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S3 Appendix: Technical details of maximum likelihood estimation 1 

General formulas 2 

Instead of getting transition probabilities, we may prefer to get a direct maximum 3 

likelihood estimate of a more fundamental parameter value that provides a more 4 

interpretable result. Furthermore, by involving a stricter structure in our formulation, 5 

parameterized by less parameters, our results should be less prone to error from overfitting 6 

the data. We will achieve this by means of a technique resembling what is done to estimate 7 

the parameterization of the continuous distributions for the emission matrix. 8 

For every transition factor indexed by 𝑢, we introduce a parameter 𝑝𝑠+1,𝑢, a 9 

function, 𝑔𝑢 ∶ ℕ → ℕ, a function ℎ𝑢 ∶ ℕ × ℕ → ℕ, and a function 𝜓𝑢 ∶ ℝ → ℝ𝑁×𝑁. The 10 

form of these functions depends on the form of the random variable being modeled by the 11 

transition factor, and we will describe this in more detail below. For now we define: 12 

𝑝𝑠+1,𝑢 =
∑ ∑ ∑ ∑ 𝜉𝑖𝑗

(𝑠,𝑟,𝑡,𝑢)ℎ𝑢(𝑖, 𝑗)𝑗𝑖𝑡𝑟

∑ ∑ ∑ 𝛾(𝑠,𝑟,𝑡,𝑢)𝑔𝑢(𝑖)𝑖𝑡𝑟

(59) 13 

𝑇(𝑠+1,𝑢) = 𝜓𝑢(𝑝𝑠+1,𝑢) (60) 14 

Similarly for our initial conditions we let: 15 

𝑝̂𝑠+1,𝑢 =
∑ ∑ ∑ ∑ 𝜉𝑖𝑗

(𝑠,𝑟,−1,𝑢)ℎ̂𝑢(𝑖, 𝑗)𝑗𝑖𝑡𝑟

∑ ∑ ∑ 𝛾(𝑠,𝑟,−1,𝑢)𝑔̂𝑢(𝑖)𝑖𝑡𝑟

(61) 16 

𝜏(𝑠+1,𝑢) = 𝜓̂𝑢(𝑝̂𝑠+1,𝑢) (62) 17 

Now we can define our factor specific functions. 18 

Detachment rate estimation 19 

We start with the detachment rate because it is the easiest to describe. It is defined 20 

by a Bernoulli random variable, which determines the rate at which a peptide enters a 21 

detached state instead of remaining unchanged. 22 
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We can only measure the detachment rate from states with remaining amino acids. 23 

We therefore set 𝑔𝑢(𝑖) to 1 for those states, and 0 for the remaining state. To pick up the 24 

transition rate into these states, we set ℎ𝑢(𝑖, 𝑗) to 1 if 𝑖 has remaining amino acids and 𝑗 25 

indicates the detached state. We set it to 0 for all other combinations of 𝑖 and 𝑗, which 26 

should never occur as they should have been forbidden in the definition of the transition 27 

factor in the previous iteration of Baum-Welch, 𝑇(𝑠,𝑢). 28 

This is a weighted maximum likelihood estimate of a Bernoulli random variable. 29 

We use the resulting value of 𝑝𝑠+1,𝑢 to define the corresponding transition factor. 𝜓𝑢 then 30 

defines 𝑇𝑖𝑗
(𝑠+1,𝑢)

 to be 𝑝𝑠+1,𝑢 when 𝑖 has remaining amino acids and 𝑗 indicates the detached 31 

state, and to be 1 − 𝑝𝑠+1,𝑢 when 𝑖 = 𝑗 and they are not in the detached state. When both 32 

are in the detached state, 𝑇𝑖𝑗
(𝑠+1,𝑢)

 is 1, and for all other combinations of 𝑖 and 𝑗, we set 33 

𝑇𝑖𝑗
(𝑠+1,𝑢)

 to 0. 34 

N-terminal blocking rate estimation 35 

N-terminal blocking behavior is also defined by Bernoulli random variables. There 36 

are two of these rates, and we start by defining our factor-specific functions for the cyclic 37 

blocking behavior, which defines the rate at which a peptide moves into a blocked state 38 

