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Referee #1 (Remarks to the Author): 

This study profiled the impact of XBB.1.5 and BA.2 Spike mutations on cell entry, ACE2 binding, and 

sera escape based on previously reported pseudovirus deep mutational scanning (DMS) system, 

demonstrated that mutations in non-RBD region could notably impact the ACE2 binding and serum 

escape by modulating RBD conformation. Utilizing Spike phenotype data on ACE2 binding, cell entry, 

and serum evasion obtained by the pseudovirus DMS system, this study established a model to 

predict SARS-CoV-2 evolution. I believe this full Spike DMS platform could improve our 

understanding of the impacts and functions of SARS-CoV-2 Spike mutations on non-RBD sites, which 

are not well-studied and of great importance. However, based on the proposed methods and 

models, this study only retrospectively analyzed the growth rate changes of several XBB-descended 

clades over the last year, which is inconsistent with the declared original intent of the model's 

establishment. As a paper to be considered for publication in Nature, the proposed methods and 

models are expected to give predictive results of substantial confidence and the comparison among 

various prediction models should be more detailed. Thus, the below issues should be addressed 

before further consideration of acceptance. 

Major points: 

1. The study developed a model to predict the growth rate changes of the SARS-CoV-2 variant based 

on phenotypes of Spike mutation measured by the pseudovirus DMS system. However, this study 

only conducted a retrospective analysis by explaining the evolution of XBB-descended clades in the 

past year and did not provide remarkable predictions on the emergence and prevalence of future 

SARS-CoV-2 mutants. It is expected that the authors could not only provide a comprehensive 

retrospective analysis on the recent emergence of Spike mutations (especially non-RBD mutations 

that were less frequently investigated by previous studies), to rationally explain the high prevalence 

of non-RBD mutation hotspots on Spike (such as the NTD mutations observed in BA.2.86/JN.1 

lineage), but also provide a reasonable prediction on the future evolutionary trends of the SARS-

CoV-2 Spike protein, which would be critical for the evaluation and development of vaccine 

boosters. 

2. Fig. 1b shows that NTD substitutions are generally less deleterious than RBD substitutions for cell 

entry, while many NTD deletions could be highly deleterious. We usually consider NTD as a more 

flexible region compared to RBD and NTD deletions are more common in previous SARS-CoV-2 

variants. Please briefly discuss this phenomenon. Do these results indicate any unknown critical NTD 

sites for viral function? 

3. In the section titled “Mapping escape from XBB* infection sera reveals heterogeneity among 

individuals”, the study manifested the existence of inter-individual heterogeneity by differences in 



mutation escape maps from diverse serum samples. However, it neglected to take into account the 

distinctions in the immunological background of serum samples, particularly in relation to 

vaccination histories. Should the observed distinct escape spectrum be attributed to their distinct 

immune histories, or other internal heterogeneity of humoral immune response? Moreover, the 

vaccination histories corresponding to each serum sample were not explicitly delineated in 

Supplementary Table 1. 

4. The discussion of sensitizing mutations in the “Mapping escape from XBB* infection sera reveals 

heterogeneity among individuals” section is not sufficient. The capability of identifying these 

sensitizing mutations (mainly reversions) is an advantage of the pseudovirus-based full Spike DMS 

system. This should be considered a significant constraint for the prediction of viral evolution. And, 

do you observe any non-RBD sites that could facilitate the neutralization of serum samples? 

It is concluded that many mutations could allosterically affect ACE2 and NAb binding by affecting the 

Spike up-down conformation dynamics. Is it possible to validate the results by testing several mAbs 

that could either bind up/down Spike (Class 2/3), or bind up Spike only (Class 1/4, and ACE2). 

5. In the last section and Discussion, this study offered a comparative analysis between the 

pseudovirus-based full spike DMS system and the yeast display-based RBD DMS system. However, 

the comparison is too brief and not convincing enough. Please define the points in Extended Data 

Fig. 10d-f. Do they represent different clades, variants, residues, or mutations? Different methods 

might exhibit various efficiencies for predicting mutations on different regions of the Spike. Is it 

possible to analyze the performance the efficiency of predicting the prevalence of mutations) of 

each method for different regions on the Spike separately (NTD, RBD, S2 …)? 

6. The pseudovirus-based DMS system incorporates only roughly 7000 naturally occurring, manually 

curated mutations, excluding the scope of every single possible mutation within the spike protein, 

especially the non-RBD regions. The potential ramifications of this limitation on the model's 

predictive power for future viral evolution warrant further examination, and should be declared in 

the manuscript. 

Minor Points: 

1. Could you provide further explanation on why the designed mutation of XBB.1.5 RBD libraries, 

which saturates all amino acid mutations, is denoted as 3888 in Extended Data Fig. 1a? 

2. The accompanying legend in Extended Data Fig. 1b is unclear and initially provokes confusion. A 

more explicit clarification of the numbers within and beyond the brackets would be beneficial. 

3. It is noticed that Extended Data Fig. 1d appears identical to Figure 1B in the Cell publication titled 

“A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike”. 

4. Figure 2d elucidates the correlation between the effects of mutations on ACE2 affinity according 

to the pseudovirus-based full spike DMS system and the yeast display-based RBD DMS system. 

XBB.1.5 libraries exhibit a poorer correlation compared to the BA.2 libraries. Can you shed light on 

the potential reasons behind this discrepancy? 

5. Extended Data Fig. 2d only presents a heatmap illustrating the impact of non-RBD mutations on 

ACE2 affinity, which should be clarified in the figure legend. 

6. The relevance of the numbers presented within brackets in the right panel of Fig. 3b should be 

detailed in the figure legend. 

7. Changes have been made in the design and screening of mutations in the XBB.1.5 spike library 

relative to the BA.2 spike library. Could you expatiate the motivation behind these modifications? 

8. A revised mutagenesis PCR protocol was implemented for the XBB.1.5 spike library as opposed to 

the BA.2 library, which seemingly resulted in a diminished average number of mutations per spike 



variant in the XBB.1.5 library, as well as decreased mutations in the final obtained library (Extended 

Data Fig. 1a). Can you share any additional observations resulting from these modifications? 

9. In Extended Data Fig. 4a, could you confirm if the lane on the far left represents a marker? Clear 

labeling of this segment in the image would be beneficial. 

10. It would be preferable for all the Negative stain electron microscopy images in Extended Data 

Fig. 4b to include a scale bar. 

11. Could you explain why the non-neutralizing control for the ACE2 binding ability experiment was 

not similarly adjusted to the RDPro glycoprotein for experimental uniformity? 

12. Before implementing the escape mapping for serum samples using the pseudovirus DMS system, 

is there a requirement for pre-treatment to inactivate the sera specimens? This is not clearly 

elucidated in the provided “Methods” section. 

13. In the left panels of Figures 5a to 5c, does each dot represent a distinct amino acid substitution? 

If this is the case, could you clarify why the number of dots does not correspond with the number of 

amino acids illustrated in the logo plot of the right panel? 

14. The citations for reference 28 in the "Recombinant Protein Production" subsection of the 

Methods are rendered in red. 

15. There is a noticeable absence of the Author contributions section. 

Referee #2 (Remarks to the Author): 

The paper develops integrative deep mutational scanning as a method to measure changes in three 

molecular phenotypes of SARS-CoV-2 BA.2 and XBB.1.5 (cell entry, ACE2 binding, and neutralization 

by human sera) and applies these data to evolutionary predictions. The authors score mutations that 

escape human sera of multiple vaccinated and/or recently with XBB infected individuals. The analysis 

confirms that humans are heterogeneous with respect to antigenic changes. A novel result is that 

ACE2 binding can be substantially affected by mutations outside the RBD. Finally, an interesting 

observation is that the authors see changes in viral growth rates among different XBB descendants, 

which can be explained by results using deep mutational scanning which could aid as predictive 

approach. The principal claim of the paper is that deep mutational scanning data enable 

substantially improved evolutionary predictions. The authors present a correlation analysis of escape 

scores with growth rate advances of various sub-clades of XBB inferred using a multinomial logistic 

regression model. The paper raises a number of specific questions on the deep mutational scanning 

analysis (1,2) and, more fundamentally, on the application to predictions (3-5): 

1. In the analysis of cell entry, the authors write: "Negative values indicate worse cell entry than the 

unmutated parental spike. Note that the library design favored introduction of substitutions and 

deletions that are well tolerated by spike, explaining why many mutations of these types have 

neutral to only modestly deleterious impacts on cell entry". In Fig 1b, indeed nearly all mutations 

have a neutral or negative impact. The authors should discuss this fact more, because it is a crucial 

part of cell infection. Also, it seems that no deletions were introduced in the RBD based on the BA.2 

background. This should be discussed as well. 

2. Using the new DMS approach for predicting ACE2 binding is an interesting idea. In Fig 3b, the 



authors show RBD occupancy vs. ACE2 concentration for a known increasing or decreasing 

mutations in the RBD compared to a BA.2 background. S1 and S2 mutations predicted to increase 

ACE2 binding do not always show this effect. While S1 changes seem to have an effect increasing 

ACE2 binding, S2 changes always appear to reduce ACE2 binding. The authors explain that this effect 

could be due to the experimental setup and could be explained with effects on spike fusion. Would 

that mean that this approach does not work for all mutations affecting spike fusion? The authors 

should discuss this point more. 

3. The growth advance analysis of the paper falls short of the stated goal of predictions. This is for 

two reasons. 

(a) Using only the growth rate of the clade as a fitness measure, the authors look at a very short 

time-span locally in one part of the tree (the XBB subclade). Evolutionary success depends on the 

whole viral population over an intermediate time span, predictions require to assess the difference 

of its fitness with the average fitness in the population, taking into account the competition between 

clades. It is not sufficient to use only the difference in the growth rate compared with only the 

parent. 

(b) The additive escape score ignores epistatic effects between multiple mutations. These are 

especially important for SARS, where new variants of concern often show multiple additional 

mutations; see, e.g., Thadani et al. (Nature 2023) for a recent treatment of such effects. 

4. The statistical analysis of predictions is not state of the art. 

(a) As the authors exclude clades that have fewer than 200 sequences, they bias against clades with 

decreased fitness, i.e., underweigh false positives. 

(b) The data sample where the predictive power is compared to other methods seems to be too 

small. I understand that because of the full-spike DMS technique, an analysis of the full phylogenetic 

tree is not plausible. However, why is no analysis on the growth rates of the subclades in the BA.2 

subtree included? 

(c) There is no separation of training and validation data. 

5. The analysis of empirical growth rates is unclear. 

(a) As I understand, the inferred growth rate is the exponential growth of the number of sequences 

for a lineage per day. At the same time, the difference in growth rates between two variants is the 

selection coefficient and reflects the change in the relative frequencies of the two variants. While 

the growth rates are variant-specific, there is also a constant that is country-specific for each pair of 

variants that determines the intercepts. Could you give a more complete description of the method 

with the explicit likelihood function that is optimised over? What are the parameters that are being 

optimised? 

(b) The inferred growth rates grow almost monotonically with time (fig. 6, fig.S10b). This does not 

include the expected time-dependence of growth within one clade; see, e.g., Yan et al. (eLife 2019). 

(c) The growth analysis gives some surprising results: (1) XBB.1.5 is not inferred with a high clade 

growth in comparison with other foreground clades, even though XBB.1.5 did come up very fast. (2) 

A comparison of inferred growth values between HV.1 and HK.6 shows similar growth, which is 

different from what other people observe (https://cov-spectrum.org). The authors should explain 

the growth analysis in more detail and compare to other established methods. 



In summary, this paper presents a convincing deep-mutational scanning analysis of multiple growth-

relevant viral phenotypes of SARS-CoV-2 that is a promising avenue for future applications. The 

application to predictions, presented as the central message of the paper, is far less convincing. I 

appreciate that data of multiple phenotypes can help predictions, but the quantitative improvement 

is a bit incremental. On the conceptual and methodological side, the paper is rather a step back 

compared to the standard of recent publications (Thadani et al., Nature 2023; Meijers et al., Cell 

2023). 

Referee #3 (Remarks to the Author): 

In this manuscript, the authors deploy a technology they recently developed, unveiled at the end of 

2022, for performing deep mutational scanning of full-length SARS-CoV-2 spike proteins, to two 

important SARS-CoV-2 genomic variants, BA.2 and XBB.1.5, and further develop it to extend the 

phenotypes that it can measure. Using these two variants as backgrounds allows them to effectively 

cover the ancestors of the major variants that circulated in 2023 (and in 2024 to date, though 

inevitably circulating virus is now quite diverged from these ancestors). The authors provide 

phenotyping in several different dimensions, and then use genomic surveillance data from 

circulating SARS-CoV-2 sequences to measure the biological relevance of these screening data from 

the laboratory, finding that the screen data have significant power to explain evoltution in the world. 

The combined analysis provides a tremendous wealth of data for those studying SARS-CoV-2's 

ongoing evolution, and the authors also develop important new tools that can be applied to future 

variants and other viruses. There is a very substantial amount of work described, bringing together 

deep mutational scanning, in different lineages and different contexts, with genomic surveillance 

data and the recently-developed analytical approach of mass photometry. 

This approach to performing deep mutational scanning across the entire spike protein remains novel 

and impactful. The most important outcome of this work is the dataset produced, which will be well-

used by the community. This dataset allows any researcher coming across a new lineage to assess 

whether the mutations it possesses are (on their own) likely to alter cell entry properties, to alter 

ACE2 binding, or to evade immunity induced by vaccination and infection. The authors' approach to 

documenting their analytical workflows is exemplary, with notebooks available to reproduce every 

step of the analytical workflows, and outputs available in convenient interactive forms and data files. 

The availability and documentation of code and workflows is at the very highest level for any 

analyses in this area, and to be commended. The Github URLs liberally distributed through the text 

are very helpful to the reader seeking additional data on any point. 

The assay the authors are using measures the efficiency with which pseudoviruses of different 

genotypes can enter cells, but they exploit the fact that the neutralisation of this entry by exogenous 

ACE2 differs according to the strength with which each pseudovirus binds to ACE2 to assess the 

ACE2-binding of each mutant in their pool. The authors give some examples of the insights that this 

approach provides, including sites such as A222V, which emerged repeatedly in Delta and which 

causes increased ACE2 binding despite not being found in the spike RBD. 

The utility of the dataset as a whole is brought home by the authors' demonstration using genomic 



surveillance data that these mutational-scanning data alone are sufficient to predict (imperfectly, as 

they acknowledge) the change in clade growth rate between a parent clade and its descendant, 

created by the mutations that it acquired. The analysis here is careful and elegant, and is a useful 

contribution in providing benchmarking data against other approaches (which here are less 

effective) and as a benchmark for future approaches. 

The main limitation of the deep mutation scanning approach, acknowledged in the Discussion, is 

that it looks (in practice) at each mutation in turn, while epistasis appears to also play a substantial 

role in the paths SARS-CoV-2 takes through its fitness landscape. Nevertheless, these analyses show 

that mutations analysed in isolation can still tell us a great deal. 

The manuscript is easy to read and carefully written. All conclusions are robust and well-supported. 

Clarity has been prioritised and overstatement avoided. Statistical analysis is sound, figures are clear, 

and I find nothing of any substance to fault. I list some small stylistic suggestions below that 

occurred to me during my reading. 

- "mutations observed at an appreciable number of times" - I found the 'at' here unexpected to my 

ear. 

- I was initially somewhat surprised by the authors' decisions to bias their libraries so much in favour 

of mutations that have been observed occurring multiple times in GISAID, given that it is also 

interesting to understand why mutations are selected against. Reading their original methods paper 

gave me a clearer idea of the rationale (a high proportion of deleterious mutations can be 

problematic when many of the pseudoviruses carry multiple mutations). It could be worth 

reiterating this reasoning in the methods. 

- "highly correlated between the replicate libraries for each spike, indicating the experiments have 

good precision (Extended Data Fig. 1e)." - 'precision' can have a technical connotation of relating to 

the degree of resolution in an assay, (i.e. something like the number of decimal places). Duplicates 

would not speak directly to that, and regardless here the data in the figure looks very bimodal, so 

repeatability or accuracy might be a better word?



Referee #1 (Remarks to the Author): 

This study profiled the impact of XBB.1.5 and BA.2 Spike mutations on cell entry, ACE2 binding, 
and sera escape based on previously reported pseudovirus deep mutational scanning (DMS) 
system, demonstrated that mutations in non-RBD region could notably impact the ACE2 binding 
and serum escape by modulating RBD conformation. Utilizing Spike phenotype data on ACE2 
binding, cell entry, and serum evasion obtained by the pseudovirus DMS system, this study 
established a model to predict SARS-CoV-2 evolution. I believe this full Spike DMS platform could
improve our understanding of the impacts and functions of SARS-CoV-2 Spike mutations on 
non-RBD sites, which are not well-studied and of great importance. However, based on the 
proposed methods and models, this study only retrospectively analyzed the growth rate changes of
several XBB-descended clades over the last year, which is inconsistent with the declared original
intent of the model's establishment. As a paper to be considered for publication in Nature, the 
proposed methods and models are expected to give predictive results of substantial confidence 
and the comparison among various prediction models should be more detailed. Thus, the below 
issues should be addressed before further consideration of acceptance. 

Thanks for the accurate summary of our work. We agree that the measurements made by deep 
mutational scanning improve our understanding of spike mutations. As detailed below, we have 
added new analyses to show how these measurements help predict viral evolution, both by adding
analyses of the evolution of BA.2.86-descended clades that arose in the future relative to the time
of our experiments, and also by expanding the retrospective analysis to include a broader set of 
clades. 

