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S4 Appendix: Technical details of bias correction 1 

When a peptide is missing all its fluorophores it is not visible and does not get 2 

sequenced. Correcting for this issue involves considerable additional complexity. We start 3 

by noting that this introduces a statistical dependency between missing fluorophore rates 4 

of different colors of fluorophores. This is because a count of zero fluorophores of one 5 

color only eliminates the peptide from the dataset if there are also zero fluorophores of 6 

every other color. We find it clearer to first define 𝜏(𝑠+1,𝑢). As in the case for the dye loss 7 

rate, let 𝑔𝑢(𝑖) represent the number of fluorophores of the color of interest in state 𝑖, and 8 

let ℎ𝑢(𝑖, 𝑗) = 𝑔𝑢(𝑖) − 𝑔𝑢(𝑗) if 𝑗 ≤ 𝑖, and otherwise set it to zero. 9 

Now however, instead of defining  𝜏(𝑠+1,𝑢) with a parameterized binomial 10 

distribution as we did before for 𝑇(𝑠+1,𝑢), we use a modified binomial distribution where 11 

the entries represent the probability of the transition conditioned on the probability of the 12 

peptide being observable. Letting 𝐶̂ represent the set of all pre-sub-transition indices 13 

corresponding to missing fluorophore rates of different fluorophore colors, this equation is 14 

given by: 15 

𝜏𝑖𝑗
(𝑠+1,𝑢)

=
𝐵(ℎ𝑢(𝑖, 𝑗); 𝑔𝑢(𝑖), 𝑝̂𝑠+1,𝑢)

1 − ∏ 𝐵(0; 𝑔𝑢(𝑖), 𝑝̂𝑠+1,𝑢)𝑢∈𝐶̂

(66) 16 

We of course require, as before, 𝑗 ≤ 𝑖, and otherwise set 𝜏𝑖𝑗
(𝑠+1,𝑢)

 to zero. 17 

Additionally, we note that 𝜏𝑖𝑗
(𝑠+1,𝑢)

  should be zero for the state 𝑖 such that 𝑔𝑢(𝑖) = 0 when 18 

𝑢̂ ∈ 𝐶̂ (the state with no fluorophores of any color). 19 

With other forms of error, we could point to existing and well understood formulas 20 

for their maximum likelihood estimates, as they can be viewed either as binomial or 21 

Bernoulli random variables. That will not work in this case, and we must explicitly derive 22 
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this result. We consider the colors of fluorophore together, due to their statistical 23 

dependencies. Then we seek to maximize the likelihood given by: 24 

𝐿 = ∏ ∏ (
∏ 𝐵(ℎ𝑢(𝑖, 𝑗); 𝑔𝑢(𝑖), 𝑝̂𝑠+1,𝑢)𝑢∈𝐶̂

1 − ∏ 𝐵(0; 𝑔𝑢(𝑖), 𝑝̂𝑠+1,𝑢̂)𝑢∈𝐶̂

)

Ξ
𝑖𝑗

(𝑠,𝑟,−1,𝐶̂)

𝑗𝑖

(67) 25 

Assuming 𝑖 and 𝑗 vary over only their valid ranges, and where we let Ξ𝑖𝑗
(𝑠,𝑟,−1,𝐶̂)

 26 

represent the probability of a transition from state 𝑖 to state 𝑗 given 𝑌1:𝑇 = 𝑦1:𝑇 and 𝜃(𝑠) 27 

(for iteration 𝑠, sequence 𝑟, time step 𝑡) when considering only the subset of sub-transitions 28 

contained in 𝑈, the set of all missing fluorophore related sub-sequences. In mathematical 29 

notation: 30 

Ξ𝑖𝑗
(𝑠,𝑟,𝑡,𝑈)

= ∏ 𝜉(𝑠,𝑟,𝑡,𝑢)