instead of remaining unchanged. 39 

We can only measure this rate from the unblocked states. Let 𝑔𝑢(𝑖) = 1 in those 40 

states, and 0 for all other states. ℎ𝑢(𝑖, 𝑗) = 1 if 𝑖 represents an unblocked state and 𝑗 41 

indicates the specifically corresponding blocked state. ℎ𝑢(𝑖, 𝑗) = 0 for all other 42 

combinations of 𝑖 and 𝑗, though these should never occur under a correct implementation 43 

of this algorithm. 44 
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This again is a weighted maximum likelihood estimate of a Bernoulli random 45 

variable, and we can describe the action of 𝜓𝑢. 𝑇𝑖𝑗
(𝑠+1,𝑢)

 should be 𝑝𝑠+1,𝑢 when 𝑖 is an 46 

unblocked state and 𝑗 is the corresponding blocked state, while it should be 1 − 𝑝𝑠+1,𝑢 47 

when 𝑖 = 𝑗 and they are in an unblocked state. When both are in the same unblocked state, 48 

𝑇𝑖𝑗
(𝑠+1,𝑢)

 is 1, and for all other combinations of 𝑖 and 𝑗, we set 𝑇𝑖𝑗
(𝑠+1,𝑢)

 to 0. 49 

For the matrix factor representing the initial N-terminal blocking, we analyze the 50 

data in exactly the same way, but just use a different parameter and matrix to track our 51 

results, in order to allow the initial blocking rate to be different from the cyclic one. 52 

Dye destruction rate estimation 53 

An assumption of equal exposure to both chemical failure and photobleaching of 54 

the fluorophores means we should treat this as a binomial random variable. As with N-55 

terminal blocking rates, we have one rate that identifies the behavior before sequencing 56 

starts (the missing fluorophore rate), and another for destruction during sequencing (the 57 

dye loss rate). These will again be mostly equivalent in their analysis, though tracked with 58 

different variables to enforce a separation. We show here the analysis for the dye loss rate. 59 

We also wish to emphasize that we track these separately, and with separate functions 𝑔𝑢, 60 

ℎ𝑢, and 𝜓𝑢, for each color of fluorophore. 61 

We note that states with more fluorophores of the color being analyzed provide 62 

more evidence of the rate of fluorophore loss. With this in mind, 𝑔𝑢(𝑖) is set to the number 63 

of fluorophores of the color of interest in state 𝑖. We then let ℎ𝑢(𝑖, 𝑗) = 𝑔𝑢(𝑖) − 𝑔𝑢(𝑗) if 64 

𝑗 ≤ 𝑖, and otherwise set it to 0 (for transitions which should never occur). 65 
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To construct 𝑇(𝑠+1,𝑢), we let 𝑇𝑖𝑗
(𝑠+1,𝑢) = 𝐵(ℎ𝑢(𝑖, 𝑗); 𝑔𝑢(𝑖), 𝑝𝑠+1,𝑢) if 𝑗 ≤ 𝑖, where 𝐵 66 

represents the parameterized probability mass function of the binomial distribution. This 67 

expands to: 68 

𝑇𝑖𝑗
(𝑠+1,𝑢) = (

𝑔𝑢(𝑖)

𝑔𝑢(𝑗)
) (𝑝𝑠+1,𝑢)

ℎ𝑢(𝑖,𝑗)
(1 − 𝑝𝑠+1,𝑢)

𝑔𝑢(𝑗) (63) 69 

When 𝑗 ≤ 𝑖. When 𝑗 > 𝑖, we let 𝑇𝑖𝑗
(𝑠+1,𝑢) = 0. 70 

There is a key difference in the analysis of the missing fluorophore, or dud-dye, 71 

rate. A bias is introduced because peptides with all fluorophores missing in every color will 72 

not be visible and are therefore absent from the data. A correction for this bias is discussed 73 

later in this text. 74 

Edman failure rate estimation 75 

Our factored transitions which manage Edman degradation are defined by a 76 

Bernoulli random variable, much like the factors managing the detachment rate or the two 77 

forms of the N-terminal blocking rates. While there is an additional complication from the 78 

probabilistic loss of a fluorophore in the case of a successful Edman degradation, we can 79 

safely ignore this until we need to construct 𝑇(𝑠+1,𝑢). When determining 𝑝𝑠+1,𝑢, we need 80 

only concern ourselves with whether Edman degradation failed. 81 

We need to omit states with a blocked N-terminus. For all states with a blocked N-82 

terminus, 𝑔𝑢(𝑖) = 0. For states with an unblocked N-terminus, 𝑔𝑢(𝑖) = 1. We let 83 