Major points: 
1. The study developed a model to predict the growth rate changes of the SARS-CoV-2 variant 
based on phenotypes of Spike mutation measured by the pseudovirus DMS system. However, this
study only conducted a retrospective analysis by explaining the evolution of XBB-descended 
clades in the past year and did not provide remarkable predictions on the emergence and 
prevalence of future SARS-CoV-2 mutants. It is expected that the authors could not only provide a
comprehensive retrospective analysis on the recent emergence of Spike mutations (especially non-
RBD mutations that were less frequently investigated by previous studies), to rationally explain the
high prevalence of non-RBD mutation hotspots on Spike (such as the NTD mutations observed in
BA.2.86/JN.1 lineage), but also provide a reasonable prediction on the future evolutionary trends of
the SARS-CoV-2 Spike protein, which would be critical for the evaluation and development of 
vaccine boosters. 

This is a good comment, and we have added additional analyses that address the reviewer’s point.

First, we have added analyses showing that our full-spike deep mutational scanning outperforms 
other approaches for predicting both the high fitness of the BA.2.86 lineage, which had not been 

Author Rebuttals to Initial Comments:



identified yet at the time we performed our experiments in the summer of 2023 (although it had
been identified by the time we submitted our original paper). We also show that the deep
mutational scanning outperformed other methods for identifying the high fitness of clades
descended from BA.2.86 such as JN.1 (which mostly had not yet emerged even at the time of

original submission of our manuscript). For these
analyses, we have used an approach similar to
that of Thadani et al (2023) (ninth extended data
figure of their paper) that involves generating
random sequences with mutations observed at
least a modest number of times across all
SARS-CoV-2 sequences in GISAID, and then
comparing the the actual sequence (either
BA.2.86 or its descendant Pango clades) to
randomly mutated sequences with the same
number of mutations. This new analysis is in
Extended Data Figure 15 of our revised
manuscript, and part of the analysis is shown at
left. For instance, the plot at left shows that
according to the spike pseudovirus deep
mutational scanning, BA.2.86 has a much more
favorable phenotype than 1000 randomly
generated spike sequences with the same
number of mutations, both if we look at the
linear model of all full-spike deep mutational
scanning phenotypes parameterized on the
XBB-descended clades, or if we look just
directly at the measured cell entry and sera
escape phenotypes. Looking at the actual
phenotype of BA.2.86 versus the randomly
generated mutants further shows that the
full-spike deep mutational scanning has better
predictive power than EVEscape or RBD
yeast-display deep mutational scanning.
Extended Data Figure 15 of our revised
manuscript has a comparable plot showing that
the same is true if we test the ability of the

different methods on descendant Pango clades of BA.2.86 relative to the original BA.2.86. Overall,
these new analyses show that our full-spike deep mutational scanning has better
predictive power on the BA.2.86 clades that emerged after our experiments than
alternative methods.

Second, the reviewer notes that our retrospective analysis in the original manuscript only included
XBB-descended clades. In the revised manuscript, we have also added a second retrospective
analysis with expanded scope that includes all BA.2, BA.5, and XBB-descended clades with
growth estimates. This new analysis is in Extended Data Figure 14 of the revised manuscript. The
results on this expanded set of clades are essentially the same as for just XBB-descended clades:
the full-spike deep mutational scanning does a reasonable job of predicting changes in clade



growth, and outperforms both RBD yeast-display deep mutational scanning and EVEscape.
Overall, this new analysis broadens the retrospective validation of the predictive power
of the deep mutational scanning to include all clades evolutionarily downstream of BA.2.

Finally, the reviewer asks if we can predict future evolution. As mentioned above, we have shown
that our measurements have substantial predictive power with respect to BA.2.86 (which emerged
after our experiments were completed) and BA.2.86-descended clades (which mostly emerged
after our original manuscript was submitted). Of course it is impossible for us to benchmark any
predictions about evolution in the future to the time of writing of this response. However, we can
describe how our data is being used to interpret / predict the current near-term evolution of
SARS-CoV-2. Currently, there are three main mutations convergently appearing in the most rapidly
growing SARS-CoV-2 variants: R346S/T, F456L, and T572I (see
https://github.com/neherlab/SARS-CoV-2_variant-reports/blob/10458d09afa9dae9ffc5ef522078fe
0769c209f1/reports/variant_report_latest_draft.md). Our data have been useful for understanding
all of them as follows, and predicting they were important before they became widespread:

● R346S/T: On Dec-4-2023, a R346S Pango clade was designated (JN.1.1). In that Pango
GitHub issue, we immediately identified that R346S was a significant serum-escape
mutation based on the full-spike deep mutational scanning (see the here:
https://github.com/sars-cov-2-variants/lineage-proposals/issues/1148#issuecomment-183
8996345). Indeed, R346S/T mutations have since become common in most of the fastest
growing new clades, demonstrating the predictive power of our deep mutational scanning.

● T572I: By late Dec-2023, many of the fastest growing clades were JN.1 descendants with
T572I, which prior to our full-spike deep mutational scanning had no known phenotypic
effect. We were able immediately explain the reason for spread of this mutation by noting
that our deep mutational scanning showed T572I increased ACE2 binding by modulating
RBD conformation (see https://twitter.com/jbloom_lab/status/1741199536280989821).
Indeed, T572I is currently one of the three most important convergent mutations.

● F456L: This mutation is spreading rapidly, and is predicted by our deep mutational
scanning to confer substantial serum escape with just modest cost to ACE2 binding and
spike-mediated cell entry.

Overall, these examples demonstrate how our deep mutational scanning measurements
have provided predictive power with respect to the three most important SARS-CoV-2
mutations that have emerged over the last few months.

2. Fig. 1b shows that NTD substitutions are generally less deleterious than RBD substitutions for
cell entry, while many NTD deletions could be highly deleterious. We usually consider NTD as a
more flexible region compared to RBD and NTD deletions are more common in previous SARS-
CoV-2 variants. Please briefly discuss this phenomenon. Do these results indicate any unknown
critical NTD sites for viral function?

The reviewer is correct in this comment—however, the distinction (which we failed to make in the
original data display) is that the flexible loops but not the core ß-sheets of the NTD are highly
tolerant of deletions. Specifically, our libraries include single-residue deletions at most of NTD sites,
and Fig.1b shows the effects of these deletions aggregated across the entire NTD. The “flexibility”
of NTD that the reviewer notes mostly lies in its ability to accommodate indels and substitutions in
the flexible loops that connect the ß-sandwich that makes up the core of NTD. If we separate NTD

https://github.com/neherlab/SARS-CoV-2_variant-reports/blob/10458d09afa9dae9ffc5ef522078fe0769c209f1/reports/variant_report_latest_draft.md
https://github.com/neherlab/SARS-CoV-2_variant-reports/blob/10458d09afa9dae9ffc5ef522078fe0769c209f1/reports/variant_report_latest_draft.md
https://github.com/sars-cov-2-variants/lineage-proposals/issues/1148#issuecomment-1838996345
https://github.com/sars-cov-2-variants/lineage-proposals/issues/1148#issuecomment-1838996345
https://twitter.com/jbloom_lab/status/1741199536280989821


mutations by whether they occur in the core
ß-sheets or the flexible loops, we see that the
NTD is more tolerant of both substitutions and
deletions in the loops than in the core ß-sheets
(see plot at right). This difference is especially
notable for deletions: the median effect of a
single-residue deletion in the NTD loops is only
slightly negative (median effect of about -0.25),
but the median effect of a deletion in the core
ß-sheets is highly negative (median effect of
about -5). Therefore, the NTD is really only
tolerant of deletions in its flexible loops. We have
added a sentence to the text explaining this fact,
as well as adding the plot at right as Extended
Data Fig. 1g of the revised manuscript.

3. In the section titled “Mapping escape from XBB* infection sera reveals heterogeneity among
individuals”, the study manifested the existence of inter-individual heterogeneity by differences in
mutation escape maps from diverse serum samples. However, it neglected to take into account the
distinctions in the immunological background of serum samples, particularly in relation to
vaccination histories. Should the observed distinct escape spectrum be attributed to their distinct
immune histories, or other internal heterogeneity of humoral immune response? Moreover, the
vaccination histories corresponding to each serum sample were not explicitly delineated in
Supplementary Table 1.

The reviewer is correct that heterogeneity in sera escape can be due to vaccination/infection
histories of the individuals from which these sera were obtained, or could be due to intrinsic
differences in individuals’ humoral responses. We have added additional discussion of these
possibilities in the Discussion section: we suspect vaccination/infection history may be a major
factor based on other published work. We have also updated Supplementary Table 1 to give
detailed vaccination and infection histories for the individuals from which each serum was
collected.

However, we are not able to confidently assess whether exposure history is the main factor
shaping the heterogeneity in the samples we analyzed. All of the samples we analyzed are from
individuals who were imprinted by vaccination with the original vaccine prior to any infection. The
individuals then have different numbers of infections. As shown in the plot below (which mimics Fig.
4a from the paper but is stratified by one versus multiple infections), there are some modest
differences in key sites of escape among sera from individuals with one or multiple infections.
However, the number of samples in our study is not sufficient to be confident that these differences
are significant. In addition, because our study did not draw sera from defined cohorts with highly
similar exposure histories, it is difficult to perform this analysis because every individual has a
somewhat different history. We agree that future deep mutational scanning studies of serum
escape, such as ones comparing individuals imprinted with the ancestral vaccine versus Omicron
infection, could shed more light on this question. But for now all we can confidently conclude is
that there is substantial heterogeneity across the study subjects, but can only speculate on the
cause.



4. The discussion of sensitizing mutations in the “Mapping escape from XBB* infection sera reveals
heterogeneity among individuals” section is not sufficient. The capability of identifying these
sensitizing mutations (mainly reversions) is an advantage of the pseudovirus-based full Spike DMS
system. This should be considered a significant constraint for the prediction of viral evolution. And,
do you observe any non-RBD sites that could facilitate the neutralization of serum samples?

We agree with the reviewer that the ability to also detect sensitizing mutations that increase
neutralization is a major strength of our lentivirus-based deep mutational scanning system, and
provides useful information on SARS-CoV-2 evolution. We have expanded discussion of these
mutations in the manuscript.

Most sensitizing mutations occur at sites which were mutated in previous major SARS-CoV-2
variants indicating that sera have antibodies targeting the original unmutated epitopes. As the
reviewer notes, such reversions are less likely to occur in future variants because they increase
sensitivity to neutralization by pre-existing antibodies targeting those sites. Furthermore, our ability
to map sensitizing mutations also is of utility when predicting the evolution of non-XBB clades that
start with different genetic backgrounds. For instance, XBB.1.5 already had the R346T
serum-escape mutation, and so the T346R reversion is measured to be sensitizing in our XBB.1.5
deep mutational scanning. But JN.1 variants lack R346T, and so that mutation is now rising rapidly
in JN.1 descendants—indicating that R346T is an escape mutation in JN.1, exactly as predicted by
the fact that we measure T346R (the reverse mutation) to be sensitizing in our deep mutational
scanning.

The interactive serum-escape maps we provide with our data (see here
https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html) allow
visualization of sensitizing mutations if you set the ‘floor escape at zero’ toggle below the heatmap
to ‘false’. In addition, in Extended Figure 9 we do analyze sensitizing mutations at sites outside the
RBD. Most of the sensitizing mutations at non-RBD sites appear to put the RBD in a more up
conformation, which makes it more accessible to neutralization by antibodies that bind to that can
only bind to the RBD in the up conformation.

https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html


It is concluded that many mutations could allosterically affect ACE2 and NAb binding by affecting
the Spike up-down conformation dynamics. Is it possible to validate the results by testing several
mAbs that could either bind up/down Spike (Class 2/3), or bind up Spike only (Class 1/4, and
ACE2).

This is an excellent suggestion, and we have added new data in the Extended Data Fig. 10 that
validates the effects as suggested by the reviewer. Specifically, we have previously performed
full-spike deep mutational scanning of monoclonal antibodies that can either only bind the RBD in
the up conformation (REGN10933 and SC27) or can bind to the RBD in both the up and down
conformation (LY-CoV1404). The prediction would be that the antibodies that can bind only in the
up conformation would be affected both by mutations directly in their epitopes and by mutations
that modulate RBD up-down conformation, whereas the antibody that can bind in both the up and
down conformation would only be affected by mutations directly in its epitope. Indeed, the
monoclonal antibody deep mutational scanning data are fully consistent with this prediction. We
have added these data in new Extended Data Fig. 10, and have also added explanatory text in the
legend to that figure and the main text. These new data strengthen our conclusions.

We have also updated the mass photometry analysis and added new mass photometry data for
the XBB.1.5 strain (Figure 3, Extended Data Fig. 3-6) that further provide direct biophysical support
for non-RBD mutations affecting RBD up-down conformation.

5. In the last section and Discussion, this study offered a comparative analysis between the
pseudovirus-based full spike DMS system and the yeast display-based RBD DMS system.
However, the comparison is too brief and not convincing enough. Please define the points in
Extended Data Fig. 10d-f. Do they represent different clades, variants, residues, or mutations?
Different methods might exhibit various efficiencies for predicting mutations on different regions of
the Spike. Is it possible to analyze the performance the efficiency of predicting the prevalence of
mutations) of each method for different regions on the Spike separately (NTD, RBD, S2 ...)?

As described above, we have greatly expanded the comparisons between different methods for
predicting clade growth, including the full-spike versus yeast-display RBD deep mutational
scanning. This includes adding several new supplementary figures (Extended Data Figures 12 to 15
in the revised manuscript). We have clarified in these revisions that each point in the plots
referenced by the reviewer represents a different SARS-CoV-2 clade.

Unfortunately, we cannot compare clade growth on a per-spike-domain (eg, NTD, RBD, etc) basis,
as clades can acquire mutations throughout the spike (and even the rest of the genome) that
influence their growth, and in general it is not possible to strictly separate the effects of these
mutations. However, we do clearly show that full-spike deep mutational scanning (which covers
mutations at all spike domains) is better than yeast-display RBD deep mutational scanning (which
only covers RBD mutations) at predicting clade growth. This fact suggests that mutations outside
the RBD do make meaningful contributions to clade fitness. Indeed, in Fig. 3C we list some
non-RBD mutations (T572I, T732I, G157L, S704L, E583D, Q52H) that likely enhance fitness (since
they arise repeatedly in different clades) and that our experiments measure to have a beneficial
effect.

As far as direct comparison between the full-spike and yeast-display RBD measurements, Fig. 2d
shows that the effects of RBD mutations on ACE2 binding made using the two methods are quite



similar. Therefore, one main difference may be that the full-spike deep mutational scanning also
captures the effect of non-RBD mutations, and these in turn sometimes make important
contributions to clade fitness. The other major strength of the full-spike deep mutational scanning is
that it directly measures escape from neutralization by polyclonal sera, whereas the yeast-display
RBD deep mutational scanning only measures escape from binding by monoclonal antibodies. The
former (polyclonal sera neutralization escape) likely better represents the true antigenic selection on
SARS-CoV-2 during its evolution in the human population.

6. The pseudovirus-based DMS system incorporates only roughly 7000 naturally occurring,
manually curated mutations, excluding the scope of every single possible mutation within the spike
protein, especially the non-RBD regions. The potential ramifications of this limitation on the model's
predictive power for future viral evolution warrant further examination, and should be declared in
the manuscript.

The reviewer is correct that our libraries contain only a subset of spike mutations: namely those
that are observed at least some small number of times in the ~16-million human SARS-CoV-2
sequences, plus all mutations at sites that are of clear evolutionary importance. However, this
library-design strategy effectively covers nearly all relevant evolutionary mutations even into the
future. The reason is that nearly every mutation that ends up emerging in any significant
SARS-CoV-2 clade is already sampled in the ~16-million human SARS-CoV-2 sequences, since
among this many sequences every evolutionary accessible and tolerated mutation is expected to
be observed dozens to hundreds of times (see DOI 10.1093/ve/vead055 for exact statistics on
how we expect to observe every tolerated mutation many times). Therefore, nearly all the mutations
that we exclude from our libraries are ones that are not evolutionarily relevant (at least in the near-
to mid-term future) because they are not accessible by single-nucleotide mutations and/or are
highly deleterious.

To better demonstrate how our libraries effectively sample all relevant mutations, we have updated
Extended Data Figure 1b to show how many of the mutations that have occurred in natural Pango
clades are covered in our libraries. Even though our libraries were designed nearly a year ago
(when we started the experiments), nearly all mutations that have occurred in natural Pango clades
even up to the current date are well represented in our libraries. This includes even Pango clades
descended from BA.2.86, which had not even been identified at the time we designed our library.
This fact reflects the evolutionary dynamics of SARS-CoV-2: the mutations that end up spreading
are almost always ones that are being extensively sampled in the millions of human SARS-CoV-2
sequences in GISAID—since for a virus with a high mutation rate and large population size like
SARS-CoV-2, the key dynamic in evolution is generally not the waiting time for occurrence of a
mutation, but rather the competition among different mutant clades that generally leads to only a
small number of clades spreading widely at any given time.