𝑢∈𝑈

(68) 31 

We now note a useful simplification to our formula. We previously defined our 32 

initial conditions for 𝑓(𝑠,−1) so that it would be one for the perfectly labeled and non-33 

blocked state, and zero everywhere else. The only pre-sub-transition other than the missing 34 

fluorophore rate is the transition for initial N-blocking. The status of the N-terminus is 35 

irrelevant to the missing fluorophore rate, thus we consider the blocked and unblocked 36 

states together. We also ignore all states with missing fluorophores as irrelevant. We name 37 

the remaining state 𝐼. Then we can reduce our likelihood equation to: 38 

𝐿 = ∏ (
∏ 𝐵(ℎ𝑢(𝐼, 𝑗); 𝑔𝑢(𝐼), 𝑝̂𝑠+1,𝑢̂)𝑢∈𝐶̂

1 − ∏ 𝐵(0; 𝑔𝑢(𝐼), 𝑝̂𝑠+1,𝑢̂)𝑢∈𝐶̂

)

Ξ
𝐼𝑗

(𝑠,𝑟,−1,𝐶̂)

𝑗

(69) 39 

Expanding our equation for the likelihood we get: 40 

𝐿 = ∏ (
∏ (𝑔𝑢̂(𝐼)

𝑔𝑢̂(𝑗)
) (𝑝̂𝑠+1,𝑢̂)

ℎ𝑢̂(𝐼,𝑗)
(1 − 𝑝̂𝑠+1,𝑢)

𝑔𝑢̂(𝑗)

𝑢∈𝐶̂

1 − ∏ (𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

)

Ξ
𝐼𝑗

(𝑠,𝑟,−1,𝐶̂)

𝑗

(70) 41 
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We now take the logarithm, which makes the equation easier to work with while 42 

preserving order: 43 

log(𝐿) = ∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

(∑ (log (
𝑔𝑢(𝐼)

𝑔𝑢(𝑗)
) + ℎ𝑢(𝐼, 𝑗) log(𝑝̂𝑠+1,𝑢̂)

𝑢∈𝐶̂𝑗

44 

+ 𝑔𝑢(𝑗) log(1 − 𝑝̂𝑠+1,𝑢̂)) − log (1 − ∏(𝑝̂𝑠+1,𝑢)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

)) 45 

(71) 46 

Noting that this equation is symmetric with respect to 𝑢̂, we need only solve for 47 

one result to maximize for every 𝑝̂𝑠+1,𝑢̂. We then take the derivative with respect to a choice 48 

of 𝑝̂𝑠+1,𝑢̂ and set it to zero to search for extrema. 49 

0 = ∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

(
ℎ𝑢(𝐼, 𝑗)

𝑝̂𝑠+1,𝑢
−

𝑔𝑢(𝑗)

1 − 𝑝̂𝑠+1,𝑢
+

𝑔𝑢(𝐼) ∏ (𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

𝑝̂𝑠+1,𝑢 (1 − ∏ (𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂ )
)

𝑗

(72) 50 

This reduces to: 51 

0 = ∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

(ℎ𝑢(𝐼, 𝑗) − (𝑝̂𝑠+1,𝑢)𝑔𝑢(𝐼)

𝑗

52 

− (1 − 𝑝̂𝑠+1,𝑢)𝑔𝑢(𝐼) (1 − (1 − ∏(𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

))) 53 

(73) 54 

And reduces again to: 55 

0 = ∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

(𝑔𝑢(𝑗) −
(1 − 𝑝̂𝑠+1,𝑢)𝑔𝑢(𝐼)

1 − ∏ (𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

)

𝑗

(74) 56 

If we rearrange, we find: 57 

1 − 𝑝̂𝑠+1,𝑢

1 − ∏ (𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

=
∑ Ξ𝐼𝑗

(𝑠,𝑟,−1,𝐶̂)
𝑔𝑢(𝑗)𝑗

𝑔𝑢(𝐼)
(75) 58 



4 

 