ℎ𝑢(𝑖, 𝑗) = 0 if either or both of 𝑖 or 𝑗 represent a state with a blocked N-terminus. We also 84 

set it to 0 for all invalid combinations of 𝑖 and 𝑗 that should never occur; this relationship 85 

is complicated and peptide dependent. Combinations of 𝑖 and 𝑗 are valid when 𝑖 = 𝑗, or 86 

when removing the N-terminal amino acid from state 𝑖 can result in state 𝑗. In the second 87 

case, state 𝑗 represents either the same combination of fluorophore counts of different 88 
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colors but with one less amino acid, or it represents that combination less one amino acid 89 

and minus one fluorophore, of the specific color of fluorophore which may or may not be 90 

present on the amino acid being removed. This is invalid when the N-terminal amino acid 91 

cannot be labeled and in that case should be zero. 92 

In any case, when 𝑖 = 𝑗, we let ℎ𝑢(𝑖, 𝑗) = 0, as this is an Edman success. For all 93 

other valid combinations of 𝑖 and 𝑗, we let ℎ𝑢(𝑖, 𝑗) = 1. This will give a weighted maximum 94 

likelihood estimate of the probability of an Edman failure event. 95 

To define 𝑇(𝑠+1,𝑢), we let 𝑇𝑖𝑗
(𝑠+1,𝑢) = 1 − 𝑝𝑠+1,𝑢 when 𝑖 = 𝑗. For 𝑖 ≠ 𝑗 (assuming a 96 

valid transition), if state 𝑖 does not have a possibility of a fluorophore on its N-terminal 97 

amino acid, then 𝑇𝑖𝑗
(𝑠+1,𝑢) = 𝑝𝑠+1,𝑢. If a fluorophore is possible on its N-terminal amino 98 

acid, the computation is a bit more involved. 99 

In [16], we derived a formula for the probability of fluorophore removal with 100 

Edman degradation, which we reiterate here under a slightly different symbolic 101 

representation. Let 𝜆(𝑖) represent the number of labelable amino acids which can take a 102 

fluorophore of the same color that the N-terminal amino acid may have when in state 𝑖. Let 103 

𝐺(𝑖) represent the number of fluorophores of the same color the N-terminal amino acid 104 

may have, when in state 𝑖. We note that this second function is similar in form to the variant 105 

of 𝑔𝑢(𝑖) described under “Dye destruction rate estimation.” Now, in the case where 𝑖 ≠ 𝑗 106 

(for a valid transition) and state 𝑖 does have a possibility of an N-terminal amino acid, and 107 

𝑗, in relation to 𝑖, represents an amino acid removal, we let: 108 

𝑇𝑖𝑗
(𝑠+1,𝑢) =

𝐺(𝑖)

𝜆(𝑖)
𝑝𝑠+1,𝑢 (64) 109 

Then, for the case where 𝑖 ≠ 𝑗 (for a valid transition) and state 𝑖 has a possibility of 110 

an N-terminal amino acid, and 𝑗, in relation to 𝑖, represents no amino acid removal, we then 111 

let: 112 

https://www.zotero.org/google-docs/?kDnm3r
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𝑇𝑖𝑗
(𝑠+1,𝑢) = (1 −

𝐺(𝑖)

𝜆(𝑖)
)𝑝𝑠+1,𝑢 (65) 113 

Finally, for invalid transitions, we let 𝑇𝑖𝑗
(𝑠+1,𝑢) = 0. 114 

Additional technical discussion of weighted parameter estimation 115 

We note that, with the exception of Edman degradation, all of the functions 𝑔𝑢(𝑖) 116 

and ℎ𝑢(𝑖, 𝑗) are trivial to compute when the cumulative forward and backward probability 117 

results are indexed by a higher-order tensor. Then, these functions become a simple 118 

extraction of an index of that higher-order tensor. 119 

 120 


