

𝑏𝑖
(𝑠,𝑡)

= 𝑝(𝑌𝑡+1:𝑇 = 𝑦𝑡+1:𝑇|𝑋𝑡 = 𝑖, 𝜃(𝑠)) (9) 37 

We can use dynamic programming to determine 𝑏𝑖
(𝑠,𝑡)

 for every value of 𝑖 and 𝑡. 38 

We initialize it with: 39 

𝑏𝑖
(𝑠,𝑇)

= 1 (10) 40 

And then compute: 41 

𝑏(𝑠,𝑡) = 𝑇(𝑠)⊤
𝑂(𝑠,𝑡+1)𝑏(𝑠,𝑡+1) (11) 42 

Or equivalently: 43 

𝑝(𝑌𝑡+1:𝑇 = 𝑦𝑡+1:𝑇|𝑋𝑡 = 𝑗, 𝜃(𝑠)) 44 

= ∑ 𝑝(𝑋𝑡 = 𝑖|𝑋𝑡−1 = 𝑗, 𝜃(𝑠))𝑝(𝑌𝑡+1 = 𝑦𝑡+1|𝑋𝑡+1 = 𝑖, 𝜃(𝑠))𝑝(𝑌𝑡+2:𝑇 = 𝑦𝑡+2:𝑇|𝑋𝑡+1 = 𝑖, 𝜃(𝑠))

𝑖

 45 
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(12) 46 

This gives us the capability to compute two sets of key intermediate values. 47 

The first is the same as what is computed in the forward-backward algorithm and 48 

represents the probability of being in a state at a given time given the entire sequence of 49 

observations. It’s defined as: 50 

𝛾𝑖
(𝑠,𝑡)

= 𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠)) (13) 51 

And computed with the formula: 52 

𝛾𝑖
(𝑠,𝑡)

=
𝑓𝑖

(𝑠,𝑡)
𝑏𝑖

(𝑠,𝑡)

𝑓(𝑠,𝑡)⊤
𝑏(𝑠,𝑡)

(14) 53 

Or equivalently: 54 

𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠)) 55 

=
𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡 = 𝑖|𝜃(𝑠))𝑝(𝑌𝑡+1:𝑇 = 𝑦𝑡+1:𝑇|𝑋𝑡 = 𝑖, 𝜃(𝑠))

∑ 𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡 = 𝑗|𝜃(𝑠))𝑝(𝑌𝑡+1:𝑇 = 𝑦𝑡+1:𝑇|𝑋𝑡 = 𝑗, 𝜃(𝑠))𝑗

(15) 56 

The next set of values represents the probability of a particular transition taking 57 

place between time step 𝑡 and time step 𝑡 + 1. We define it as: 58 

𝜉𝑖𝑗
(𝑠,𝑡)

= 𝑝(𝑋𝑡 = 𝑖, 𝑋𝑡+1 = 𝑗|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠)) (16) 59 

We can compute this with: 60 

𝜉𝑖𝑗
(𝑠,𝑡)

=
𝑓𝑖

(𝑠,𝑡)
𝑇𝑖𝑗

(𝑠)
𝑂𝑗𝑗

(𝑠,𝑡+1)
𝑏𝑗

(𝑠,𝑡+1)

𝑓(𝑠,𝑡)⊤
𝑇(𝑠)𝑂(𝑠,𝑡+1)𝑏(𝑠,𝑡+1)

(17) 61 

Or equivalently: 62 

𝑝(𝑋𝑡 = 𝑖, 𝑋𝑡+1 = 𝑗|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠)) 63 

=
𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡 = 𝑖|𝜃(𝑠))𝑝(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖, 𝜃(𝑠))𝑝(𝑌𝑡+1 = 𝑦𝑡+1|𝑋𝑡+1 = 𝑖, 𝜃(𝑠))𝑝(𝑌𝑡+2:𝑇 = 𝑦𝑡+2:𝑇|𝑋𝑡 = 𝑖, 𝜃(𝑠))