In addition, we note that even very rare mutations in BA.2.86 (like the deletion of V483) were
covered in our library as we saturated key sites. In fact, that was one of the facts that enabled us to
correctly predict when BA.2.86 emerged in the late summer of 2023 that this deletion would have
only a small adverse effect on ACE2 binding. Specifically, slide 9 at
https://slides.com/jbloom/new_2nd_gen_ba2_variant shows how we were able to correctly assess
the effect of delV483 in BA.2.86 when it emerged using our deep mutational scanning, despite the
fact that we designed our library long before BA.2.86 was discovered.

https://slides.com/jbloom/new_2nd_gen_ba2_variant


For these reasons, the restriction of our libraries to the chosen ~7,000 mutations actually is not a
major limitation for evolutionary prediction, as there is enough data to determine with fairly high
accuracy which SARS-CoV-2 mutations will be relevant in near- to mid-term future evolution.
However, the reviewer is correct that this library design does in principle introduce a limitation, and
we now also state this more clearly.

Minor Points
1. Could you provide further explanation on why the designed mutation of XBB.1.5 RBD libraries,
which saturates all amino acid mutations, is denoted as 3888 in Extended Data Fig. 1a?

RBD is 201 amino acids (positions 331-531), so a fully saturated library covers 201*19 = 3,819
different amino acid mutations (since each of the 201 residues can be mutated an of 19 other
amino-acid identities). In addition to these amino acid mutations, we designed our libraries to
include stop-codon mutations at 51 sites (as a negative control, as we know this will be
deleterious), and single-residue deletions at another 18 sites (where we thought such deletions
could plausibly occur), bringing the total number of distinct mutations to 3,819 + 51 + 18 = 3,888.

2. The accompanying legend in Extended Data Fig. 1b is unclear and initially provokes confusion. A
more explicit clarification of the numbers within and beyond the brackets would be beneficial.

We have added more explanatory text to the legend for Extended Data Fig. 1b. In particular, we
now explain that the numbers outside the bracket indicate the total number of mutations observed
in natural Pango clades, and the number inside the brackets indicate how many of these mutations
are well covered in our libraries.

3. It is noticed that Extended Data Fig. 1d appears identical to Figure 1B in the Cell publication
titled “A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike”.

It is indeed the same figure and we explicitly cite our previous Dadonaite et al. (2023) paper in the
legend for Extended Data Fig. 1d. The method for library production between that paper and the
current study, but since understanding the method is crucial for understanding the experiments we
felt it was important to re-include the experimental schematic since we know it is difficult for
readers when they are forced to go read a separate reference to understand a key aspect of a
study.

4. Figure 2d elucidates the correlation between the effects of mutations on ACE2 affinity according
to the pseudovirus-based full spike DMS system and the yeast display-based RBD DMS system.
XBB.1.5 libraries exhibit a poorer correlation compared to the BA.2 libraries. Can you shed light on
the potential reasons behind this discrepancy?

The reviewer is correct to note that ACE2 binding measurements done with XBB.1.5 libraries
correlate less well with yeast DMS-based measurements than BA.2 libraries. For most part this is
because the XBB.1.5 full-spike libraries contain more mutations that are involved in RBD
modulation than BA.2 libraries do. This is illustrated in the plot at left, an interactive version of which
is now also included as part of analysis pipeline at
https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/binding_corr.html

https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/binding_corr.html


Specifically, the plot included
in this response shows that
when only sites proximal to
the ACE2 are considered,
correlations between yeast
display and full spike DMS
systems increase
considerably. Notably,
measurements for ACE2
distal sites, that may be
involved in modulating RBD
movement, show no
correlation with yeast display
system because yeast
display can only measure
one-to-one ACE2-RBD
interaction and does to
capture effects of mutation in
full trimeric spike context. In
addition, the BA.2 libraries
contain several mutations at
R493 site that are some of
the strongest binding
increasing mutations in the
RBD, which further increases
correlation to the yeast
system. XBB.1.5 lacks these
mutations because it already
has the R493Q mutation.
Subsetting to show sites that
are measured in all libraries
further increases correlation

between XBB.1.5 yeast and lentivirus measurements to r=0.86. This correlation is still slightly lower
than that of BA.2 (r=0.9) which may be due to measurement noise in either system.

5. Extended Data Fig. 2d only presents a heatmap illustrating the impact of non-RBD mutations on
ACE2 affinity, which should be clarified in the figure legend.

The reviewer is correct. The figure panel only shows non-RBD mutations as that is what we are
discussing. We have clarified the legend to clearly state that the panel only shows non-RBD
mutations.

6. The relevance of the numbers presented within brackets in the right panel of Fig. 3b should be
detailed in the figure legend.

We have clarified the legend to indicate that the numbers in the brackets reflect the deep
mutational scanning measured value for each mutation.



7. Changes have been made in the design and screening of mutations in the XBB.1.5 spike library
relative to the BA.2 spike library. Could you explain the motivation behind these modifications?

We made modest changes to the library design for XBB.1.5 versus BA.2 to better capture
evolutionarily relevant mutations in our libraries. As described in the answer to the reviewer’s major
point (6) above, these changes helped us successfully capture relevant mutations.

Specifically, changes to the library design were made to reflect (i) increased number of available
sequences on GISAID, (ii) newly available experimental measures of antigenically important sites
and (iii) observations made by individuals tracking variants of unique mutations with potentially
interesting phenotypes, and (iv) to ensure we included mutations that were at low frequencies but
present in recent important variants. To this end we increased requirements for minimum mutation
count on GISAID from 16 to 50. We also saturated sites that are important antigenically based on
antibody escape calculator (https://jbloomlab.github.io/SARS2_RBD_Ab_escape_maps/
escape-calc/ ) and RBD deep mutational scanning data from Yunlong Cao’s group
(https://pubmed.ncbi.nlm.nih.gov/36535326/); we cite these resources in the methods. In addition,
Ryan Hisner, who tracks variants suggested including several deletions in the RBD that he has
observed in a couple sequences from Ukraine that seemed to have transmitted, although were very
rare on GISAID (notably del483 site that emerged in BA.2.86 was included in this set). Finally we
set lower requirements for mutations counted on UShER tree if they were present in BA.2.75,
BQ.1.1, XBB or XBB.1.5 clade sequences given the dominance of these clades at the time of
library design.

8. A revised mutagenesis PCR protocol was implemented for the XBB.1.5 spike library as opposed
to the BA.2 library, which seemingly resulted in a diminished average number of mutations per
spike variant in the XBB.1.5 library, as well as decreased mutations in the final obtained library
(Extended Data Fig. 1a). Can you share any additional observations resulting from these
modifications?

The PCR library mutagenesis protocol for the XBB.1.5 and BA.2 libraries was actually the same.
The reviewer is correct that there was a modest difference in the average number of mutations per
barcoded variant (1.9 mutations per variant in XBB.1.5 library versus 2.3 mutations per variant in
BA.2 library). In truth, this type of modest difference is within the range of differences that could
have just occurred in day-to-day variation in PCR mutagenesis, since the two libraries were
constructed months apart. However, there were also some small differences in primer design that
could have contributed to the differences. The BA.2 library design had a set of primers that
included pairs of mutations that are in close proximity, which we reasoned is important for
producing variants with two mutations nearby. The revised primer design for the XBB.1.5 libraries
used only single-mutation containing primers but for sites that were saturated we designed pairs of
primers that target the same site but are are offset from each other slightly, which we hoped would
decrease the chances of sites dropping out due to poor primer properties (which occasionally
happens). These adjustments in primer design could possibly have changed mutation frequencies
per spike when the same PCR mutagenesis protocol was used.

The total number of variants per library is not determined by PCR mutagenesis protocol but by the
low MOI infection step in library production protocol that stores each proviral genome in 293T-rTTA

https://jbloomlab.github.io/SARS2_RBD_Ab_escape_maps/escape-calc/
https://jbloomlab.github.io/SARS2_RBD_Ab_escape_maps/escape-calc/
https://pubmed.ncbi.nlm.nih.gov/36535326/


cells. We build libraries by infecting cells at MOI of < 0.01 and the exact number of infectious units
required to get to this MOI is determined by the VSV-G pseudotyped virus titers and the number of
cells per plate. Both VSV-G titration and cell counting steps have some amount of noise and
therefore even if aiming to build libraries with the same number of variants the exact number of
variants in the final libraries can reasonably vary by 2-fold and that would still be within
experimental noise. And again XBB.1.5 and BA.2 libraries were made months apart, which also
contributed to a different number of variants in the final libraries.

9. In Extended Data Fig. 4a, could you confirm if the lane on the far left represents a marker? Clear
labeling of this segment in the image would be beneficial.

Yes, that lane on the far left is a ladder. We have now labeled the protein ladder on the gel, which is
in Extended Data Fig. 5a in the revised manuscript.

10. It would be preferable for all the Negative stain electron microscopy images in Extended Data
Fig. 4b to include a scale bar.

We have added scale bars to all negative stain images, which are in which is in Extended Data Fig.
5b of the revised manuscript.

11. Could you explain why the non-neutralizing control for the ACE2 binding ability experiment was
not similarly adjusted to the RDPro glycoprotein for experimental uniformity?

Because RDPro pseudotypes lentivirus worse than VSV-G it is more laborious to produce and
requires an additional concentration step to increase titers. We therefore tend to only use RDPro as
a non-neutralizing standard if VSV-G is being neutralized by whatever neutralization agent we are
using in experiments, as is the case for human sera (which sometimes weakly inhibits VSV-G but
not RDPro infection). As ACE2 does not interact with VSV-G and therefore does not inhibit it, we
used VSV-G standard for the ACE2 binding experiments. We have added text in the methods
explaining this.

12. Before implementing the escape mapping for serum samples using the pseudovirus DMS
system, is there a requirement for pre-treatment to inactivate the sera specimens? This is not
clearly elucidated in the provided “Methods” section.

We have added a statement to the methods section clarifying that sera were inactivated for 1h at
56°C before being used in any experiments. This inactivation should remove any complement
activity.

13. In the left panels of Figures 5a to 5c, does each dot represent a distinct amino acid
substitution? If this is the case, could you clarify why the number of dots does not correspond with
the number of amino acids illustrated in the logo plot of the right panel?

Yes the points in the scatter plots in the left panels of Figure 5a-c do represent distinct
substitutions, and we have clarified that in the legend. All the mutations are shown in the logo plots
in the right panels as well. However, the height of each letter in the logo plot is proportional to the
escape caused by that mutation—so if the escape from that amino-acid mutation is very close to
zero, then the letter height for that amino acid is very small and therefore not visible on the logo
plot.



14. The citations for reference 28 in the "Recombinant Protein Production" subsection of the
Methods are rendered in red.

Thanks for catching the error, we have fixed the color.

15. There is a noticeable absence of the Author contributions section.

Thanks for noting this oversight, we have added an Author Contributions section.

Referee #2 (Remarks to the Author):

The paper develops integrative deep mutational scanning as a method to measure changes in
three molecular phenotypes of SARS-CoV-2 BA.2 and XBB.1.5 (cell entry, ACE2 binding, and
neutralization by human sera) and applies these data to evolutionary predictions. The authors score
mutations that escape human sera of multiple vaccinated and/or recently with XBB infected
individuals. The analysis confirms that humans are heterogeneous with respect to antigenic
changes. A novel result is that ACE2 binding can be substantially affected by mutations outside the
RBD. Finally, an interesting observation is that the authors see changes in viral growth rates among
different XBB descendants, which can be explained by results using deep mutational scanning
which could aid as predictive approach. The principal claim of the paper is that deep mutational
scanning data enable substantially improved evolutionary predictions. The authors present a
correlation analysis of escape scores with growth rate advances of various sub-clades of XBB
inferred using a multinomial logistic regression model. The paper raises a number of specific
questions on the deep mutational scanning analysis (1,2) and, more fundamentally, on the
application to predictions (3-5):

Thanks for the excellent summary of our paper. We respond to the specific questions below.

1. In the analysis of cell entry, the authors write: "Negative values indicate worse cell entry than the
unmutated parental spike. Note that the library design favored introduction of substitutions and
deletions that are well tolerated by spike, explaining why many mutations of these types have
neutral to only modestly deleterious impacts on cell entry". In Fig 1b, indeed nearly all mutations
have a neutral or negative impact. The authors should discuss this fact more, because it is a crucial
part of cell infection. Also, it seems that no deletions were introduced in the RBD based on the
BA.2 background. This should be discussed as well.

The reviewer is correct that both the XBB.1.5 and BA.2 libraries were designed with the goal of
including tolerated mutations that could conceivably be relevant in SARS-CoV-2 evolution, but to
minimize the inclusion of highly deleterious mutations expected to completely disrupt spike
function. As noted in our response to Major Point 6 of Reviewer 1, we were largely successful in
the goal of including all mutations likely to be relevant in near-term SARS-CoV-2 evolution, as
nearly all mutations that have appeared in new viral clades (including both XBB and BA.2.86
descendants) are well sampled in our library.

As the reviewer notes, even with the library design that tries to favor tolerated mutations, most
mutations are neutral or deleterious for cell entry. This is because the vast majority of mutations to
any well-adapted protein are deleterious or neutral, and so even with a library design that disfavors
the most deleterious mutations, the overall distribution of effects is slanted towards deleterious /



neutral. To make this point more clearly, we have now also
included a plot of the distribution of effects of all RBD mutations
in our XBB.1.5 RBD-only libraries, which include all RBD
mutations. As can be seen in that plot, which is included as
Extended Figure 1g and shown at right, the distribution of
mutation effects is substantially more deleterious in the all-RBD
mutations library than for RBD mutations in the libraries designed
to include only tolerated mutations.

Additionally, the reviewer is correct that we included RBD
deletions only in the XBB.1.5 libraries. The reason is that we
designed the BA.2 libraries first, and had not really considered
the possibility that deletions in the RBD could be important at
that point. But by the time we designed the XBB.1.5 libraries,
deletions had begun to be observed in some chronic infection
sequences, so we decided to include RBD deletions at key sites.
This turned out to be a good decision, as delV483 (which is
included in our XBB.1.5 libraries) is found in BA.2.86.

We have added additional text to the manuscript elaborating on
the above issues as suggested by the reviewer.

2. Using the new DMS approach for predicting ACE2 binding is an interesting idea. In Fig 3b, the
authors show RBD occupancy vs. ACE2 concentration for known increasing or decreasing
mutations in the RBD compared to a BA.2 background. S1 and S2 mutations predicted to increase
ACE2 binding do not always show this effect. While S1 changes seem to have an effect increasing
ACE2 binding, S2 changes always appear to reduce ACE2 binding. The authors explain that this
effect could be due to the experimental setup and could be explained with effects on spike fusion.
Would that mean that this approach does not work for all mutations affecting spike fusion? The
authors should discuss this point more.

The reviewer is correct that the mass photometry data we report (note that we have added
additional validation data in revision, as described elsewhere in this response) provide excellent
support for the effects of S1 mutations on ACE2 binding as identified in the deep mutational
scanning. This biophysically validates how NTD, SD1, and non-ACE2-proximal RBD mutations
affect ACE2 binding.

But the reviewer is also correct that the S2 mutations identified in the deep mutational scanning as
affecting ACE2 binding generally do not validate in the mass photometry. We think that the reason
S2 mutations do not validate well as ACE2 binding increasing mutations is mostly due to technical
aspects of the constructs used for mass photometry experiments. Namely, in order to produce
high amounts of stable spike protein, the spike needs to be pre-fusion stabilized (just like the
constructs in vaccines). In our case we employ a widely used HexaPro spike construct, which
contains 6 proline substitutions in S2. While stabilization helps with recombinant protein expression
it restricts the conformational changes spike can undergo in the S2 domain, which in non-stabilized
spikes undergoes a large conformational change to mediate membrane fusion. Concurring with this
hypothesis, we previously showed that ACE2-induced allosteric conformational changes exposing
the fusion peptide were inhibited by the prefusion-stabilzing 2P mutations (PMID: 35857703).



Therefore, the prefusion stabilizing mutations in the HexaPro constructs used in our mass
photometry likely mask the effects that other S2 mutations would normally have on spike dynamics
by locking S2 into a more rigid prefusion conformation. We are endeavoring to test this hypothesis
by producing sufficient amounts of non-stabilized recombinant spike for the mass photometry
experiments, but have not yet succeeded in performing experiments with non-stabilized spike.

We have added text to the revised manuscript more completely explaining these points.

3. The growth advance analysis of the paper falls short of the stated goal of predictions. This is for
two reasons. (a) Using only the growth rate of the clade as a fitness measure, the authors look at a
very short time-span locally in one part of the tree (the XBB subclade). Evolutionary success
depends on the whole viral population over an intermediate time span, predictions require to
assess the difference of its fitness with the average fitness in the population, taking into account
the competition between clades. It is not sufficient to use only the difference in the growth rate
compared with only the parent.

These are excellent comments, and we have added substantial new material in the revised
manuscript to address them.

First, the reviewer is correct that in our original submission we compared the deep mutational
scanning measurements only to the growth of XBB-descended clades. In the revised manuscript,
we retain the comparison of deep mutational scanning measurements to growth of
XBB-descended clades (revised Fig. 6 and Extended Data Fig. 13) but also add comparison of the
deep mutational scanning measurements to the growth of all BA.2-, BA.5-, and XBB-descended
clades (the new Extended Data Fig. 14). This comparison addresses the reviewer’s comments
about the comparison in the original paper being over only a portion of the tree. As shown in the
new Extended Data Fig. 14, our deep mutational scanning measurements still have a significant
ability to predict the growth of the broader set of clades (all BA.2, BA.5, and XBB descendants),
and outperforms the other methods we test (yeast display RBD deep mutational scanning and
EVEscape). The ability of our deep mutational scanning measurements to predict the growth of the
broader set of clades is slightly worse than for the XBB-descended clades, perhaps reflecting
slightly different antigenicity across clades (e.g., different mutations causing the most antibody
escape due to changes in the specificity of human immunity over time due to exposures /
vaccinations with new strains)—but the deep mutational scanning still outperforms any other
method on this broader set of clades.