This is a multivariate generalization of the solution to a geometric sequence and is 59 

therefore a generalization of the associated inverse problem. This also constitutes root-60 

finding of a polynomial of arbitrary order, and thus is unlikely to have a closed form 61 

solution. If we assume large 𝑔𝑢(𝐼) or small 𝑝̂𝑠+1,𝑢 for at least one color of fluorophore, 62 

then this can be approximated by: 63 

𝑝̂𝑠+1,𝑢 ≈
∑ Ξ𝐼𝑗

(𝑠,𝑟,−1,𝐶̂)
ℎ𝑢(𝐼, 𝑗)𝑗

𝑔𝑢(𝐼)
(76) 64 

This is the maximum likelihood estimate for an ordinary binomial random variable. 65 

We use this to demonstrate that the extremum we’ve found is a maximum, in place of 66 

applying the second derivative test as would ordinarily be done. 67 

We need a way to approximately solve this when 𝑔𝑢(𝐼) is small or 𝑝̂𝑠+1,𝑢 is large. 68 

We suggest an iterative method, where we plug the left-hand side result into the right-hand 69 

side on each iteration. We iterate over 𝑧, writing our new equation as: 70 

𝑝̂𝑠+1,𝑢
(𝑧+1)

= 1 −
(1 − ∏ (𝑝̂𝑠+1,𝑢̂

(𝑧)
)

𝑔𝑢̂(𝐼)

𝑢∈𝐶̂ ) ∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

𝑗 𝑔𝑢(𝑗)

𝑔𝑢(𝐼)
(77)

 71 

We need to prove that this iteration converges. The multivariate nature of this 72 

problem requires us to consider this in a multivariate vector space of dimension |𝐶̂|. We 73 

also set some requirements. Firstly, this equation is clearly nonsense unless: 74 

∑ 𝑔𝑢(𝐼)

𝑢∈𝐶̂

≥ 2 (78) 75 

We also require a constraint on the solution: 76 

0 < 𝑝̂𝑠+1,𝑢̂ < 1 (79) 77 

For convenience, we now introduce the following variables: 78 

𝑃𝑠+1
(𝑧)

= ∏(𝑝̂𝑠+1,𝑢
(𝑧)

)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

(80) 79 

𝑃𝑠+1 = ∏(𝑝̂𝑠+1,𝑢̂)
𝑔𝑢̂(𝐼)

𝑢∈𝐶̂

(81) 80 
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0 < 𝑆𝑠+1,𝑢 =
1 − 𝑝̂𝑠+1,𝑢

1 − 𝑃𝑠+1
=

∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

𝑗 𝑔𝑢(𝑗)

𝑔𝑢(𝐼)
< 1 (82) 81 

This gives us the equation: 82 

𝑝̂𝑠+1,𝑢
(𝑧+1)

= 1 − (1 − 𝑃𝑠+1
(𝑧)

)𝑆𝑠+1,𝑢 (83) 83 

Equivalently: 84 

𝑝̂𝑠+1,𝑢
(𝑧+1)

= 1 − 𝑆𝑠+1,𝑢 + 𝑆𝑠+1,𝑢𝑃𝑠+1
(𝑧) (84) 85 

If we have a vector of 𝑝̂𝑠+1,𝑢
(𝑧)

 such that 𝑝̂𝑠+1,𝑢
(𝑧)

= 𝑃𝑠+1, then clearly from this 86 

equation we will get the correct result in the next iteration, and 𝑝̂𝑠+1,𝑢
(𝑧+1)

= 𝑝̂𝑠+1,𝑢. More 87 

generally, due to the linear relationship of these terms, and noting that 0 < 𝑆𝑠+1,𝑢 < 1, if 88 

𝑃𝑠+1
(𝑧)

= 𝑃𝑠+1 + 𝜖 for |𝜖| ≪ 1, then there exists |𝛿| < |𝜖| such that 𝑝̂𝑠+1,𝑢
(𝑧+1)