∑ 𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡 = 𝑖̂|𝜃(𝑠))𝑝(𝑋𝑡+1 = 𝑗̂|𝑋𝑡 = 𝑖̂, 𝜃(𝑠))𝑝(𝑌𝑡+1 = 𝑦𝑡+1|𝑋𝑡+1 = 𝑖̂, 𝜃(𝑠))𝑝(𝑌𝑡+2:𝑇 = 𝑦𝑡+2:𝑇|𝑋𝑡 = 𝑖̂, 𝜃(𝑠))𝑖̂,𝑗̂

 64 

(18) 65 

We then update our transition probabilities according to: 66 
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𝑇𝑖𝑗
(𝑠+1)

=
∑ 𝜉𝑖𝑗

(𝑠,𝑡)
𝑡

∑ 𝛾𝑖
(𝑠,𝑡)

𝑡

(19) 67 

Or the equivalent expression: 68 

𝑝(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖, 𝜃(𝑠+1)) =
∑ 𝑝(𝑋𝑡 = 𝑖, 𝑋𝑡+1 = 𝑗|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠))𝑡

∑ 𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠))𝑡

(20) 69 

We also need to determine our new initial conditions. We solve for these as: 70 

𝑓𝑖
(𝑠+1,0)

= 𝛾𝑖
(𝑠,0) (21) 71 

To update our emission probabilities, we perform a weighted maximum likelihood 72 

estimate, using it to determine the appropriate weights. The form of the maximum 73 

likelihood estimate depends on the assumed shape of the output distribution, but if we 74 

assume each output distribution is normally distributed, where 𝑌𝑡~𝑁(𝜇𝑖
(𝑠)

, 𝜎𝑖
(𝑠)

) 75 

when 𝑋𝑡 = 𝑖, we can compute 𝜇(𝑠+1) and 𝜎(𝑠+1) as: 76 

𝜇𝑖
(𝑠+1)

=
∑ 𝛾𝑖

(𝑠,𝑡)
𝑌𝑡𝑡

∑ 𝛾𝑖
(𝑠,𝑡)

𝑡

(22) 77 

𝜎𝑖
(𝑠+1)

= √
∑ 𝛾𝑖

(𝑠,𝑡)
(𝑌𝑡 − 𝜇𝑖

(𝑠+1)
)

2

𝑡

∑ 𝛾𝑖
(𝑠,𝑡)

𝑡

(23) 78 

Or the equivalent expressions: 79 

𝜇𝑖
(𝑠+1)

=
∑ 𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇, 𝜃(𝑠))𝑌𝑡𝑡

∑ 𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠))𝑡

(24) 80 

𝜎𝑖
(𝑠+1)

= √
∑ 𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠))(𝑌𝑡 − 𝜇𝑖

(𝑠+1)
)

2

𝑡

∑ 𝑝(𝑋𝑡 = 𝑖|𝑌1:𝑇 = 𝑦1:𝑇 , 𝜃(𝑠))𝑡

(25) 81 

We can then compute a new emission matrix using these new parameter estimates: 82 

𝑂𝑖𝑖
(𝑠+1,𝑡)

= 𝑁(𝑦𝑡; 𝜇𝑖
(𝑠+1)

, 𝜎𝑖
(𝑠+1)

) (26) 83 

This can be trivially generalized to multiple sequences. Let 𝑟 denote the index of a 84 

sequence, ranging from 1 to 𝑅. Then: 85 
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𝑇𝑖𝑗
(𝑠+1)

=
∑ ∑ 𝜉𝑖𝑗

(𝑠,𝑟,𝑡)
𝑡𝑟

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)

𝑡𝑟

(27) 86 

𝑓𝑖
(𝑠+1,0)

= ∑
𝛾𝑖

(𝑠,𝑟,0)

𝑅
𝑟

(28) 87 

𝜇𝑖
(𝑠+1)

=
∑ ∑ 𝛾𝑖

(𝑠,𝑟,𝑡)
𝑌𝑡𝑡𝑟

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)

𝑡𝑟

(29) 88 

𝜎𝑖
(𝑠+1)

= √
∑ ∑ 𝛾𝑖

(𝑠,𝑟,𝑡)
(𝑌𝑡 − 𝜇𝑖

(𝑠+1)
)

2

𝑡𝑟

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)

𝑡𝑟

(30) 89 

  90 
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