In addition, as described earlier in this response, we have also added an evaluation of the ability of
our deep mutational scanning (as well as other methods) to predict the evolution of the highly
divergent BA.2.86 clade, which emerged after completion of our experiments and really only
dramatically increased in frequency (in the form of its JN.1 descendant) after submission of our
original manuscript. Because there is not enough time / subclades to perform a meaningful analysis
of clade growth within JN.1 clades, we instead used an alternative approach inspired by Thadani et
al (2023) of evaluating how well our deep mutational scanning could distinguish the favorable
properties of the clades that actually emerged versus sequences with the same number of random
mutations. As shown in the new Extended Data Fig. 15, this new analysis again shows our deep
mutational scanning has significant ability to distinguish the clades that actually emerge from
sequences with the same number of random mutations, and that it outperforms other methods
(eg, EVEscape, yeast-display deep mutational scanning) in this respect.



Overall, the above two additions address the reviewer’s comments by expanding the scope of
comparison from just XBB-descended clades (original manuscript) to also include a much broader
set of clades, as well as the BA.2.86-descended clades that are now dominant.

The reviewer also notes that clade growth needs to be estimated over the entire viral population. In
fact, this is exactly how we have estimated clade growth, and this was perhaps not adequately
explained in the original version (see response to this reviewer’s comment 5 for more details on
how clade growth was estimated). However, although clade growth is estimated over the entire
viral population, comparison of mutation-based scoring metrics to clade growth is best done by
then making the comparisons at the level of parent-daughter clade differences rather than absolute
values over the entire population. The reason that this is the better approach is explained in general
terms in Felsenstein’s famous paper on phylogenetic contrasts (Felsenstein, 1985, The American
Naturalist, 125:1-15, https://www.jstor.org/stable/pdf/2461605.pdf). Briefly, as Felsenstein
explains, the nodes on a phylogenetic tree are not independent. So it is not correct to treat different
nodes (in this case, clades) on the tree as independent data points in a correlation analysis,
because they share most of their evolutionary history. However, the branches on the tree
(differences between a node and its parent) can be treated as independent data points, since each
parent-descendant branch represents independent evolution. For instance, right now the fastest
growing viral clades are all JN.1 descendants (JN.1.4.3, JN.1.7, JN.1.18, etc). But these are not
the fastest growing clades because JN.1.4.3, JN.1.7, and JN.1.18 all independently acquired the
~30 mutations that distinguish them from XBB.1.5. Rather, most of the growth advantage of these
three clades is due to the shared mutations they acquired due to their recent shared common
ancestry from JN.1, plus a bit of additional advantage from the specific mutations each acquired
relative to JN.1. It would therefore be inappropriate to treat the high clade growth of JN.1.4.3,
JN.1.7, and JN.1.18 as three independent data points when correlating mutation-based metrics to
clade growth, since most of the mutations are shared due to common ancestry.

This problem is seen most clearly in Extended Data Fig. 12c, which simply shows the correlation of
clade growth to Hamming distance (number of mutations) from Wuhan-Hu-1. Absolute clade
growth is highly correlated with Hamming distance from Wuhan-Hu-1 because newer clades tend
to have more mutations (in part because they are descended from previously successful highly
mutated clades). But this observation is not really of meaningful predictive power, since at any
given time there are always a variety of new clades with more mutations, and the relevant question
is which of these new clades will be successful? So what we really want to do is assess which of
the new clades that arise at any time will be more successful than their current parents. Indeed, if
we correlate change in clade growth between parent-descendant clade pairs with change in
Hamming distance, then Hamming distance is no longer a meaningful predictor (Extended Data Fig
12d). Another way to look at the same thing is to test if various potential predictors correlate with
growth better than a null distribution generated by randomizing the predictors among mutations. As
can be seen in Extended Data Fig. 12c-g, predictors like Hamming distance from Wuhan-Hu-1 or
EVEscape correlate with absolute clade growth, but the correlation is no better than a null
distribution generated by randomizing the predictions among mutations. Therefore, the apparent
correlation of Hamming distance with clade growth (and much of the correlation of EVEscape with
clade growth) is just due to shared phylogenetic ancestry and the fact that new clades have more
mutations. In contrast, the deep mutational scanning correlations with clade growth are higher than
those generated by randomizing the data, as indicated by the P-values in Extended Data Fig.
12e,g. The advantage of correlating changes in clade growth is that it avoids this issue where

https://www.jstor.org/stable/pdf/2461605.pdf


things like just counting mutations correlate with clade growth, for the reason explained in
Felstenstein’s paper on phylogenetic contrasts. That is what is done in the main text figures in the
paper. However, the supplement (Extended Data Fig. 12) also contains the correlations with
absolute clade growth although it is then necessary to look at the P-values to assess how
meaningful correlations are—and when that is done, it is clear that both methods clearly show that
the full-spike deep mutational scanning provides the best predictions.

Finally, we also note that for BA.2.86 (where there are not enough subclades for a meaningful
clade-growth based estimate), we have used the approach of Thadani et al (2023) of making
predictions for actual versus random-mutation sequences. As shown in Extended Data Fig. 15,
that analysis again shows that the full-spike deep mutational scanning provides the best
predictions.

(b) The additive escape score ignores epistatic effects between multiple mutations. These are
especially important for SARS, where new variants of concern often show multiple additional
mutations; see, e.g., Thadani et al. (Nature 2023) for a recent treatment of such effects.

The effectiveness of predictions depends on two factors: the amount of relevant information carried
in the data used to generate the predictions, and accuracy of the model that converts that
information into the predictions. The major contribution of our work is not to formulate a better or
more complex model, but rather to generate experimental data that is extremely informative about
SARS-CoV-2 evolution.

In particular, in Fig. 6 and Extended Data Figs. 13, 14 and 15 we show that our direct
measurements of serum escape and cell entry from our experiments are quite informative about
the success of SARS-CoV-2 clades, substantially more so than the models of Thadani et al (2023).
We fully agree that the models of Thadani et al accommodate more complexity, for instance by
allowing the potential for epistasis among mutations. But in practice, as shown by a variety of
experimental work1–3 including our own, the main pressure driving the evolution of human
SARS-CoV-2 is pressure to escape from human neutralizing antibodies. This is the reason that
even simple univariate correlations of our serum-escape measurements predict SARS-CoV-2 clade
success better than any other metric. In the case of Thadani et al, they have a detailed model for
the effects of mutations on protein functionality (their EVE model), but the escape portion
essentially just quantifies the extent to which spike substitutions are on the protein’s surface and
cause a substantial change in amino-acid physicochemical properties. Empirically, the results
presented in our paper show that the direct measurements of serum escape made in our deep
mutational scanning are far more informative.

Therefore, we agree that our modeling is much simpler than that of Thadani et al. Our paper
reports predictors that either involve no model at all (just direct measurements) or a simple linear
model of three different measurements. The fact that these measurements outperform models
such as those of Thadani et al show that our deep mutational scanning is capturing highly
biologically relevant information. This does not mean one strategy is “better” than the other— future
work should try to merge the data advances in our paper with modeling advances from others. We
have made modifications to the text to stress this point. For instance, we have added a new last
sentence to the Discussion: “An important area of future work will be integrating these
highly informative experimental measurements into more sophisticated models of viral
evolution (Meijers et al, 2023; Thadani et al, 2023; Abousamra et al, 2023).”



4. The statistical analysis of predictions is not state of the art. (a) As the authors exclude clades that
have fewer than 200 sequences, they bias against clades with decreased fitness, i.e., underweigh
false positives. (b) The data sample where the predictive power is compared to other methods
seems to be too small. I understand that because of the full-spike DMS technique, an analysis of
the full phylogenetic tree is not plausible. However, why is no analysis on the growth rates of the
subclades in the BA.2 subtree included? (c) There is no separation of training and validation data.

These are all good suggestions. We have addressed them as follows:

(a) The reviewer is correct that our comparisons to clade growth exclude clades with fewer than
200 sequences. The reason for this is relatively straightforward: we are comparing against clade
growth, and it is not possible to reliably estimate the growth rates of clades with very few
sequences. In the revised manuscript, we have added a new analysis of BA.2.86 and its
descendant clades (Extended Data Fig. 15) that uses a different metric than comparison to clade
growth: instead it simply compares the scores assigned to actual observed clade sequences
versus random sequences with the same number of mutations (this is the metric used by Thadani
et al). We think this change should largely address the reviewer’s comment. We are of course open
to suggestions by the reviewer for additional comparison metrics, but not it is simply impossible for
us to perform a clade-growth based analysis for clades with insufficient sequences to estimate
growth.

(b) As discussed above, in the revised manuscript, we have extended the comparisons to
additional sets of viral clades. Specifically, we now compare the full-spike deep mutational
scanning to the natural evolution of XBB-descended clades (Fig. 6 and Extended Data Fig. 13), all
clades descended from any of BA.2, BA.5 or XBB (Extended Data Fig. 14), and BA.2.86 and its
descendant clades (Extended Data Fig. 15). In all cases, the full spike deep mutational scanning
provides predictions that are both significant and better than any of the comparator predictors
tested (small P values when compared to randomizing the predictors).

(c) The reviewer is correct that our original manuscript did not separate training and test data. This
is largely because we are not doing any training. For the most part, we are directly comparing
experimental measurements to viral growth, with no training or free parameters. For instance, Fig.
6c shows direct univariate correlations of our experimental measurements to viral clade growth.
Since there are no free parameters, there is no need for separation of test and training data, as
nothing is being trained. In other words, we are simply demonstrating that the measurements that
come directly out of our experiments are substantially predictive of clade growth, without any
additional modeling or parameterization. The only comparison with clade growth that involves any
“training” (fitting of parameters) is the multiple-linear regression in Fig. 6d and Extended Data Fig.
13d,f, where we fit a linear model of our three experimental measurements to predict clade growth.
Those linear models involve three free parameters (the coefficients in the linear model assigned to
each experimentally measured phenotype). We do show that the correlations are statistically
significant by randomizing the predictors and showing that the real experimental data predict clade
growth better than randomized data. In addition, we have now added an analysis of a
phylogenetically entirely distinct group of viruses (BA.2.86 and its descendant clades), and shown
that the linear model fit on the XBB-descended clades provides the best method of distinguishing
the actual BA.2.86 clades that have emerged from randomly mutated sequences (Extended Data
Fig. 15). This analysis of BA.2.86 clades using a linear model trained on XBB clades represents a



stringent separation of training and test data for the only part of our analysis that involves any
training (fitting of parameters).

5. The analysis of empirical growth rates is unclear. (a) As I understand, the inferred growth rate is
the exponential growth of the number of sequences for a lineage per day. At the same time, the
difference in growth rates between two variants is the selection coefficient and reflects the change
in the relative frequencies of the two variants. While the growth rates are variant-specific, there is
also a constant that is country-specific for each pair of variants that determines the intercepts.
Could you give a more complete description of the method with the explicit likelihood function that
is optimised over? What are the parameters that are being optimised? (b) The inferred growth rates
grow almost monotonically with time (fig. 6, fig.S10b). This does not include the expected
time-dependence of growth within one clade; see, e.g., Yan et al. (eLife 2019). (c) The growth
analysis gives some surprising results: (1) XBB.1.5 is not inferred with a high clade growth in
comparison with other foreground clades, even though XBB.1.5 did come up very fast. (2) A
comparison of inferred growth values between HV.1 and HK.6 shows similar growth, which is
different from what other people observe (https://cov-spectrum.org). The authors should explain
the growth analysis in more detail and compare to other established methods.

We have added much more detailed methods on the growth rate estimates, that should address
the reviewer’s questions.

In addition, we have incorporated an additional set of growth estimates made by the group of
Trevor Bedford using multinomial logistic regression, available at
https://nextstrain.github.io/forecasts-ncov/ and made using the methods described in Abousamra
et al (https://www.medrxiv.org/content/10.1101/2023.11.30.23299240v3). Due to this data
addition, we have also added Trevor Bedford and Marlin Figgins to the author list of our paper. As
shown in the new Extended Data Fig. 12a, the growth estimates from the Bedford lab are almost
perfectly correlated with the ones used in our original submission, demonstrating that those
estimates are consistent with other established methods.

To address specific questions from the reviewer:

a) The text we have added to the methods explains the growth rates better. Basically, the
relative change in frequency of two clades should be proportional to the exponential of the
difference in their growth rates.

b) Yes, the inferred clade growth rates generally increase monotonically over time. This is
because the clades that emerge in the future generally have higher growth rates than the
clades they replace, which is why they spread. This misunderstanding could be due to
confusion over what we are estimating: we are not estimating change in each clade’s
frequency over time (which obviously can go down as a clade is replaced), but rather its
inherent growth rate relative to other clades (which is expected to generally increase for
newer clades that replace old ones).

c) The model does give XBB.1.5 a substantially higher growth rate than the clades that
preceded it or occurred at about the same time. This may be somewhat difficult to see with
the coloring in Fig. 6a since blues cover a wide range of growth, but can be seen especially
clearly by looking at the branch to XBB.1.5 in Fig. 6b. Specifically, XBB.1.5 is estimated to
have a growth rate of 29 compared to for instance to 5 for XBB.1.4 and 1.2 for XBB.1.
However, although XBB.1.5 had a higher growth rate than other clades designated in late

https://nextstrain.github.io/forecasts-ncov/
https://www.medrxiv.org/content/10.1101/2023.11.30.23299240v3


2022 (which is why it came up so quickly), it had lower growth rate than later clades like
EG.5.1 and subsequently HV.1 and HK.3 that replaced it. As far as HV.1 versus HK.6, the
estimates were made when HK.6 only had ~600 sequences which could contribute to
some noise for those specific clades—but also, HK.6 and HV.1 do have somewhat different
growth rates in our estimates (60 for HK.6, 69 for HV.1). As suggested by the reviewer, we
have systematically compared our estimates to the ones from the Bedford lab (see above),
and they are very similar.

In summary, this paper presents a convincing deep-mutational scanning analysis of multiple
growth-relevant viral phenotypes of SARS-CoV-2 that is a promising avenue for future applications.
The application to predictions, presented as the central message of the paper, is far less
convincing. I appreciate that data of multiple phenotypes can help predictions, but the quantitative
improvement is a bit incremental. On the conceptual and methodological side, the paper is rather a
step back compared to the standard of recent publications (Thadani et al., Nature 2023; Meijers et
al., Cell 2023).

We fully agree that our paper does not include advanced modeling like Thadani et al or Meijers et
al. As discussed above, the major value of our paper is to generate a new type of experimental
data that is tremendously informative about SARS-CoV-2 evolution.The direct experimental
measurements of serum escape from our deep mutational scanning (with no modeling or free
parameters) is more predictive of SARS-CoV-2 evolution than the EVEscape method of Thadani et
al in all comparisons (see Extended data Figs. 12-15). This is not a criticism of the modeling
frameworks in other papers, but rather just a reminder that predictions depend both on the quality
of the model and the informativeness of the data. For instance, both Thadani et al or Meijers et al
model the antigenic phenotypes of different clades. Our experiments provide new measurements
of antigenic effects of mutations that are clearly far more informative than those used by Thadani et
al, given that our direct measurements of sera escape with no fit parameters outperform the full
model of Thadani et al.

Therefore, the path forward is to continue to merge models like those mentioned by the reviewer
with highly informative data like what we present. It is no more fair to dismiss our highly predictive
experimental measurements because we do not include a model than it would be to dismiss the
modeling work of Thadani et al or Meijers et al because they do not report any new experimental
measurements. Advances both in generating information and improving models are valuable, and
the greatest progress will come from synthesizing advances in both. We have added text to the
discussion emphasizing this point, namely the new final sentence: “An important area of future
work will be integrating these highly informative experimental measurements into more
sophisticated models of viral evolution (Meijers et al, 2023; Thadani et al, 2023;
Abousamra et al, 2023).”

Referee #3 (Remarks to the Author):

In this manuscript, the authors deploy a technology they recently developed, unveiled at the end of
2022, for performing deep mutational scanning of full-length SARS-CoV-2 spike proteins, to two
important SARS-CoV-2 genomic variants, BA.2 and XBB.1.5, and further develop it to extend the
phenotypes that it can measure. Using these two variants as backgrounds allows them to
effectively cover the ancestors of the major variants that circulated in 2023 (and in 2024 to date,



though inevitably circulating virus is now quite diverged from these ancestors). The authors provide
phenotyping in several different dimensions, and then use genomic surveillance data from
circulating SARS-CoV-2 sequences to measure the biological relevance of these screening data
from the laboratory, finding that the screen data have significant power to explain evoltution in the
world. The combined analysis provides a tremendous wealth of data for those studying SARS-
CoV-2's ongoing evolution, and the authors also develop important new tools that can be applied
to future variants and other viruses. There is a very substantial amount of work described, bringing
together deep mutational scanning, in different lineages and different contexts, with genomic
surveillance data and the recently-developed analytical approach of mass photometry.

This approach to performing deep mutational scanning across the entire spike protein remains
novel and impactful. The most important outcome of this work is the dataset produced, which will
be well-used by the community. This dataset allows any researcher coming across a new lineage
to assess whether the mutations it possesses are (on their own) likely to alter cell entry properties,
to alter ACE2 binding, or to evade immunity induced by vaccination and infection. The authors'
approach to documenting their analytical workflows is exemplary, with notebooks available to
reproduce every step of the analytical workflows, and outputs available in convenient interactive
forms and data files. The availability and documentation of code and workflows is at the very
highest level for any analyses in this area, and to be commended. The Github URLs liberally
distributed through the text are very helpful to the reader seeking additional data on any point.

