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Abstract6

Analysis of gene expression at the single-cell level could help predict the7

effectiveness of therapies in the field of chronic inflammatory diseases such8

as arthritis. Here we demonstrate an adopted approach for processing images9

from the Slide-seq method. Using a puck, which consists of about 5000010

DNA barcode beads, an RNA sequence of a cell is to be read. The pucks are11

repeatedly brought into contact with liquids and then recorded with a con-12

ventional epifluorescence microscope. The image analysis initially consists13

of stitching the partial images of a sequence recording, registering images14

from different sequences and finally reading out the bases. The new method15

enables the use of an inexpensive epifluorescence microscope instead of a16

confocal microscope.17

1 Introduction18

Mapping gene expression at the single-cell level within tissues remains a technical19

challenge.[2, 18] Measurement of the location of molecules in tissues is essential20

for understanding tissue formation and function defining molecular pathways in-21

volved in several disease states [10, 6]. The identification of spatially defined gene22

expression patterns can provide insights into the development and maintenance of23

complex tissue architectures and the molecular characterization of pathological24

states. Formerly, technologies for spatially encoded RNA sequencing with bar-25

coded oligonucleotide capture arrays were limited to resolutions in hundreds of26

micrometers limiting the detection of tissue features [15]. Rodrigues et al. de-27

veloped the Slide-seq method which enables the transcriptome-wide detection of28

RNAs with a spatial resolution of 10µm [14]. In Slide-seq, freshly frozen tissue29

can be sliced onto prepared arrays of DNA-barcoded beads termed pucks, caus-30

ing RNA in the tissue to transfer onto the beads. Subsequent library preparation31

yields data that is equivalent to single cell RNA sequencing data, but with a spa-32

tial location associated with each bead. The authors herewith presented a scalable33

method for obtaining spatially resolved gene expression data at resolutions that34

are comparable to the size of individual cells. In contrast to imaging-based tran-35

scriptomics that enable the identification of preselected genes in fixed specimens,36

array-based approaches decouple the imaging from molecular sampling and allow37

for transcriptome-wide identification of molecular patterns in tissue sections [19].38

Since Slide-seq’s low transcript detection sensitivity limited the applicability to39

different disease states Stickels et al. presented a novel protocol, termed Slide-40

seqV2 [16]. This improved method demonstrated an order of magnitude higher41

sensitivity by improving bead synthesis and array indexing to reach an RNA cap-42

ture efficiency of about 50% of that of single-cell RNA-seq data. Slide-seq can43
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be easily integrated with large-scale scRNA-seq datasets and can facilitate the44

discovery of spatially defined gene expression patterns in normal and diseased tis-45

sues at reduced costs [14]. Commercially available spatial trancriptomic arrays46

are expensive, the readout demands on high computational power and data pro-47

cessing is very slow [17, 20]. Therefore, the use of such arrays is very limited.48

On the other hand, the functional heterogeneity of inflammatory cells exhibit a49

high degree of spatial organization that influences the local microenvironment,50

i.e. whether it supports inflammation or allows switching into resolution of in-51

flammation [3, 1, 11]. In arthritis, the lining and sublining compartments of the52

synovium are particularly prominent, with the sublining compartment having a53

high degree of diversity containing pro-inflammatory and pro-resolving cell types54

[5, 9, 4]. The spatiotemporal distribution of cells and gene expression is therefore55

of interest for understanding the spatial orchestration of resolution processes in56

arthritis. To date, scRNAseq following tissue dissociation has provided unbiased57

insights into the cellular composition of synovial tissue, but it lacks information58

about cellular neighbourhood and segregations [21, 22]. The goal of our work59

was to establish a complete image processing pipeline to identify gene expression60

at the single cell level by using machine learning algorithms and conventional61

epifluorescence microscopy to reduce costs and increase the availability of this62

approach.63

2 Method64

In this study we present a methodology to process images collected by the Slide-65

seq method. The latter transfers RNA from tissue sections onto a surface cov-66

ered with DNA barcode beads with known positions, allowing the locations of the67

RNA to be deduced by sequencing. In cell analysis, so-called pucks, with a size of68

