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S2 Appendix: Technical details of error type isolation 1 

We now revisit Baum-Welch under the consideration of a factorization of the 2 

transition matrix, given as the product of 𝑈 matrix factors: 3 

𝑇(𝑠) = 𝑇(𝑠,𝑈)𝑇(𝑠,𝑈−1)…𝑇(𝑠,1) (31) 4 

Then we find that: 5 

𝑓(𝑠,𝑡) = 𝑂(𝑠,𝑡)𝑇(𝑠,𝑈)𝑇(𝑠,𝑈−1)…𝑇(𝑠,1)𝑓(𝑠,𝑡−1) (32) 6 

We can think of these factors as transition probabilities between intermediate states. 7 

We define random variables of the form 𝑋𝑡,𝑢 and letting𝑋𝑡,0 = 𝑋𝑡. We find that: 8 

𝑇𝑗𝑖
(𝑠,𝑢) = 𝑝(𝑋𝑡,𝑢 = 𝑗|𝑋𝑡,𝑢−1 = 𝑖, 𝜃(𝑠)) (33) 9 

It is useful to instead track intermediate cumulative values in this formulation. Let: 10 

𝑓(𝑠,𝑡,0) = 𝑓(𝑠,𝑡) (34) 11 

𝑓(𝑠,𝑡,𝑢+1) = 𝑇(𝑠,𝑢+1)𝑓(𝑠,𝑡,𝑢) (35) 12 

Then it follows that: 13 

𝑓(𝑠,𝑡) = 𝑂(𝑠,𝑡)𝑓(𝑠,𝑡−1,𝑈) (36) 14 

These values represent the probabilities of various states after sub-transitions, given 15 

as: 16 

𝑓𝑖
(𝑠,𝑡,𝑢) = 𝑝(𝑌1:𝑡 = 𝑦1:𝑡, 𝑋𝑡,𝑢 = 𝑖|𝜃(𝑠)) (37) 17 

Through a similar re-engineering of the backwards recursion we get: 18 

𝑏(𝑠,𝑡) = 𝑇(𝑠,1)⊤𝑇(𝑠,2)⊤…𝑇(𝑠,𝑈)⊤𝑂(𝑠,𝑡+1)𝑏(𝑠,𝑡+1) (38) 19 

𝑏(𝑠,𝑡,𝑈) = 𝑂(𝑠,𝑡+1)𝑏(𝑠,𝑡+1) (39) 20 

𝑏(𝑠,𝑡,𝑢) = 𝑇(𝑠,𝑢+1)⊤𝑏(𝑠,𝑡,𝑢+1) (40) 21 

𝑏(𝑠,𝑡) = 𝑏(𝑠,𝑡,0) (41) 22 

𝑏𝑖
(𝑠,𝑡,𝑢) = 𝑝(𝑌𝑡+1:𝑇 = 𝑦𝑡+1:𝑇|𝑋𝑡,𝑢 = 𝑖, 𝜃(𝑠)) (42) 23 
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We then need to track the probabilities of these intermediate states and transitions. 24 

We find them to be: 25 

𝛾𝑖
(𝑠,𝑡,𝑢) =

𝑓𝑖
(𝑠,𝑡,𝑢)𝑏𝑖

(𝑠,𝑡,𝑢)

𝑓(𝑠,𝑡,𝑢)
⊤
𝑏(𝑠,𝑡,𝑢)

(43) 26 

𝜉𝑖𝑗
(𝑠,𝑡,𝑢) =

𝑓𝑖
(𝑠,𝑡,𝑢)𝑇𝑖𝑗

(𝑠,𝑢)𝑏𝑗
(𝑠,𝑡,𝑢+1)

𝑓(𝑠,𝑡,𝑢)
⊤
𝑇(𝑠,𝑢)𝑏(𝑠,𝑡,𝑢+1)

(44) 27 

Noting that 𝜉(𝑠,𝑡,𝑢) is only defined when 𝑢 < 𝑈, we then update our factored 28 

transition probabilities using the equation: 29 

𝑇𝑖𝑗
(𝑠+1,𝑢) =

∑ 𝜉𝑖𝑗
(𝑠,𝑡,𝑢)

𝑡

∑ 𝛾𝑖
(𝑠,𝑡,𝑢)