We thank the reviewer for the summary, and are glad that (s)he finds the new data and associated
ways of interrogating it informative for understanding SARS-CoV-2 evolution.

The assay the authors are using measures the efficiency with which pseudoviruses of different
genotypes can enter cells, but they exploit the fact that the neutralisation of this entry by
exogenous ACE2 differs according to the strength with which each pseudovirus binds to ACE2 to
assess the ACE2-binding of each mutant in their pool. The authors give some examples of the
insights that this approach provides, including sites such as A222V, which emerged repeatedly in
Delta and which causes increased ACE2 binding despite not being found in the spike RBD.

We agree that the way that our data explains the benefits of mutations like A222V, and now more
recently T572I in JN.1 descendant clades, is a major strength. Our paper has highlighted the
significant evolutionary importance of mutations that affect ACE2 binding by altering the up-down
conformation of the RBD. Note that in the revised manuscript we have added additional mass
photometry data biophysically validating these observations.

The utility of the dataset as a whole is brought home by the authors' demonstration using genomic
surveillance data that these mutational-scanning data alone are sufficient to predict (imperfectly, as
they acknowledge) the change in clade growth rate between a parent clade and its descendant,
created by the mutations that it acquired. The analysis here is careful and elegant, and is a useful
contribution in providing benchmarking data against other approaches (which here are less
effective) and as a benchmark for future approaches.

The main limitation of the deep mutation scanning approach, acknowledged in the Discussion, is
that it looks (in practice) at each mutation in turn, while epistasis appears to also play a substantial
role in the paths SARS-CoV-2 takes through its fitness landscape. Nevertheless, these analyses
show that mutations analysed in isolation can still tell us a great deal.



We fully agree that (as pointed out by reviewers 1 and 2) although our experimental measurements
are highly informative for understanding evolution, the modeling does not account for more
complex factors like epistasis. We are glad that the reviewer appreciates the impact of our
experimental data on its own for its inherent predictive power. As described in the response to
reviewers 1 and 2 above, the future of this field will be to integrate powerfully informative data like
that described in our paper with more advanced models like the ones being developed by others.
This is obviously a long-term goal, and we think our paper represents a significant step in that
direction.

The manuscript is easy to read and carefully written. All conclusions are robust and well-
supported. Clarity has been prioritised and overstatement avoided. Statistical analysis is sound,
figures are clear, and I find nothing of any substance to fault. I list some small stylistic suggestions
below that occurred to me during my reading.

- "mutations observed at an appreciable number of times" - I found the 'at' here unexpected to my
ear.

The reviewer is correct, and we have removed the “at”.

- I was initially somewhat surprised by the authors' decisions to bias their libraries so much in
favour of mutations that have been observed occurring multiple times in GISAID, given that it is also
interesting to understand why mutations are selected against. Reading their original methods paper
gave me a clearer idea of the rationale (a high proportion of deleterious mutations can be
problematic when many of the pseudoviruses carry multiple mutations). It could be worth
reiterating this reasoning in the methods.

This is a good point, and was also raised by Reviewer 1. As described in the response to major
comment 6 of Reviewer 1, we have added additional analyses showing that this library design
strategy still effectively covered all mutations that have been relevant not only to XBB-descended
clades but also in clades of the more recent JN.1 lineage. We have added additional text and
explanation in the methods as suggested by the reviewer.

- "highly correlated between the replicate libraries for each spike, indicating the experiments have
good precision (Extended Data Fig. 1e)." - 'precision' can have a technical connotation of relating
to the degree of resolution in an assay, (i.e. something like the number of decimal places).
Duplicates would not speak directly to that, and regardless here the data in the figure looks very
bimodal, so repeatability or accuracy might be a better word?

This is a good suggestion, and we have changed this text to read “repeatability.”



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

In the revised manuscript, the authors have addressed most of the concerns. The additional analyses 

further demonstrate the strength of the proposed XBB.1.5 pseudovirus-based DMS in explaining and 

predicting SARS-CoV-2 Spike evolution. Regarding the authors’ responses and the modifications to 

the figures and manuscript, I suggest the following additional points to improve the clarity, 

soundness, and significance of the manuscript: 

1. Some ACE2-distal mutations significantly affect ACE2 binding. This could be attributed to the fact 

that your measurements, based on pseudovirus libraries, actually detected a combination of 

mutation impacts on both cell entry (contributed by impacts on RBD up/down conformation, fusion, 

S1 shedding, and other factors) and RBD-ACE2 binding (the inhibition activity is related to both the 

internal ACE2 binding capability and the infection efficiency), which could hardly be avoided despite 

the usage of VSV-G or RDPro standard. Is it useful and possible to deconvolute them according to 

your initial DMS results on cell entry? This analysis may improve your correlation between 

pseudovirus and yeast display-based DMS on ACE2 binding. If this deconvolution is difficult, I suggest 

using a term like “apparent ACE2 binding” when first introducing this method, and emphasizing its 

differences from real monomeric RBD-ACE2 binding affinity (including RBD yeast display-based DMS 

results). 

2. Fig 5c and Extended Data Fig 9 show that many G504 mutations are sensitizing and enhance ACE2 

binding, which is inconsistent with the XBB.1.5 RBD yeast display-based DMS results from T. Starr 

Lab (https://tstarrlab.github.io/SARS-CoV-2-RBD_DMS_Omicron-XBB-BQ/RBD-heatmaps/). This site 

is not mentioned in the text related to Figure 4, where sensitizing mutations are discussed, either. 

Most sensitizing mutations on the RBD are on Omicron-mutated residues (especially reversion to 

WT) and could be well explained by the common WT vaccination history. However, it is doubtful why 

mutations on G504, which is a conserved site in almost all existing variants and even sarbecoviruses, 

are sensitizing. G504 should also be a critical site of a recently approved prophylactic NAb, VYD222, 

further rendering the importance of additional investigation and discussion on it. Does this 

phenomenon vary among different human serum samples? 

3. In Extended Data Fig. 10, why are the escape scores in non-RBD region not shown for the mAb 

SC27? 

4. Are the escape scores in Fig. 5a-c average values over different sera samples? Please specify it in 

the Figure legend. 

5. Please further explain the relationship between the effects on spike fusion, S1 shedding, and ACE2 

binding, to make the text more accessible to readers who are not familiar with the SARS-CoV-2 field 

(Page 5, Lines 1-2). 

Referee #2 (Remarks to the Author): 



The revised manuscript by Dadonaite and colleagues establishes deep mutational scanning as an 

experimental pathway generating data for evolutionary predictions. Thanks to the authors for the 

thorough revision and detailed responses to the referees’ queries. The major points raised included 

a more detailed discussion on the deep mutational scanning experiments, a better explanation of 

growth estimates and other aspects of their validation by comparison with relative growth 

differences between parent and descendant variants. 

The authors have carefully addressed these points. The revised version expands explanations of how 

the library was constructed and how potential technical experimental constraints could impact 

observed properties, such as the reduction in ACE2 binding associated with S2 changes. The authors 

also extend their application to other variants, including growth in BA.2, BA.5 and XBB descendant 

clades, and an application to the emergence of BA.2.86/JN.1. Growth estimates are explained better, 

and it now becomes clear that the section on predictions is adequate to validate the power of DMS 

data. Here, I would ask the authors to formulate the statement ``This approach … answers the 

question of real evolutionary interest.’’ more precisely. As I read it, it answers the question of key 

evolutionary interest for this work: how new mutations change the growth of variants in the actual 

strain population. There are other questions of real evolutionary interest, involving the competition 

between clades with different genetic backgrounds, which the authors’ approach does not address 

(and does not need to for its purpose). With this clarification, the paper looks ready for publication 

to me. 

Referee #3 (Remarks to the Author): 

The authors have addressed my minor comments. My assessment of the manuscript remains, as 

previously, very positive. 

Referee #3 (Remarks on code availability): 

I have looked through the supplied scripts and notebooks which are of high quality, and offer a high 

degree of reproducibility compared to typical papers in the field. I have not personally run the code.



Referees' comments:

Referee #1 (Remarks to the Author):

In the revised manuscript, the authors have addressed most of the concerns. The
additional analyses further demonstrate the strength of the proposed XBB.1.5
pseudovirus-based DMS in explaining and predicting SARS-CoV-2 Spike evolution.
Regarding the authors’ responses and the modifications to the figures and manuscript, I
suggest the following additional points to improve the clarity, soundness, and significance
of the manuscript:

1. Some ACE2-distal mutations significantly affect ACE2 binding. This could be attributed
to the fact that your measurements, based on pseudovirus libraries, actually detected a
combination of mutation impacts on both cell entry (contributed by impacts on RBD
up/down conformation, fusion, S1 shedding, and other factors) and RBD-ACE2 binding
(the inhibition activity is related to both the internal ACE2 binding capability and the
infection efficiency), which could hardly be avoided despite the usage of VSV-G or RDPro
standard. Is it useful and possible to deconvolute them according to your initial DMS
results on cell entry? This analysis may improve your correlation between pseudovirus and
yeast display-based DMS on ACE2 binding. If this deconvolution is difficult, I suggest using
a term like “apparent ACE2 binding” when first introducing this method, and emphasizing
its differences from real monomeric RBD-ACE2 binding affinity (including RBD yeast
display-based DMS results).

Thank you for this suggestion. As suggested by the reviewer, we have edited the
manuscript to use the term “apparent ACE2 binding” when first introducing the method
and further emphasized that we are not measuring one-to-one ACE2-RBD binding in these
assays but instead a combined outcome of several phenotypes.

We initially also wondered whether the effects of mutations on cell entry might have
some correlation with ACE2 binding; however as is shown in Extended Data 2c of the
manuscript (which is pasted below in this response), we do not see any substantial
correlation between these phenotypes. This is perhaps not really surprising because the
“cell entry” phenotype is really a combination of the ability of spike to fold correctly and
utilize ACE2 for entry. So even if a mutation allows for favorable ACE2 binding, if its effect

Author Rebuttals to First Revision:



on spike folding is highly deleterious it will have a bad effect on cell entry too. It could also
be the case that in the context of excess ACE2 (such as infection of ACE2 overexpressing
cell lines) ACE2 binding is not really a limiting factor for virus cell entry.

In addition, as noted in the previous round of reviewer response, we think that at
least some of the imperfect correlation between RBD yeast-display and full-spike
measures of ACE2 binding is that the former strictly measures the one-to-one affinity of the
RBD to ACE2, whereas the latter is also affected by quaternary motions in spike–as shown
by the fact that the worst correlation is for ACE2-distal RBD residues that are near
interfaces of the RBD with other spike domains.

In addition, our mass photometry measurements provide strong evidence that
ACE2-distal mutations affect ACE2 binding independent of their effects on cell entry. For
example mutations Q115K, A222M and F371N – all of which increase overall spike binding
to ACE2 as evidenced by increased RBD occupancy measured by mass photometry (see
Figure 3b in the manuscript) – also all have deleterious effects on cell entry (entry scores of
-1.59, -0.53 and -0.53, respectively). Furthermore, other mutations that we find to increase
ACE2 binding but significantly decrease cell entry – such as A570D – have also been
independently shown to lead to changes in RBD movement using biophysical
measurements (Ke et al. 2023, DOI:10.1101/2023.12.21.572824).

2. Fig 5c and Extended Data Fig 9 show that many G504 mutations are sensitizing and
enhance ACE2 binding, which is inconsistent with the XBB.1.5 RBD yeast display-based
DMS results from T. Starr Lab
(https://tstarrlab.github.io/SARS-CoV-2-RBD_DMS_Omicron-XBB-BQ/RBD-heatmaps/).
This site is not mentioned in the text related to Figure 4, where sensitizing mutations are
discussed, either. Most sensitizing mutations on the RBD are on Omicron-mutated
residues (especially reversion to WT) and could be well explained by the common WT
vaccination history. However, it is doubtful why mutations on G504, which is a conserved
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site in almost all existing variants and even sarbecoviruses, are sensitizing. G504 should
also be a critical site of a recently approved prophylactic NAb, VYD222, further rendering
the importance of additional investigation and discussion on it. Does this phenomenon
vary among different human serum samples?

The reviewer makes a good point about the G504 site. We think the effects on ACE2
binding for this site don’t correlate well between RBD yeast-display and our full-spike DMS
because G504 falls into the “gray” area of affecting both direct RBD-ACE2 binding and
RBD up/down movement. Site G504 does not directly interact with ACE2 itself but is
between residues 503 and 505 both of which interact with ACE2. For this reason,
mutations to G504 probably often modestly reduce the one-to-one binding of the RBD to
ACE2 by altering the conformation of adjacent ACE2-contact residues 503 and 505, as
reflected in the RBD yeast-display from the Starr lab.

In addition, in the RBD-down conformation, site G504 is directly facing other RBD
protomers (see image below) and therefore mutations at this site likely also impact RBD
up-down movement. Mutations G504I/V/C are highly deleterious for ACE2 binding in both
RBD yeast-display and our full-spike DMS, which probably indicates that these mutations
directly reduce the one-to-one binding of the RBD with ACE2. But other mutations at site
505 do not correlate well between the RBD yeast-display and the full-spike DMS, but do
exhibit a strong negative correlation between ACE2 binding and serum escape in the
full-spike DMS, suggesting these mutations probably modulate RBD up-down
conformation more than they directly affect one-to-one RBD-ACE2 binding.

In response to the question at the end of the reviewer’s comment, mutations at site
G504 similarly affect neutralization by all the sera we tested. Such consistent escape
patterns also hint at this site being involved in modulating RBD movement as opposed to
direct serum escape, since it is unlikely all sera would contain neutralizing antibodies
targeting this specific residue, but it likely that all sera contain antibodies that can better
neutralize spike when the RBD is in the up conformation.

The reviewer makes a good observation that the fact that most mutations to G504
increase serum neutralization is a good sign for antibodies like VYD222, which have an
epitope that includes site G504 (spans residues 501-508 (Yuan et al. 2022,
DOI:10.1073/pnas.2205784119)). The reason that this is a good sign is that many
mutations at site G504 might come at a cost to serum neutralization if they put the RBD in
a more up conformation. However, some mutations at G504, including G504F are
reasonably tolerated for both cell entry and ACE2 binding suggesting that mutations at this
site in future variants are possible.



3. In Extended Data Fig. 10, why are the escape scores in non-RBD region not shown for
the mAb SC27?

That’s because this antibody was mapped with the pseudovirus XBB.1.5 library that
contained all RBD mutations but no other mutations, meaning we could not measure
escape outside the RBD. We have described this in the legend but we have now added a
note in the actual figure to further emphasize this point.

4. Are the escape scores in Fig. 5a-c average values over different sera samples? Please
specify it in the Figure legend.

Yes these are escape values averaged over all 10 sera. We have clarified that in the figure
legend. Mutation-level per sera escape can be found under ‘antibody escape mutation
effect plots’ section at https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/ .

5. Please further explain the relationship between the effects on spike fusion, S1 shedding,
and ACE2 binding, to make the text more accessible to readers who are not familiar with
the SARS-CoV-2 field (Page 5, Lines 1-2).

We have added additional clarification to the main text. Specifically, spike-mediated fusion
occurs after ACE2-binding and subsequent proteolytic cleavage initiates the shedding of
spike’s S1domain. If some mutations to spike increase the propensity for ACE2 binding to
lead to S1 shedding, then in our ACE2-neutralization assay those mutations would be
measured as increasing ACE2 binding because they increase the efficiency with which
soluble ACE2 can irreversibly inactivate spike. The extent to which mutations are having
this effect is unclear, but it is a possibility.

https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/


Referee #2 (Remarks to the Author):

The revised manuscript by Dadonaite and colleagues establishes deep mutational
scanning as an experimental pathway generating data for evolutionary predictions. Thanks
to the authors for the thorough revision and detailed responses to the referees’ queries.
The major points raised included a more detailed discussion on the deep mutational
scanning experiments, a better explanation of growth estimates and other aspects of their
validation by comparison with relative growth differences between parent and descendant
variants.

The authors have carefully addressed these points. The revised version expands
explanations of how the library was constructed and how potential technical experimental
constraints could impact observed properties, such as the reduction in ACE2 binding
associated with S2 changes. The authors also extend their application to other variants,
including growth in BA.2, BA.5 and XBB descendant clades, and an application to the
emergence of BA.2.86/JN.1. Growth estimates are explained better, and it now becomes
clear that the section on predictions is adequate to validate the power of DMS data. Here, I
would ask the authors to formulate the statement ``This approach … answers the question
of real evolutionary interest.’’ more precisely. As I read it, it answers the question of key
evolutionary interest for this work: how new mutations change the growth of variants in the
actual strain population. There are other questions of real evolutionary interest, involving
the competition between clades with different genetic backgrounds, which the authors’
approach does not address (and does not need to for its purpose). With this clarification,
the paper looks ready for publication to me.

Thank you for this suggestion, we have modified the statement to emphasize that our work
only focuses on a question addressing the effects of mutations on clade growth and other
questions not addressed by our study are also often of evolutionary interest.

Referee #3 (Remarks to the Author):

The authors have addressed my minor comments. My assessment of the manuscript
remains, as previously, very positive.



Referee #3 (Remarks on code availability):

I have looked through the supplied scripts and notebooks which are of high quality, and
offer a high degree of reproducibility compared to typical papers in the field. I have not
personally run the code.