3mm, are applied to a carrier material. A puck consists of about 50,000 DNA bar-69

code beads, which carry attached RNA sequences. These pucks are successively70

brought into contact with 14 different liquids and then different fluorescence im-71

ages and one brightfield image are taken. After the puck has been sequenced, a72

cell sample is applied and the RNA sequence is read out. Further details of the73

exact procedure can be found here [14].74

2.1 Data set75

For this study, 14 images were taken from each of seven different pucks with a76

THUNDER Imager Live Cell and 3D Assay from Leica Microsystems. Each of77

these 14 images consists of 9 partial images due to the limited field of view of78

the microscope (see Figure 1). The spatial resolution is 1024 × 1024 pixels per79
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Figure 1: Left: Nine partial images of one puck in the visible light range (image
size 1024× 1024), Right: four fluoreszenz channels of one partial image

partial image. Nine partial images depict the entire puck. Each partial image is80

recorded with four different fluorescence wavelengths (475nm, 555nm, 575nm,81

635nm) and an additional recording is taken in the visible light range. By adding82

hybridization buffers containing different dye-conjugated oligonucleotides, beads83

carrying different DNA bases interact with different oligonucleotides, hence emit84

fluorescent light at different wavelengths. Consequently, depending on the fluo-85

rescence channel in which a bead is visible, the base it is carrying can be identified86

easily. Additionally, an image of a puck was acquired in an epifluorescence mi-87

croscope and a confocal microscope to generate an image data set that was well88

suited to train neural network algorithms. These image data sets are referred with89

AddImg in the following. An overview of the acquired images is given in Table 1.90

The aim of this project is to identify a characteristic sequence of 14 bases for91

each of the roughly 50000 beads. This, however, presupposes that the same bead92

can be identified in different images. But probe handling introduces a severe ob-93

stacle here: The pucks need to be brought into contact with liquids containing94

different dyes. 14 sequences need to be performed for each puck. Between the95

sequences, the puck is removed from the microscope and washed with a dye - con-96

taining liquid before it is placed back in the microscope. Each time this changes97

the position of the puck relative to the microscope and renders the taken images98

incongruent. In addition, some beads are washed away by the application of liq-99

uid (see Figure 2). Finally, the gray values of the beads are varying between the100

sequences and the partial images because of varying characteristics of the optical101

mapping. All these shortcomings render data processing rather challenging.102
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Images per puck
Channels Bright field 475nm 555nm 575nm 635nm
partial images one sequence 9 9 9 9 9
partial images 14 sequences 126 126 126 126 126

Images of 7 puck
Channels Bright field 475nm 555nm 575nm 635nm
partial images 63 63 63 63 63
partial images 14 sequences 882 882 882 882 882

Images of two microscopes (AddImg)
Channels Bright field 475nm 555nm 575nm 635nm
partial images Thunder 9 9 9 9 9
Channels Bright field 405nm 488nm 552nm 638nm
partial images Confocal 9 9 9 9 9
partial images 14 sequences only one sequence was acquired

Table 1: In this table an overview of the acquired images is given.

Figure 2: Same puck region in two different sequence images(image size 50×50).
The bead, which was washed away is marked with an arrow.

2.2 Image statistics103

Image statistics were evaluated with the goal to find out how evenly the beads are104

distributed over the puck, how often beads are washed off and in which sequence.105

First manual evaluations were carried out to quantify the mismatch between im-106

ages of a sequence. The same area of every puck was cut out for each sequence,107

allowing differences in the number of beads and their positional changes to be108

identified across the 14 sequences. For the first puck 1288 partial images for all109

5



14 sequences were divided into small image patches containing 50 × 50 pixels.110

The size of this image section is sufficient to identify changes between the two111

sequences. However, using larger sections resulted in poorer change detection be-112

cause of reduced clarity. Only the visible beads that were completely within the113

partial image section were counted for each image patch.114

In addition, manual evaluations were used to train the learning system. For115

the localization of the beads, a segmentation of all beads in one partial image was116

required. To generate the segmentation, a partial image of the epifluorescence117

microscope was taken from the AddImg data set. During segmentation, the center118

points of the beads were identified while maintaining a 2-3 pixel margin from the119

boundary of the beads.120

Manual labeling on the AddImg data set was also required for the estimation121

of the bases in the epifluorescence microscope. Estimation was based on the use122

of the gray values of the fluorescence images in the epifluorescence microscope.123

For this purpose, the associated beads were searched for in the epifluorescence124

microscope image for 1746 beads in an image section in the confocal microscope125

and the respective gray values in the fluorescence image were saved together with126

the color value in the confocal image. Since spectral separation in the confocal127

microscope is much higher, the thereby estimated base is taken as ground truth.128

Manual analyses were also performed to estimate algorithm accuracy. With129

the algorithm presented in this work, a base sequence per bead can be determined.130

For this it is essential that the same bead is identified in all 14 sequence images.131

In order to check this, 1000 determined bead positions in 14 sequences each were132

checked visually for correctness.133

2.3 Image Analysis134

The image analysis can be divided into the following steps:135

• Preprocessing of partial images136

– Calculation of binary mask137

– Image Stitching138

– Rough registration139

• Acurate registration140

• Base estimation141
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Figure 3: On the left side the original image and the manually segmented is shown
and on the right side the croped patches used for training.