𝑡

(45) 30 

The initial conditions and emission matrices can be computed as before, if we note 31 

that: 32 

𝛾𝑖
(𝑠,𝑡) = 𝛾𝑖

(𝑠,𝑡,0) (46) 33 

However, our initial conditions and emission probabilities have structure for 34 

fluorosequencing which will be helpful to define. In particular, our initial conditions are 35 

affected only by the missing fluorophore rate and the initial-blocking rate. We find it easiest 36 

to pretend we start with a perfectly labeled and non-blocked peptide, and then we apply a 37 

pre-transition which is different from the one used between emissions. Letting 𝜏 represent 38 

the pre-transition, we then use this pre-transition in the following manner: 39 

𝑓(𝑠,0) = 𝜏(𝑠)𝑓(𝑠,−1) (47) 40 

𝑏(𝑠,−1) = 𝜏(𝑠)
⊤
𝑏(𝑠,0) (48) 41 

Letting 𝑓𝑗
(𝑠,−1)

 be 1 for the perfectly labeled and non-blocked state, and 0 42 

everywhere else, while allowing the factorization 𝜏(𝑠) = 𝜏(𝑠,𝑉)𝜏(𝑠,𝑉−1)…𝜏(𝑠,1) as was done 43 

with 𝑇(𝑠) previously. The transition probabilities of 𝜏(𝑠) can then be computed in manner 44 

just like that for 𝑇(𝑠): 45 
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𝜏𝑖𝑗
(𝑠+1,𝑢) =

𝜉𝑖𝑗
(𝑠,−1,𝑢)

𝛾𝑖
(𝑠,−1,𝑢)

(49) 46 

We also consider the handling of 𝑂(𝑠,𝑡). In particular our output space is 47 

multidimensional, such that 𝑌𝑡 ∈ ℝ𝑊, so we let 𝑌𝑡 = (𝑌𝑡,1, 𝑌𝑡,2, … , 𝑌𝑡,𝑊). If these 48 

components of the output are independent random variables, we can let: 49 

𝑂𝑖𝑖
(𝑠,𝑡,𝑤) = 𝑝(𝑌𝑡,𝑤 = 𝑦𝑡,𝑤|𝑋𝑡 = 𝑖, 𝜃(𝑠)) (50) 50 

𝑂𝑖𝑖
(𝑠,𝑡) = 𝑂𝑖𝑖

(𝑠,𝑡,1)𝑂𝑖𝑖
(𝑠,𝑡,2)…𝑂𝑖𝑖

(𝑠,𝑡,𝑊) (51) 51 

And we update our emission matrices as before. Assuming a normal distribution 52 

gives us: 53 

𝜇𝑖
(𝑠+1,𝑤) =

∑ 𝛾𝑖
(𝑠,𝑡)𝑌𝑡,𝑤𝑡

∑ 𝛾𝑖
(𝑠,𝑡)

𝑡

(52) 54 

𝜎𝑖
(𝑠+1,𝑤) = √

∑ 𝛾𝑖
(𝑠,𝑡)(𝑌𝑡,𝑤 − 𝜇𝑖

(𝑠+1,𝑤))
2

𝑡

∑ 𝛾𝑖
(𝑠,𝑡)

𝑡

(53) 55 

𝑂𝑖𝑖
(𝑠+1,𝑡,𝑤) = 𝑁(𝑦𝑡,𝑤; 𝜇𝑖

(𝑠+1,𝑤), 𝜎𝑖
(𝑠+1,𝑤)) (54) 56 

We can still generalize this to more sequences, using the generalized equations: 57 

 58 

𝑇𝑖𝑗
(𝑠+1,𝑢) =

∑ ∑ 𝜉𝑖𝑗
(𝑠,𝑟,𝑡,𝑢)

𝑡𝑟

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡,𝑢)

𝑡𝑟

(55) 59 

𝜏𝑖𝑗
(𝑠+1,𝑢) =

∑ 𝜉𝑖𝑗
(𝑠,𝑟,−1,𝑢)

𝑟

∑ 𝛾𝑖
(𝑠,𝑟,−1,𝑢)

𝑟

(56) 60 

𝜇𝑖
(𝑠+1,𝑤) =

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)𝑌𝑡,𝑤𝑡𝑟

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)

𝑡𝑟

(57) 61 

𝜎𝑖
(𝑠+1,𝑤) = √

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)

(𝑌𝑡,𝑤 − 𝜇𝑖
(𝑠+1,𝑤)

)
2

𝑡𝑟

∑ ∑ 𝛾𝑖
(𝑠,𝑟,𝑡)

𝑡𝑟

(58) 62 
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