Thank you for a positive review.
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Abstract

SARS-CoV-2 variants acquire mutations in spike that promote immune evasion and impact other
properties that contribute to viral fitness such as ACE2 receptor binding and cell entry. Knowledge
of how mutations affect these spike phenotypes can provide insight into the current and potential
future evolution of the virus. Here we use pseudovirus deep mutational scanning to measure how
>9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry, or
escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have
meaningfully impacted ACE2 binding during SARS-CoV-2 evolution. We also measure how
mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had
SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420,
440, 456, and 473—however, the antigenic impacts of these mutations vary across individuals. We
also identify strong escape mutations outside the RBD; however many of them decrease ACE2
binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human
SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on
spike phenotypes, suggesting our data could enable better prediction of viral evolution.

Introduction

Over the last four years of SARS-CoV-2 evolution, the virus has accumulated mutations throughout
its genome. The most rapid evolution has occurred in the viral spike: for instance, the
XBB-descended variants that dominated in 2023 have 45–48 spike protein mutations relative to
the earliest known strains from Wuhan in late 2019. The reason for this rapid evolution is that spike
mutations can strongly affect both the virus’s inherent transmissibility and ability to escape
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pre-existing immunity1–3. A crucial aspect of interpreting and forecasting SARS-CoV-2 evolution is
therefore understanding the impact of current and potential future mutations to spike.

Here we measure how thousands of mutations to the spike glycoprotein of the XBB.1.5
and BA.2 SARS-CoV-2 strains impact three molecular phenotypes critical to viral evolution: cell
entry, ACE2 binding, and neutralization by human polyclonal serum (Fig. 1a). To do this, we extend
a recently described pseudotyped lentivirus deep mutational scanning system4 that enables safe
experimental characterization of mutations throughout the spike5,6. We demonstrate that mutations
outside the RBD can substantially impact spike binding to ACE2. We also define the mutations that
escape neutralization by sera from humans who have been multiply vaccinated and also recently
infected by XBB or one its descendant lineages (XBB*), and show there is appreciable
heterogeneity in the antigenic impact of mutations across individuals. Finally, we show that the
spike phenotypes we measure explain much of the changes in viral growth rate among different
SARS-CoV-2 clades that have emerged in humans over the last few years.

Design of deep mutational scanning libraries

We created mutant libraries of the spikes from the XBB.1.5 and BA.2 strains. We chose these
strains because nearly all currently circulating human SARS-CoV-2 descends from either BA.2 or
XBB.1.5’s parent lineage XBB7, and because XBB.1.5 is the sole component of the COVID-19
booster vaccine recommended by the WHO in 20238. We wanted the libraries to contain all
evolutionary accessible amino-acid mutations tolerable for spike function. We therefore included all
mutations observed an appreciable number of times among the millions of SARS-CoV-2
sequences in GISAID. In addition, we included all possible mutations at sites that change often
during SARS-CoV-2 evolution or are antigenically important3,9, and deletions at key NTD and RBD
sites. These criteria led us to target ~7,000 amino-acid mutations in each of the XBB.1.5 and BA.2
libraries (Extended Data Fig. 1a). We created two independent libraries for each spike so we
could perform all deep mutational scanning in full biological duplicate. The actual libraries contained
between 69,000 and 102,000 barcoded spike variants with an average of 2 mutations per variant,
and successfully covered 99% of the targeted mutations as well as some additional mutations
(Extended Data Fig. 1a). To retrospectively validate that this library design strategy covered most
evolutionarily important mutations, we confirmed that our XBB.1.5 libraries provided adequate
coverage for high-confidence experimental measurements of nearly all spike mutations currently
present in XBB, BA.2, and BA.2.86 descended Pango clades—despite the fact that BA.2.86 had
not even emerged yet at the time we designed the library (Extended Data Fig. 1b). So while our
libraries do not contain all spike mutations, in practice they cover nearly all mutations that are
relevant in the near- to mid-term evolution of SARS-CoV-2. Because the RBD is an especially
important determinant of ACE2 binding and serum antibody escape2,10, we also made duplicate
XBB.1.5 libraries that saturated all amino-acid mutations in the RBD only (Extended Data Fig. 1a).
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Effects of spike mutations on cell entry

We measured the effects of all library mutations on spike-mediated cell entry in 293T-ACE2 cells4

(Extended Data Fig. 1c-d and interactive heatmaps at https://dms-vep.github.io/SARS-CoV-2
_XBB.1.5_spike_DMS/htmls/293T_high_ACE2_entry_func_effects.html and https://dms-vep.github
.io/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/293T_high_ACE2_entry_func_effects.
html). These measurements were highly correlated between the replicate libraries for each spike,
indicating the experiments have good repeatability (Extended Data Fig. 1e). The effects of
mutations were also well correlated between the XBB.1.5 and BA.2 spikes (Extended Data Fig.
1f), consistent with prior reports that most but not all mutations have similar impacts on the spikes
of different SARS-CoV-2 variants11,12. As expected, stop codons were highly deleterious for cell
entry (Fig. 1b). Because our full spike library design strategy favors functionally tolerated mutations
in spike, most amino-acid mutations in our libraries just slightly impaired cell entry, and some but
not all single-residue deletions were also well tolerated (Fig. 1b). As expected, mutation effects in
saturated RBD library had a substantially more deleterious distribution (Extended Data Fig. 1g).
SARS-CoV-2 has acquired numerous deletions in the NTD’s flexible loops during its evolution13,14,
and consistent with that evolution we find that the flexible loops but not the core β-sheets of the
NTD are relatively tolerant of deletions (Extended Data Fig. 1h). Overall, the effects of mutations
on cell entry were fairly well correlated with the effects of amino-acid mutations on viral fitness
estimated from millions of natural human SARS-CoV-2 sequences (Extended Data Fig. 1i)15.

No individual mutation in either the XBB.1.5 or BA.2 spikes dramatically increased
pseudovirus cell entry, though some mutations did marginally improve entry (Fig. 1b and
interactive heatmaps linked in figure legend). One mutation that slightly improves pseudovirus entry
in both XBB.1.5 and BA.2 is P1143L (Fig. 1c), which is found in the recently emerged BA.2.86
lineage16. We previously reported that mutations to P1143 also improve cell entry for BA.1 and
Delta pseudoviruses4. The deletion mutations in our libraries are usually more deleterious for cell
entry than substitutions (Fig. 1b); however, deletion of V483 in the RBD is well tolerated for cell
entry, consistent with emergence of this mutation in the BA.2.86 variant16. The F456L mutation,
which has emerged repeatedly in XBB clades after being rare in earlier BA.2-derived clades, is well
tolerated for cell entry in XBB.1.5 but substantially deleterious in BA.2 (Fig. 1c).

Both RBD and non-RBD mutations affect spike binding to ACE2

To measure how mutations in spike affect receptor binding, we leveraged the fact that the soluble
ACE2 ectodomain neutralizes spike-mediated infection with a potency proportional to the strength
of spike binding to ACE23,17. Specifically, soluble ACE2 more potently blocks entry by spikes with
mutations that increase binding to ACE2. To validate this fact, we made pseudoviruses with six
different spike variants and quantified their neutralization by monomeric ACE2 (Fig. 2a). Compared
to the BA.2 spike, the Wuhan-Hu-1 + D614G spike is neutralized less potently by soluble ACE2
consistent with its weaker ACE2 binding18,19, whereas four mutants of BA.2 known to have higher
ACE2 binding20 (N417K, N417F, R493Q, and Y453F) were all neutralized more potently by soluble
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ACE2 (Fig. 2a). The quantitative neutralization by soluble ACE2 was highly correlated with
previously measured monomeric RBD ACE2 affinities19–21 (Fig. 2b).

Using this approach, we measured how mutations across both the XBB.1.5 and BA.2
spikes affect apparent ACE2 binding (Fig. 2c and interactive plots at
https://dms-vep.github.io/SARS-CoV
-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.html and https://dms-vep.github.io/
SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/monomeric_ACE2_mut_effect.html).
Because our assay measures ACE2 neutralization rather than 1:1 ACE2-RBD affinity there are
several distinct mechanisms that could affect what we refer to as ACE2 binding: direct changes in
1:1 RBD-ACE2 binding affinity20,22, changes in spike that modulate the conformation of the RBDs
(such as up/down movements)23,24, and ACE2-induced shedding of the S1 subunit (ACE2 binding
leads to shedding of the S1 domain from spike, and any mutations that increase the propensity for
S1 shedding might promote neutralization of pseudovirus by soluble ACE2 in our assay)25,26 .

The effects of RBD mutations on ACE2 binding to the spike measured using pseudovirus
deep mutational scanning correlate well with previously reported measurements from RBD
yeast-display for both XBB.1.5 and BA.2 (Fig. 2d)22. We also measured ACE2 binding for the
XBB.1.5 pseudovirus libraries with saturating RBD mutations using both monomeric and dimeric
soluble ACE2. The RBD-only pseudovirus measurements were highly correlated with the full-spike
library measurements (Extended Data Fig. 2a), and the measured values were highly similar for
monomeric versus dimeric soluble ACE2 (Extended Data Fig. 2b). Importantly, ACE2 binding and
pseudovirus cell entry are distinct properties, with no strong correlation between these properties
among tolerated mutations (Extended Data Fig. 2c) – likely reflecting the fact that cell entry can
be limited by factors unrelated to receptor binding, especially in target cells expressing moderate to
high levels of ACE2 like those used in our experiments.

A striking observation from the deep mutational scanning is that some mutations outside
the RBD appreciably affect binding to ACE2 (Fig. 2c,e and Extended Data Fig. 2d). To validate
these findings, we used mass photometry to measure binding of the soluble native ACE2 dimer to
the spike ectodomain trimer (Fig. 3a). Mass photometry measures protein-protein interactions in
solution by detecting changes in light scattering that are proportional to protein molecular mass27,
which allows us to detect binding of one or more ACE2 molecules to the spike (Fig. 3a). We
produced prefusion-stabilized HexaPro28 BA.2 and XBB.1.5 spikes, along with mutants that our
deep mutational scanning experiments showed to modulate ACE2 binding, and performed mass
photometry in the presence of a series of ACE2 concentrations (Fig. 3a-b, Extended Data Figs.
3-6). As expected, we observed better and worse ACE2 binding for RBD mutations that have been
previously identified to either increase (R493Q) or abrogate (R498V) ACE2 engagement,
respectively20 (Fig. 3b, left panels). Furthermore, we detected increased ACE2 binding for all but
one of the BA.2 and XBB.1.5 spike trimers harboring S1 subunit mutations (in NTD, RBD, and SD1
domains) that our deep mutational scanning indicated had better binding (Fig. 3b middle panel,
Extended Data Figs. 3-6) as well as decreased ACE2 binding for NTD and S2mutations that our
deep mutational scanning indicated had worse binding (Fig. 3b). However, mutations to the BA.2
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and XBB1.5 S2 subunit found to increase binding to ACE2 in our deep mutational scanning did not
lead to increased ACE2 binding detectable by mass photometry (Fig. 3b right panel, Extended
Data Figs. 3, 4 and 6b-c). Notably, some of these S2mutations were previously reported to affect
spike fusion29–31 suggesting that they may indeed affect S1 shedding and in turn affect ACE2
binding consistent with our deep mutational scanning. However, unlike the spikes in deep
mutational scanning experiments, the spikes used in mass photometry experiments are pre-fusion
stabilized by introduction of the HexaPro mutations in the fusion machinery28. These modifications
to spike may limit the propagation of long-range allosteric changes induced by S2 subunit
mutations, possibly explaining the discrepancy between deep mutational scanning and mass
photometry. Concurring with this hypothesis, we previously showed that ACE2-induced allosteric
conformational changes that drive fusion peptide exposure were inhibited by the
prefusion-stabilizing 2P mutations32.

Non-RBD mutations that enhance ACE2 binding have played an important role in
SARS-CoV-2 evolution. The following non-RBD mutations that enhance ACE2 binding occurred in
major pre-Omicron variants of concern: A570D (Alpha), A222V (several moderate-frequency Delta
sublineages), T1027I (Gamma), and D950N (Delta) (Extended Data Fig. 2d). In addition, the
following non-RBD mutations that occurred in Omicron variants, all of which represent reversions
to pre-Omicron residue identities, increase ACE2 binding: K969N, K764N and Y655H. Consistent
with prior studies showing that the original D614G mutation increased the proportion of RBDs in
the up conformation23,33,34, we find that G614D decreases full spike ACE2 binding (Fig. 3b,
Extended Data Fig. 2d).

To systematically examine the recent evolutionary role of non-RBD ACE2
binding-enhancing mutations, we tabulated non-RBD mutations that enhance binding and are new
mutations in at least four XBB-descended Pango clades (Fig. 3c). Some of these mutations may
explain why certain clades had a growth advantage. For example, the NTD mutation Q52H
provided the EG.5.1 lineage with a clear growth advantage over EG.535, despite not measurably
affecting serum neutralization36. Our deep mutational scanning provides an explanation for the
success of EG.5.1 by showing that Q52H enhances ACE2 binding. Similarly, the T572I mutation is
now appearing convergently in JN.1-descended lineages, and our results show that mutation
enhances ACE2 binding37. Overall, these results suggest that non-RBD mutations that affect ACE2
binding play an important role in SARS-CoV-2 evolution.

Mapping escape from XBB* infection sera reveals heterogeneity among
individuals

We next mapped how mutations in spike affect neutralization by the polyclonal antibodies in sera
from 10 vaccinated individuals who either had a confirmed XBB* infection or whose last infection
was during a period when XBB lineages were the dominant circulating variants (Supplementary
Table 1). We performed these measurements with the full spike XBB.1.5 libraries using 293T cells
expressing moderate levels of ACE2 that better capture the activities of non-RBD antibodies38,39,
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although the key sites of escape were mostly similar if we used 293T cells expressing high levels of
ACE2 or the RBD-only libraries (Extended Data Fig. 7). The sites of greatest serum escape were
mainly in the RBD (Fig. 4a-c and interactive plot at https://dms-vep.github.io/SARS-CoV-2_XBB.1
.5_spike_DMS/htmls/summary_overlaid.html). These sites include 357, 371, 420, the 440-447
loop, 455-456, and 473, as well as a few sites in the NTD, such as positions 200 and 234. At
some sites, the escape mutations are strongly deleterious to ACE2 binding (Fig. 4c). For instance,
mutations at Y473 cause strong neutralization escape but greatly reduce ACE2 binding, likely
explaining their low frequency among circulating SARS-CoV-2 variants. In addition, only some of
the antibody-escape mutations mapped in our experiments are accessible by single-nucleotide
mutations to XBB.1.5 (Fig. 4c). Several escape mutations that are single-nucleotide accessible and
do not strongly impair ACE2 binding are found in recent variants, including mutations at site 456 in
EG.5.1 and many other XBB variants, mutations at 455 in HK.3.1 and JN.1, mutations at 420 in
GL.1, and mutations at 200 in XBB.1.227,35.

While the same mutations often escape many sera, there is also heterogeneity such that
the sera-average is not fully reflective of the impacts of mutations on any individual serum (Fig.
4b,d and Extended Data Fig. 8). For example, while mutations to site Y473 strongly escape
neutralization by most sera, two sera we analyzed (493C and 501C) are largely unaffected by
mutations at that site. Other key sites of escape, including 420 and 456, show similar heterogeneity
across sera. To validate that escape mutations can have very different effects across sera, we
performed standard pseudovirus neutralization assays5 against a panel of point mutants to the
XBB.1.5 spike (Fig. 4d). The changes in neutralization in these validation assays were highly
correlated with the escape measured by deep mutational scanning, and confirmed the
serum-to-serum heterogeneity. For example, Y473S strongly reduces neutralization by sera 287C
and 500C, but actually slightly increases neutralization by serum 501C. Similarly, F456L
substantially reduces neutralization by only some sera (Fig. 4d).

The deep mutational scanning identifies mutations that increase as well as escape
neutralization (Extended Data Fig. 9). Sensitizing mutations often occur at sites that are mutated
in XBB.1.5 relative to earlier variants, such as sites 373, 405, 417, 460, 486 and 505 (Extended
Data Fig. 9). Presumably in many cases, reverting mutations at these sites restores neutralization
by antibodies elicited by infection or vaccination with earlier viral strains. To confirm that the
sensitizing mutations identified in the deep mutational scanning actually increased neutralization,
we validated the sensitizing effects of R403K and N405K in standard pseudovirus neutralization
assay (Fig. 4d). In addition, some sensitizing mutations appear to act by placing the RBD in a more
up conformation as discussed in the next subsection.

Some mutations that strongly affect neutralization modulate RBD
conformation rather than directly affecting antibody binding

Most sites of strong escape described in the previous section are proximal to the ACE2-binding
motif in the RBD that is the target of many potent neutralizing antibodies40,41 (we define
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ACE2-proximal RBD residues as those within 15 Å of ACE2 in the RBD-ACE2 crystal structure).
However, the deep mutational scanning also reveals individual mutations at non-RBD or
ACE2-distal RBD sites that strongly escape neutralization. Some of these sites, such as 42, 200,
234 in the NTD, 572 in SD1, and 852 in S2 have mutations that cause as much escape as
ACE2-proximal RBD mutations, decreasing serum neutralization by as much as 6-fold (Fig. 4a,d).
Whereas most mutations at any given site have similar effects on escape (i.e. either promoting or
sensitizing) at many ACE2-proximal RBD sites, different mutations at the same non-RBD or
ACE2-distal RBD site can have opposing effects on neutralization (Fig. 5a-c). Furthermore, there is
a strong correlation between mutational effects on neutralization and ACE2 binding at these sites:
mutations that reduce neutralization also reduce ACE2 binding, and mutations that increase
neutralization also increase ACE2 binding (Fig. 5a,b). No such consistent correlation exists
between neutralization and ACE2 binding for RBD escape sites in close proximity of ACE2 binding
interface (Fig. 5c).