2.3.1 Preprocessing of partial images142

Due to the different puck positions when taking an image repeatedly, identical143

beads have different gray values in the individual images. Hence optimizing gray144

value differences between pairs of beads across a sequence of images is meaning-145

less. For this reason, a binary mask was first calculated from the images in the146

visible light range. To do so, for one image we segmented manually all 9824 vis-147

ible beads. Afterwards a neural network was trained with cropped image patches148

of dimension 50× 50 pixels (see Figure 3). The network architecture is shown in149

Figure 4. For training an ADAM optimizer was used and the binary cross entropy150

was chosen as loss function. Only the central area of the bead has been segmented151

by the small neural network, and not the borders, because the segments should not152

overlap. From the single segments the center point for each bead can be estimated153

by taking the mean position of each segment. At each position a circle with a154

defined radius is generated in an empty image.155

The binary masks make it easier to stitch and register the images. The next156

step is the stitching of the sub-images into a large overall image. From the image157

recording with the microscope it is known that the overlap of two images is 10%158

of the image size. First, two horizontally adjacent images are selected and the sum159

of the positional differences in the overlapping region is calculated. This serves as160

an optimization function. The position of the second image is shifted horizontally161

until the minimum value is reached. Six of these pairs of images exist in the162

horizontal direction. Once the relative displacement of two images is known, an163

overall image can be created. This is not yet optimized, especially in the vertical164
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Figure 4: The architecture of the neural network for the rough segmentation of the
single beads.

direction. However, in order to achieve an optimal alignment in both horizontal165

and vertical directions, all sub-images, except for the first one, are again shifted in166

the x and y direction, thus optimizing the sum of the differences of all overlapping167

areas. Hence the algorithm performs a grid search. After the stitch of the partial168

images, a very good image of the entire puck is obtained. Still image errors can169

be detected at the boundary regions, which result from optical distortions and a170

varying magnification, leading to a tilt of the optical axis.171

The beads on the pucks are not evenly distributed like in a grid structure. This172

effect helps with image registration. The latter is necessary to identify the posi-173

tions of individual beads in all images. First of all, the center of all known bead174

positions is calculated for the stitched mask and this center of the mask is shifted175

to the origion of the coordinate system. After centering the image, the centers of176

the pucks lie very well on top of each other, so it is sufficient to primarily optimize177

the rotation angle. After a suitable rotation has been determined, the displacement178

in the x and y directions and the exact angle of rotation can be determined again179

by a grid search. To speed it up, the resolution of the images has been reduced by180

a factor of two for the optimization process. The sum of the differences between181

the two stitched masks is used as an optimization function. The puck position of182

the first image serves as a reference for all further puck images.183

2.3.2 Accurate registration184

After the first registration, the puck images lie very well on top of each other, but185

the positions of the individual beads deviate from each other due to imaging errors186

during the image recording. For this reason, a fine adjustment is necessary. The187

two puck images to be registered are broken down into small image patches. The188

bead positions contained in each patch are known. The patch will be shifted till the189

sum of distances between the points is minimized. If the difference between two190

points in the different patches is less than 4 pixels, the points will be considered as191
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being congruent. With this method, points of all other sequences can be assigned192

for each point of the first sequence.193

Figure 5: The architecture of the neural network for the estimation of the base
based on the gray values of the fluorescence images.

2.3.3 DNA base estimation194

After the fine adjustment, the position of each individual bead in the 14 puck im-195

ages is known, so the related DNA base can be assigned from the fluorescence im-196

ages. In comparison to the confocal microscope, the spectral channels (RGB) of197

the epifluorescence microscope are not clearly separated from each other, and so198

there is cross talk between the image channels. Since a threshold value definition199

is not possible due to the different dye intensities, a neural network was trained200

to predict the DNA bases from the fluorescence images. The network architec-201

ture is shown in Figure 5. The ADAM optimizer was used with a learning rate202

of 0.001 and a mean squared error loss function was deployed. Altogether1575203

data samples were used for training and 171 for testing. The training data set for204

the network training was generated as follows: The dominant color of 1746 beads205

was read manually from the images of the confocal microscope and the corre-206

sponding beads were identified in the epifluorescence microscope image. Based207

on the dominating image intensity in the 4 fluorescence channels of the confocal208

microscope, the network learns to identify one of the four assigned DNA bases.209
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3 Results and Discussion210

3.1 Image statistics211

Visual inspection of all sequences from one puck revealed that 428 patches out of212

1288 had changes in the number of beads in the frame. For image 6, the number213

of changes in the total number of beads per patch for each sequence is shown for214

all 1288 images. The most frequent changes occurred in sequences 1, 2, 4, 5.215

These sequences were imaged last. Therefore, the beads become a bit unstable216

on the puck. The beads are attached to the carrier material using an adhesive.217

After multiple washing processes, individual beads can leave their place. The218

most common change in the sequences is the disappearance or addition of a bead.219

Figure 6: Frequency of the changes in the number of beads per sequence.