= 𝑝̂𝑠+1,𝑢̂ + 𝛿. 89 

Therefore, to prove convergence of every 𝑝̂𝑠+1,𝑢
(𝑧)

 to 𝑝̂𝑠+1,𝑢 for all 𝑢 ∈ 𝐶̂ it is sufficient to 90 

prove convergence of 𝑃𝑠+1
(𝑧)

 to 𝑃𝑠+1. 91 

There is a recurrence relation of 𝑃𝑠+1
(𝑧+1)

 in terms of 𝑃𝑠+1
(𝑧)

, which is: 92 

𝑃𝑠+1
(𝑧+1)

= ∏(1 − 𝑆𝑠+1,𝑢 + 𝑆𝑠+1,𝑢𝑃𝑠+1
(𝑧)

)
𝑔𝑢(𝐼)

𝑢∈𝐶̂

(85) 93 

The right-hand side is a polynomial expression of order ∑ 𝑔𝑢(𝐼)𝑢∈𝐶̂  with all positive 94 

coefficients. It follows that its derivatives of every order up to and including ∑ 𝑔𝑢(𝐼)𝑢∈𝐶̂  95 

are strictly positive. Our previous requirement that ∑ 𝑔𝑢(𝐼)𝑢∈𝐶̂ ≥ 2 implies that the 96 

polynomial is strictly positive and has strictly positive first and second derivatives for 0 <97 

𝑃𝑠+1
(𝑧)

< 1. The strictly positive second derivative in this range guarantees that no more than 98 

two fixed points are possible in the given range. There is by definition a fixed-point solution 99 

0 < 𝑃𝑠+1 < 1, which is the solution we want our iteration to converge towards. There is 100 

also another fixed point at 1. 101 

Noting that for 𝑃𝑠+1
(𝑧)

= 0 we get 𝑃𝑠+1
(𝑧+1)

> 0, it follows that: 102 

𝑃𝑠+1
(𝑧+1)

> 𝑃𝑠+1
(𝑧)

 for 0 < 𝑃𝑠+1
(𝑧)

< 𝑃𝑠+1 (86) 103 
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A double root at 𝑃𝑠+1 is incompatible with the fixed point at 1. Therefore: 104 

𝑃𝑠+1
(𝑧+1)

< 𝑃𝑠+1
(𝑧)

 for 𝑃𝑠+1 < 𝑃𝑠+1
(𝑧)

< 1 (87) 105 

Using the strictly positive first derivative, we also find that both: 106 

𝑃𝑠+1
(𝑧+1)

< 𝑃𝑠+1 for 0 < 𝑃𝑠+1
(𝑧)

< 𝑃𝑠+1 (88) 107 

𝑃𝑠+1
(𝑧+1)

> 𝑃𝑠+1 for 𝑃𝑠+1 < 𝑃𝑠+1
(𝑧)

< 1 (89) 108 

These four results can be combined to prove the relation: 109 

|𝑃𝑠+1
(𝑧+1)

− 𝑃𝑠+1| < |𝑃𝑠+1
(𝑧)

− 𝑃𝑠+1| (90) 110 

Therefore, given any 0 < 𝑃𝑠+1
(0)

< 1 our iteration eventually converges towards the 111 

desired result. 112 

We then fold this iteration into the outer iteration used to improve all estimates in 113 

the Baum-Welch algorithm, which gives the equation: 114 

𝑝̂𝑠+1,𝑢 = 1 −
(1 − ∏ (𝑝̂𝑠,𝑢)

𝑔𝑢̂(𝐼)

𝑢∈𝐶̂ ) ∑ Ξ𝐼𝑗
(𝑠,𝑟,−1,𝐶̂)

𝑗 𝑔𝑢(𝑗)

𝑔𝑢(𝐼)
(91) 115 

This is equivalent to imputing missing data using the parameter estimates in the 116 

previous iteration, as described in the nontechnical summary of this bias correction. We 117 

also note that it is tempting to apply a root finding method from an open-source library, 118 

which would likely converge faster in practice. However, our method allows us to 119 

accommodate cross-parameter effects by default, which is a desirable property. There is of 120 

course a valid concern that cross-parameter effects could in some way invalidate this proof, 121 

but we have found in practice that this does not appear to be the case. 122 

 123 