We hypothesize that non-RBD and ACE2-distal RBD mutations that increase both
neutralization and ACE2 binding do so by shifting the RBD to a more “up” position, whereas those
that decrease neutralization and ACE2 binding do so by shifting the RBD to a more “down”
position42–44. Prior work has shown that mutations that put the RBD in a down position reduce
neutralization by antibodies that target RBD residues only accessible in the up position, whereas
antibodies that can bind both the up and down RBD are unaffected by such mutations16,45.
Consistent with this prior work, we confirmed that the mutations at ACE2-distal sites identified in
our full-spike deep mutational scanning as likely affecting RBD conformation only affect
neutralization by monoclonal antibodies that bind only to the up conformation of the RBD
(Extended Data 10).

Our results show that mutations that affect neutralization and ACE2 binding by modulating
RBD conformation are common in certain regions of spike—a result that makes structural sense,
since most of these mutations are located near the interfaces between the RBD and other spike
domains (Fig. 5d, Extended Data Fig. 11). Furthermore, many of these strong escape sites,
including N234, F371, P373, F375, A376, S408, A570, T572, have been previously shown by
structural methods to affect RBD conformation24,42–44,46–49 or the conformation of key RBD
epitopes21,50.

Experimentally measured spike phenotypes partially predict evolutionary
success of human SARS-CoV-2 clades

SARS-CoV-2 evolution in humans is characterized by the repeated emergence of new viral clades,
which often possess additional amino-acid mutations in spike relative to their predecessors. To test
if our deep mutational scanning measurements could help explain which clades are evolutionarily
successful, we estimated the relative growth rates in humans of sufficiently-sampled SARS-CoV-2
clades using multinomial logistic regression (Extended Data Fig. 12a)51. As expected, more recent
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clades generally had higher growth rates, consistent with evolution selecting for viral clades that are
more fit (Fig. 6a), presumably in part due to additional mutations in spike52.

We sought to determine if the growth of clades could be predicted from how their
mutations affect the spike phenotypes measured by deep mutational scanning. Note that almost
any mutation-based measurement (such as just counting mutations) trivially correlates with clade
growth because newer clades typically have both better growth rates and more spike mutations
(Fig 6a and Extended Data Fig. 12b). For instance, clade growth rates strongly correlate with the
number of spike mutations relative to the early Wuhan-Hu-1 sequence (Extended Data Fig. 12c).
But this correlation is not informative since the question of evolutionary interest is not whether
SARS-CoV-2’s spike will acquire more mutations over time (we already know this will happen), but
rather which of the various mutant viruses present at any given time will spread. Furthermore,
phylogenetic correlations can exaggerate associations between mutations and clade growth53.
Therefore, we focused on predicting changes in clade growth for each pair of parent-descendant
clades separated by at least one spike mutation (Fig. 6b). This approach eliminates the
confounding effects of phylogenetic relatedness and the accumulation of mutations over time
(Extended Data Fig. 12c-g), and better answers the question of how specific mutations affect
clade growth.

Changes in growth between parent-descendant clade pairs were positively correlated with
all three experimentally measured spike phenotypes both among just XBB-descended clades (Fig.
6c and Extended Data Fig. 13) and among all BA.2, BA.5, and XBB-descended clades
(Extended Data Fig. 14). The correlations were statistically significant for sera escape and cell
entry as assessed by randomization of the measurements among mutations. However, these
univariate correlations do not fully capture the information in the experiments, since the effects of
mutations on the spike phenotypes are themselves correlated (e.g., mutations that cause sera
escape sometimes decrease ACE2 binding). We therefore performed ordinary-least squares
multiple linear regression of changes in clade growth versus all three phenotypes. The predictions
of this regression correlated with changes in clade growth better than any individual phenotype,
and were highly statistically significant as assessed by randomization of the measurements among
mutations (Fig. 6d and Extended Data Fig. 14). Sera escape uniquely explained the largest
fraction of the variance in changes in clade growth, but ACE2 binding and cell entry effects also
explained some variance. In contrast, neither RBD yeast-display deep mutational scanning of
antibody escape9,54 and ACE2 affinity22 nor the EVEscape deep learning model55 were consistently
better than randomized data at predicting changes in clade growth at a significance level of P =
0.05 (Extended Data Figs. 13 and 14). Overall, these results show that full-spike deep mutational
scanning can partially predict the evolutionary success of human SARS-CoV-2 clades, and that its
predictive power exceeds that of several other methods.

We also sought to test the ability of full-spike deep mutational scanning to explain the high
fitness of BA.2.86 and its descendant clades (e.g., JN.1), which were identified after the
completion of the experiments described in this study56. Because there are not yet sufficient
distinct BA.2.86-descended clades to make meaningful comparisons with clade growth, instead
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we performed a different test inspired by Thadani et al55: we generated sequences with random
sets of naturally observed spike amino-acid mutations that had the same number of differences
relative to BA.2 as did BA.2.86, or relative to BA.2.86 as all designated BA.2.86-descended
clades. Our XBB.1.5-based full-spike deep mutational scanning could distinguish the true BA.2.86
and BA.2.86-descended clades from sequences with the same number of mutations with high
statistical significance, and did so better than RBD yeast-display deep mutational scanning or
EVEscape (Extended Data Fig. 15).

Discussion

Over 16-million human SARS-CoV-2 genomes have been sequenced to date, enabling rapid
identification of variants with new mutations at the sequence level. However, interpreting the
consequences of these mutations on viral spread in a partially immune population remains a major
challenge. Here we show how pseudovirus-based deep mutational scanning can characterize the
effects of mutations throughout spike on three distinct phenotypes critical to viral fitness: cell entry,
ACE2 binding, and serum antibody escape.

The full-spike pseudovirus data we generate enables several key insights that were not
apparent from prior yeast-display RBD deep mutational scanning approaches2,20,54. Most obviously,
the data encompass all spike domains, not just the RBD. Strikingly, these data show that non-RBD
mutations can affect ACE2 binding, probably by altering the conformation of the RBD in the context
of the spike trimer (e.g., in up versus down position). Such mutations are highly relevant for
SARS-CoV-2 evolution—for instance, enhancement of ACE2 binding by non-RBD mutations
appears to explain why EG.5.1 spread so rapidly after it acquired Q52H, why A222V subvariants of
Delta spread widely, why A570D was selected in Alpha, and why T572I is currently arising so
frequently in BA.2.86-descended variants.

Pseudovirus deep mutational scanning also enables us to directly measure how mutations
affect neutralization by polyclonal sera. In contrast, prior RBD-display deep mutational scanning
could only measure how mutations affect antibody binding2, and so to estimate mutational effects
on serum neutralization escape it was necessary to characterize hundreds of individual antibodies
assumed to represent the polyclonal neutralizing repertoire of humans3,9. The ability to directly map
how mutations affect serum neutralization leads to two new insights. First, it reveals the
heterogeneity in how mutations affect neutralization by sera from different individuals. For instance,
we characterize sera from XBB* infected individuals that are both strongly affected and almost
completely unaffected by mutations at key sites like 456 or 473. The sera examined in this study
came from individuals with varied immunization and infection histories, which likely contributes to
observed escape heterogeneity, although individual-to-individual variation in humoral response may
also play a role. This person-to-person heterogeneity in the antigenic effects of spike mutations will
increase as individuals accumulate increasingly distinct exposure histories, and could come to play
an important role in shaping SARS-CoV-2 evolution and disease susceptibility as it does for
influenza virus57–59.
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The second major insight from direct mapping of serum escape is that mutations outside
the RBD can have marked effects on neutralization. For instance, NTD mutations such as Y42F
and N234T decrease neutralization by some sera by nearly 6-fold. The existence of such strong
non-RBD escape mutations may seem surprising given that most neutralizing activity in human
sera come from antibodies that bind the RBD2,10,38,60. However, our data suggest that the strongest
non-RBD serum escape mutations act primarily by shifting the RBD to the down conformation,
thereby indirectly escaping class 1 and 4 antibodies that bind to RBD surfaces only accessible in
the up conformation16,45. Of course, such mutations come at a cost to ACE2 binding, since the
RBD cannot bind receptor in the down conformation61,62. Nonetheless, the ubiquity of such
mutations suggests that this mechanism of escape merits monitoring and is in line with prior
observations made with endemic human coronaviruses63–65. For instance, the RBD of the
CoV-229E spike has never been observed in the up conformation66,67 despite the fact that this
spike somehow manages to bind its receptor during infection. Whether SARS-CoV-2’s spike could
eventually evolve to also much more strongly favor a down RBD conformation is unknown.

The most important indication of the relevance of our work is that our measurements of
spike phenotypes partially explain the evolutionary success of different SARS-CoV-2 clades in
humans. A longstanding goal of evolutionary biology is to understand the molecular phenotypes
that contribute to fitness68, and then measure them with sufficient accuracy to predict which
mutants will actually spread in the real world. We have taken a real step towards this goal, since
the spike phenotypes measured by our deep mutational scanning explain a substantial amount of
the changes in growth rates of recent SARS-CoV-2 clades. Of course, pseudovirus spike deep
mutational scanning will never perfectly predict SARS-CoV-2 evolution: evolution itself is partially
stochastic69, pseudovirus experiments do not capture all phenotypes of spike relevant to
transmission or multicycle replication, and our experiments completely ignore mutations to
non-spike genes that contribute to fitness15,70. Furthermore, it remains technically challenging for
deep mutational scanning to account for epistatic interactions among mutations71, and we need
modeling approaches that better account for how person-to-person heterogeneity in
immune-escape mutations shape viral evolution57. However, the fact that our deep mutational
scanning has substantial power to explain clade growth shows that we have reached the point
where experiments can enable useful predictions about SARS-CoV-2 evolution. An important area
of future work will be integrating these highly informative experimental measurements into even
more sophisticated models of viral evolution55,72,73.

Methods
Data accessibility and computer code
The data described in this paper are available in both interactive and numerical form at various levels of detail. For easy
interactive visualization of the data, we suggest the following interactive charts of how mutations affect all measured
phenotypes after applying a reasonable set of filters to remove lower-confidence measurements:

● XBB.1.5 spike: https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html
● BA.2 spike:

https://dms-vep.github.io/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/summary_overlaid.html
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● XBB.1.5 RBD: https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/summary_overlaid.html
For numerical data on mutational effects on all measured phenotypes after applying the same reasonable set of filters,
see:

● XBB.1.5 spike:
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/results/summaries/summary.csv

● XBB.1.5 spike, per-serum escape:
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/results/summaries/per_antibody_es
cape.csv

● BA.2 spike:
https://github.com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/blob/main/results/summaries/s
ummary.csv

● XBB.1.5 RBD:
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_RBD_DMS/blob/main/results/summaries/summary.csv

In addition to the above interactive charts and numerical data, the entire computational pipelines are available along with
rich interactive HTML displays of results. These numerical data and HTML displays include additional options to filter the
data for higher and lower confidence values, such as by examining the measurements in each of the two replicate
libraries or filtering measurements by how many variants a mutation is seen in. Specifically, full interactive HTML
documentation for each deep mutational scanning experiment are rendered on GitHub Pages at::

● XBB.1.5 full spike: https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/
● BA.2 full spike:https://dms-vep.github.io/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/
● XBB.1.5 RBD: https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/

GitHub repositories with the actual computer code as well as numerical data are at:
● XBB.1.5 spike: https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS
● BA.2 spike: https://github.com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding
● XBB.1.5 RBD: https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_RBD_DMS

Note that most of the analysis in these GitHub repos is performed using dms-vep-pipeline-3
(https://github.com/dms-vep/dms-vep-pipeline-3), version 3.5.3.

Raw sequencing data files have been uploaded under BioProjects: PRJNA1034580 for XBB.1.5 full spike
library, PRJNA1035795 for XBB.1.5 RBD-only library, PRJNA1035933 for BA.2 full spike library.

Python notebooks and raw event data used for mass photometry analysis are available at
https://github.com/JackTaylorBrown/massphotometry.

Design of deep mutational scanning libraries
Deep mutational scanning libraries were designed with codon-optimized XBB.1.5 and BA.2 spikes. The sequence of the
XBB.1.5 spike is at https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/blob/main/plasmid
_maps/3779_pH2rU3_ForInd_XBB15_Sinobiological_CMV_ZsGT2APurR.gb and the BA.2 spike is at https://github.com/
jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/blob/main/plasmid_maps/3332_pH2rU3_ForInd_Omicron_sino
biological_BA2_B11529_Spiked21_T7_CMV_ZsGT2APurR.gb. Note that due to an error on our part early in library
design, the XBB.1.5 spike used for libraries lacks F490S mutation present in XBB* variants.

The XBB.1.5 full spike libraries were designed to include all accessible and tolerated mutations by including
mutations that appeared in more than 50 sequences on GISAID74, occurred independently at least 15 times on pre-built
SARS-CoV-2 phylogenies from UShER75 or occurred independently at least 2 times in any of the following clades:
BA.2.75, BQ.1.1, XBB, XBB.1.5. Deletions that met the above criteria were only included if they occurred in the NTD and
we specifically added deletions at sites 342-349, 444-449, and 483-486. We also performed saturating mutagenesis on
the sites that met the following criteria: occurred independently at least 2500 times on pre-built SARS-CoV-2 phylogenies
from UShER or occurred independently at least 100 times in the clades mentioned above. We also saturated mutations
at sites that had strong antigenic effects or otherwise were of special interest3,9 full list of these sites can be found at
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/library_design/config.yaml under
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sites_to_saturate. The full list of mutations included in the XBB.1.5 full spike libraries can be found at
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/library_design/results/mutation_design_classi
fication.csv. As shown in Figure 1b this design strategy biases libraries to contain mostly functional mutations. The reason
for choosing such a strategy is: (i) it makes variants with multiple mutations more likely to remain functional and (i) it limits
the number of mutations that need to be included in the final library.

For the XBB.1.5 RBD-only libraries, every position in the RBD (positions 331-531) was mutagenized to all
possible amino acids.

For the BA.2 full spike libraries the design of mutations to be included in the library was performed the same
way as described previously for BA.1 libraries4. The final list of mutations in BA.2 libraries can be found at
https://github.com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_DMS/blob/main/library_design/results/aggregated_mut
ations.csv. Note that the BA.2 libraries used in this study are the same ones briefly described in Haddox at al. 202311.

Analysis pipelines for designing mutagenesis primers are provided at https://github.com/dms-vep/SARS-CoV-2
_XBB.1.5_spike_DMS/tree/main/library_design for XBB.1.5 full spike libraries, at https://github.com/dms-vep/SARS
-CoV-2_XBB.1.5_RBD_DMS/tree/main/library_design for XBB.1.5 RBD-only libraries, and at https://github.com/dms-vep
/SARS-CoV-2_Omicron_BA.2_spike_DMS/tree/main/library_design for BA.2 libraries.

Production of plasmid libraries used to generate deep mutational scanning libraries
Libraries of lentivirus backbone plasmids containing mutagenised XBB.1.5 or BA.2 spikes were made as described
previously4. In brief, primers containing desired mutations described above were ordered from IDT as Oligo Pools. Full list
of these primers for XBB.1.5 full spike library can be found at https://github.com/dms-vep/SARS-CoV-2_XBB.1.5
_spike_DMS/blob/main/library_design/results/oPools.csv , for for XBB.1.5 RBD only library at https://github.com/
dms-vep/SARS-CoV-2_XBB.1.5_RBD_DMS/blob/main/library_design/results/oPools.csv , and for BA.2 library at
https://github.com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/tree/main/library_design/results (see csv
files ending in oPool.csv). These primers were used to mutagenize spike sequences using PCR that involves multiple
rounds of PCR mutagenesis reactions76. Number of PCR rounds and cycles determines the number of mutations per
spike introduced and we targeted ~2-3 mutations per spike, although the precise number of mutations per spike is
determined only after lentiviral genomes have been integrated into cells and sequenced with long-read sequencing (see
Long-read PacBio sequencing for variant-barcode linkage section below). For both XBB.1.5 full spike and RBD-only
libraries we pooled spike mutagenesis primers at 2:1 molar ratio between mutations that occur independently multiple
times on spike phylogenetic tree and those that occurred multiple times on spike sequences deposited on GISAID
database (for RBD only libraries the latter included all possible RBD mutations). For both XBB.1.5 full spike and RBD-only
libraries a single round of 10 PCR cycles was used to mutagenize the spike sequence. For BA.2 full spike libraries the
same primer pooling strategy and the same number of mutagenesis cycles were used as described for BA.1 libraries4.
Template spike sequences used for mutagenesis were amplified from
https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/blob/main/plasmid_maps/3779_pH2rU3_F
orInd_XBB15_Sinobiological_CMV_ZsGT2APurR.gb plasmid for XBB.1.5 libraries and from
https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/blob/main/plasmid_maps/3332_pH2rU3_F
orInd_Omicron_sinobiological_BA2_B11529_Spiked21_T7_CMV_ZsGT2APurR.gb plasmid for BA.2 libraries. Spikes for
both variants were amplified using VEP_amp_for (5′CAGCCGAGCCACATCGCTC) and 3′rev_lib_LinJoin_KHDC
(5′CGGAAGAGCGTCGTGTAGGGAAAG) primers. After mutagenesis reaction spike sequences were barcoded in a PCR
reaction using primers that contained a unique 16 nucleotide barcode that adds barcodes downstream of spike STOP
codon. All libraries had two biological replicates (Lib-1 and Lib-2), which represent two independently produced libraries
where mutations in spike are associated with unique barcodes in unique combinations with other mutations.
Mutagenised and barcoded spike sequence templates were then added into MluI and XbaI digested lentivirus backbone
(Addgene #204579) using HiFi reaction (NEB E2621L). Ampure XP bead purified HiFi reactions were then electroporated
into 10-beta electrocompetent E. coli cells (NEB, C3020K) and plated overnight. At least 10 electroporation reactions
were performed for each plasmid library in order to produce > 2 million CFUs per library. High diversity of barcoded
genomes is required in the later steps of library production in order to minimize barcode duplication, which may happen
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during lentivirus recombination. For each library bacterial colonies were scraped from overnight plates, pooled and
QIAGEN HiSpeed Plasmid Maxi Kit (Cat. No. 12662) was used to prepare plasmid pools used for virus library production.