3.2 Preprocessing of partial images220

First, a binary mask has to be created in order to become independent of any221

optical distortions of incident light during image recording. A neural network222

receives the image in the visible light range as input and uses it to estimate a223

rough segmentation of the beads. Based on the segmented beads, the position of224

their center point can be calculated for each segment. Then, in an empty image,225

a corresponding circle with a radius of 3 pixels is drawn at all identified bead226

positions. The individual steps of mask generation are highlighted in figure 7.227

These steps are repeated for each of the nine partial images.228

Although the neural network was only trained using an image data set to create229

the segmentation, it is able to generate a very precise segmentation. The reason230
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Figure 7: Single steps of the process of binary mask generation.

for this is that the network architecture is chosen to be as small as possible, so231

that even a small number of training examples is sufficient for the network to232

generalize [13, 7]. In Figure 8 the training and validation loss for the training233

process is shown. A binary image is created by calculating the center point and234

then generating uniformly sized points.235

Figure 8: Training and validation loss for the neural network over the epochs.

Next, the nine sub-images were stitched together to form an entire image.236

The related stitching algorithm minimizes the sum of the positional differences237

in the overlap region. The stitched mask is shown in Figure 9. In the zoomed-in238

area, small errors can be seen at the boundaries. In order to show the overlapping239

regions better, the pixel intensities of the sub-images were subtracted from each240

other when composing the image, and the absolute amount was taken. As a result,241

a perfect overlap would be represented as a homogeneous green stripe resulting242

from the overlap of the underlying RGB channel colors. Looking more closely at243

the overlapping regions, it becomes clear that some border areas match very well,244
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while others exhibit larger deviations. In addition, individual yellow beads can be245

seen, which are then only present in one of the two images. The stitching process246

is performed for all 14 sequences.247

Figure 9: A. Stitched binary mask with a zoomed region, where the stitching
errors are marked with blue arrows. B. The stitched images, where the absolute
difference between the partial images was calculated, therefore the overlapping
regions can be sawn clearly. In a perfect scenario, the overlap regions would be
dark green.

While lens distortion poses a significant hurdle for precision measurements in248

microscopy, current correction techniques are limited by their need for detailed249

knowledge about the microscope’s lens design. This requirement makes them250

impractical in many situations [8, 12]. The algorithm presented is developed in251

such a way that it is able to process the images despite optical distortions.252

After an entire image of all sequences has been registered, the former can be253

registered on top of each other. The first recorded sequence serves as a reference254

for the others. The global images of each sequence are centered, which means that255

the centers of the pucks are already very well aligned. Next, the angle of rotation256

is optimized. The displacement in the x and y direction is then varied in ever257

smaller increments and smaller angles of rotation are also tried out. The result is258

a very good registration of the two puck images (see Figure 10).259

After the global images have been co-registered, small image patches were260

then optimized. In order to check whether the same bead was detected in each se-261

quence, 1000 bead positions in 14 sequences each were checked manually. Over-262

all, 90% of the beads were correctly assigned in all 14 sequences.263

The last step of the method is to estimate the DNA base assigned to each bead.264
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Figure 10: A. Stitched mask from the first sequence. B. Stitched mask from
the second sequence. C. Absolut difference image of images A and B before
registration. D. Absolut difference image of images A and B after registration. E.
Tranformed image B after registration.

Therefore a neural network was trained to estimate the DNA base with respect265

to the gray values of the four fluorescence images. The network was trained for266

100 epochs and tested on the test set. The overall accuracy of the prediction was267

98.2%. Consequently, the optical assignment of a DNA base is possible only using268

an epifluorescence microscope, a confocal microscope is not needed. This result269

helps researchers to save quite some time and money.270

4 Conclusion271

We presented an adopted approach for analysing gene expressions at the single-272

cell level from the Slide-seq method. The image processing pipeline extracts RNA273

sequences of cells from roughly 50 000 DNA barcode beads. The new method en-274

ables the use of an inexpensive epifluorescence microscope instead of a confocal275

microscope. Hence it offers an efficient and less complex toll for spatially re-276

solved transcriptomics than existing alternatives.277
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