Production of cell stored deep mutational scanning libraries
Steps for producing cell-stored spike deep mutational scanning libraries have been described in detail previously4 . In
brief, two 6-well plates of 293T cells were transfected with plasmid pools described above, lentivirus helper plasmids
(BEI: NR-52517, NR-52519, NR-52518) and VSV-G expression plasmid (Addgene #204156). This produced a VSV-G
pseudotyped lentivirus pool carrying mutagenised spike sequences in their genomes. VSV-G pseudotyped viruses were
then used to infect 293T-rtTA cells at low multiplicity of infection so that no more than one virus would infect each cell.
Reverse tetracycline-controlled transactivator (rtTA) is required to induce expression from inducible TRE3G promoter in
the lentivirus backbone in the presence of doxycycline (see Addgene #204579 plasmid structure). Note, that 293T-rtTA
cells used here is a specific cell clone we isolated when producing rtTA overexpressing cells, which is especially good at
producing high titers virus stocks that are required for successful library production. We described production of these
293T-rtTA cells previously4. VSV-G infection step was also used to bottleneck the libraries to the desired number of
variants; we aimed for between 50,000 and 100,000 variants per library. Final number of variants in each library is shown
in Extended Data Fig. 1a. After VSV-G infection, cells with successful lentivirus integration were selected for using
puromycin. Puromycin selection was performed until visual inspection showed a pure population of cells express zsGreen
(which is part of lentivirus backbone, see plasmid Addgene #204579). At this point all cell stored libraries were frozen until
further use.

Long-read PacBio sequencing for variant-barcode linkage
Analysis of linkage between mutations in lentivirus backbone encoded spikes and the barcodes they are associated with
was performed using long read PacBio sequencing as described previously4. First, we rescued VSV-G pseudotyped
viruses from cell-stored libraries by transfecting those cells with lentivirus helper and VSV-G expression plasmids. VSV-G
pseudotyped viruses produced from these libraries were then used to infect 293T cells and nonintegrated viral genomes
were recovered as described previously4. To avoid strand switching and mixing of variant-barcode pairs viral genomes
were then minimally PCR amplified using primers with tags that allow to detect strand switching via sequencing. Long
read sequencing was performed with PacBio Sequel IIe machine. Consensus variant-barcode sequence was determined
requiring at least two CCS sequences per barcode. Variant-barcode lookup tables for each library can be found at:

● For XBB.1.5 full spike library
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/results/variants/codon_variants.csv

● For XBB.1.5 RBD only
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_RBD_DMS/blob/main/results/variants/codon_variants.csv

● For BA.2 library
https://github.com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/blob/main/results/variants/cod
on_variants.csv

Long read sequencing data was also used to determine the average spike mutation frequency in each library. For
XBB.1.5 full spike library Lib-1 and Lib-2 mutation frequency 1.91 mutations per spike. For XBB.1.5 RBD only library
Lib-1 had an average of 1.82 mutations per spike and Lib-2 had an average of 1.9 mutations per spike. BA.2 libraries
had an average of 2.32 and 2.33 mutations per spike for Lib-1 and Lib-2 libraries, respectively.

Cell entry effect measurement using deep mutational scanning libraries
Cell entry effects for each variant were measured as described previously4. In brief, ~1.5 million transcription units of
spike pseudotyped library viruses and ~5 million of VSV-G pseudotyped transcription units made from the same
cell-stored libraries were used to infect target cells. For spike pseudotyped libraries 293T-cells either overexpressing high
amounts of ACE2 (described in Crawford et al 20205) or cell expressing medium amount of ACE2 (described in Farrell et
al. 202138) were used. Whenever cells were plated for infection with spike-pseudotyped viruses (including for ACE2 and
sera selections described below) cells were additionally supplemented with 2.5 µg/ml of amphotericin B (Sigma, A2942)
at the time of plating, which we have previously shown4 to increase virus titers. For VSV-G pseudotyped libraries 293T
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cells were used (we used cells not expressing any ACE2 in order to avoid any selection of spike, which can still be
present on the surface of these VSV-G pseudotyped viruses). 12-15 hours post infection unintegrated viral genomes
were recovered using QIAprep Spin Miniprep kit and prepared for Illumina sequencing as described previously4.

For each variant functional score was calculated by getting a log enrichment ratio:

, where is the count of variant v in the post-selection (spike-pseudotyped)𝑙𝑜𝑔
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counts of variants without mutations, i.e. wildtype spike, in each condition. Positive functional scores indicate variant is
able to enter cells better than wildtype and negative functional scores indicate variant is worse at entering the cells than
wildtype.

The multi-dms software package11 was used to fit a global epistasis model77 with a sigmoid global epistasis
function to the variant functional scores and to calculate mutation-level effects on cell entry. See
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/notebooks/func_effects_global_epistasis_Lib1-230614_hig
h_ACE2.html for an example of this fitting for one library; the HTML documentation of the pipeline linked in the Data
availability section has links to comparable fitting notebooks for each library.

The cell entry effects we describe in the paper are based on the cell entry experiments done on 293T-cells
overexpressing high amounts of ACE2 as opposed to medium ACE2 expressing cells. Expression of more ACE2 in
293T-cells leads to higher virus titers on these cells and therefore the fitting of global epistasis model on data from these
cells is slightly better.

Use of non-neutralizable standard for ACE2 binding and serum selection experiments
For both ACE2 binding and serum selection experiments a non-neutralizable standard was used in order to enable
conversion of sequence counts to absolute neutralization4. We have previously described the use of VSV-G pseudotyped
virus as the non-neutralizable standard in antibody selection experiments4, and that VSV-G standard was also used for
selections with soluble ACE2 protein to measure receptor binding since VSV-G is not neutralized by ACE2. For serum
selections, we found that high concentrations of serum appreciably neutralize VSV-G itself making it not suitable as a
non-neutralizable standard. We screened multiple alternative viral entry proteins and found that the RDPro glycoprotein, a
modified version of an endogenous feline virus RD114 containing HIV R-peptide78 that we further modified to contain
MLV-A cytoplasmic tail to improve pseudovirus titers79, was not neutralized even at high serum concentrations (data not
shown). The full sequence of RDPro viral entry protein used in this study can be found at
https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/blob/main/plasmid_maps/3737_HDM_RDP
ro_Twist_MLV-A_HIV-pep_correction.gb . RDPro envelope pseudotyped viruses were produced from cells with integrated
barcoded lentivirus genomes as described previously for VSV-G pseudotyped standard4. Because RDPro-pseudotyped
lentivirus titers were ~10^4 TU/ml, we further concentrated virus stocks using Lenti-X™ Concentrator (Takara, 631232) to
between 3.5*10^5-1.5*10^6 TU/ml. Given that producing high titer RDPro stocks is more time consuming than making
VSV-G stocks we chose to not switch to using RDPro for ACE2 binding experiments, since VSV-G is not neutralized by
soluble ACE2. Note that both RDPro and VSV-G non-neutralizable standards contain the same barcodes and therefore
as long as the non-neutralizable standard is not neutralized, the results should remain the same regardless of the
standard used.

Recombinant Protein Production
SARS-CoV-2 spike ectodomain and human ACE2 ectodomains were expressed and purified as described previously19,21

Mutant Spike ectodomain constructs were designed in the BA.2 and XBB.1.5 backgrounds with HexaPro28 mutations, N
terminal “MFVFLVLLPLVSS” signal peptide, C terminal GSSG linker, foldon, linker, avi-8x polyhistidine tag, and were
cloned into a pCDNA3.1(+) vector. A222M, N405A, A570F, A570D, A701M, D950N, R493Q, R498V mutations were
evaluated in the BA.2 background; Q115K, T167I, N234T, N405A, Q762L, F1121L, R498V, Q804L, Q493L, G614D,
F371N, A222M mutations were evaluated in XBB.1.5 background. Expi293F cells were diluted to a density of 3 million
cells per mL and transfected using ExpiFectamine 293 Transfection Kit (Thermo Fisher Scientific). Cells were incubated
shaking at 130 rpm at 37°C and 8% CO2. Three to four days post transfection proteins were purified from clarified
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supernatants. Human ACE2 ectodomains were purified using 1mL Histrap Fast Flow nickel affinity columns (Cytiva), and
washed with 20 mM imidazole, 25 mM sodium phosphate pH 8.0, and 300 mM NaCl prior to elution with an imidazole
gradient using a buffer containing 500 mM imidazole pH 8.0, 25 mM sodium phosphate, 300 mM NaCl pH 8.0.
SARS-CoV-2 spike ectodomains were purified using 1mL of Ni Excel resin (Cytiva) and washed with 40 mM imidazole pH
8.0, 25 mM sodium phosphate pH 8.0, and 300 mM NaCl prior to elution with 300 mM imidazole pH 8.0, 25 mM sodium
phosphate pH 8.0, and 300 mM NaCl. SARS-CoV-2 spike ectodomains were buffer exchanged into 20 mM sodium
phosphate pH 8.0, and 100 mM NaCl (PBS) using centrifugal filters (corning) with a MWCO of 100 kDa. Purified BA.2
and XBB.1.5 S variants were analyzed by negative stain electron microscopy to confirm retention of proper folding and
monodispersity (Extended Data Fig. 5). Human ACE2 ectodomain were concentrated using centrifugal filters (Corning)
with a MWCO of 30kDa and were further purified by size exclusion chromatography and run through a Superdex 200
Increase 10/300 GL column (Cytiva) pre-equilibrated in PBS. All proteins were analyzed by SDS-PAGE for purity, then
flash frozen and stored at -80°C. For deep mutational scanning ACE2 binding experiments biotinylated dimeric ACE2
was purchased from ACROBiosystems (AC2-H82E7-1mg).

ACE2 binding measurement using deep mutational scanning libraries
Previous research has shown that soluble ACE2 can neutralize SARS-CoV-2 variants with potency proportional to virus
binding to the receptor3,17. We used this observation to measure the effects of mutations in our deep mutational scanning
libraries on ACE2 binding.

As described previously4, before starting ACE2 binding experiments we spiked-in a VSV-G non-neutralizable
standard at 1-2% of the total virus titers used. ~1 million virus transcription units per sample were incubated with soluble
monomeric or dimeric ACE2 at 37˚C for 1 h before being added to 293T-ACE2 cells. 293T-ACE2 cells expressing a
medium amount of ACE2 (‘medium-ACE2’ cells described in Farrell et al. 202138) were used for all ACE2 binding
experiments. For these experiments we targeted a range of ACE2 concentrations to use that would span fro

m less than IC50 to full virus neutralization in order to capture both mutations that increase ACE2 binding (those
that are neutralized by soluble ACE2 very potently) and those that decrease it (which would be more difficult to neutralize
with soluble ACE2 neutralized). For monomeric ACE2 the starting concentration was 2.88 µg/ml and it was increased
3-fold for the other dilutions. For dimeric ACE2 starting concentration was 0.21 µg/ml and it was similarly increased
3-fold for the other dilutions. 12-15 hours post infection non-integrated lentiviral genomes were extracted from cells and
barcode sequencing libraries were prepared as described previously4. ACE2 binding experiments were performed with
two biological replicates for each library.

Analysis of mutation-level effects and fitting of neutralization curves to the data was performed using polyclonal
software80 version 6.9. Examples of polyclonal model fitting for monomeric ACE2 data can be found at:

● For XBB.1.5 full spike libraries
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/notebooks/fit_escape_ACE2_binding_Lib1-2306
14-monomeric_ACE2.html

● For XBB.1.5 RBD only libraries
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/notebooks/fit_escape_ACE2_binding_Lib1-23061
5-monomeric-ACE2.html

● For BA.2 libraries
https://dms-vep.github.io/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/notebooks/fit_escape_ACE2_bin
ding_Lib1-230114-monomeric_ACE2.html

The HTML documentation of the pipeline linked in the Data availability section has links to comparable fitting notebooks
for each replicate library, as well as dimeric ACE2 selection data available for XBB.1.5 RBD only libraries.

Mass photometry
Mass photometry was performed on a Refeyn TwoMP system (Refeyn Ltd). Microscope cover slides were rinsed with
isopropanol and Milli-Q water then dried under nitrogen flow. Sample chambers were assembled using silicon gaskets,
and the instrument lens coated with immersol before placing slides on the MP sample stage. Samples were added to the
sample chamber and the instrument was focused immediately prior to each data acquisition. Spike ectodomain samples
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were diluted to 25 nM for all data acquisitions. Spike was mixed with 0, 25, 50, 75 or 100 nM of dimeric human ACE2
ectodomain and incubated at room temperature for 5 min prior to data acquisition. MP image data was analyzed in
Refeyn DiscoverMP, using in-house protein standards for mass calibration, and processed single-particle mass detection
events were exported for determination of RBD-ACE2 occupancy. The mass events were truncated to a range of 0-1600
kDa for apo spike runs and to 350-1300 kDa for spike-ACE2 runs, thereby excluding multiple spikes cross-linked by one
or multiple ACE2 dimers, as well as free ACE2 (which is not used to calculate RBD occupancy). Retained mass events for
each run were used to estimate two-, three-, or four-component Gaussian mixture models (GMMs) with Scikit-Learn81,
and each component was assigned as representing unbound spike, or 1 ACE2-, 2 ACE2-, or 3 ACE2-bound spike
trimers if its molecular mass (Gaussian mean) fell between 400-600 kDa, 600-800 kDa, 800-1000 kDa, or 1000-1200
kDa, respectively. The relative abundance of each of the four species, and thus RBD-ACE2 occupancy, were determined
from the respective weights (proportions of overall probability mass) of the Gaussian components, as follows:

, , ,𝑅𝐵𝐷 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =  𝑆1𝑥𝐴𝐶𝐸2+2𝑆2𝑥𝐴𝐶𝐸2+3𝑆3𝑥𝐴𝐶𝐸2

𝑆𝑡𝑜𝑡𝑎𝑙× 3
𝑆1𝑥𝑅𝐵𝐷 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =  𝑆1𝑥𝐴𝐶𝐸2+𝑆3𝑥𝐴𝐶𝐸2

𝑆𝑡𝑜𝑡𝑎𝑙 𝑆2𝑥𝑅𝐵𝐷 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =  𝑆2𝑥𝐴𝐶𝐸2+

𝑆𝑡𝑜𝑡𝑎𝑙

where S1xACE2 is the weight of the respective Gaussian components for single ACE2 bound 𝑆3𝑥𝑅𝐵𝐷 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =  𝑆3𝑥𝐴𝐶𝐸2

𝑆𝑡𝑜𝑡𝑎𝑙

spike, S2xACE2 is Gaussian component spike bound by 2 ACE2 molecules, S3xACE2 is Gaussian component spike bound by
3 ACE2 molecules and Stotal is the sum of Gaussian components for spike bound by no, one, two or three ACE2
molecules (Extended Data Fig. 6a). For visualization of the modeling results (Extended Data Figs. 3-4) and for
selection of the number of Gaussian components appropriate for each sample, each GMM was used to predict a
(continuous) mass frequency distribution, which was area-scaled and overlaid on the corresponding full-range mass
event histogram.

Serum escape mapping using deep mutational scanning libraries
Before use, sera were heat inactivated at 56°C for 1 hour to eliminate complement activity. XBB* infection sera
neutralization was determined using standard pseudovirus neutralization assay described in Crawford et al. (2020)5. The
sequence of the spike expression plasmid used for these experiments is provided at
https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/blob/main/plasmid_maps/HDM_XBB15.gb
. Using these measurements we determined the amount of serum needed to neutralize the virus at IC98-IC99. As
described previously4, before starting selections we spiked-in a non-neutralizable standard at 1-2% of the total virus titers
used. RDPro pseudotyped non-neutralizable standard was used for all serum selections to avoid non-specific standard
neutralization (see section Use of non-neutralizable for ACE2 and serum selection experiments above). For sera selection
experiments ~1 million transcription units for each library sample were used. Libraries were incubated at three increasing
serum concentrations starting with IC98-IC99 (depending on serum volume available) and increasing serum
concentration 4-fold at each dilution. These serum concentrations were selected so that only a small percentage of
variants would be able to pass sera selection, therefore selecting for strongest escape variants. Additional sera
concentrations are used to cover a greater dynamic range as sometimes neutralization values determined against
wild-type spike using luciferase-based system do not quite match neutralization values for library virus pool. Virus-serum
mixtures were incubated for 1 h at 37˚C and subsequently 293T-ACE2 cells were infected with them. We used medium
ACE2 expressing cells for all serum selection experiments (‘medium-ACE2’ cells in Farrell et al. 202138) although as
shown in Extended Data Fig. 7 we did not detect major differences in serum escape compared to cells with high ACE2
expression. 12-15 hours post infections non-integrated lentiviral genomes were extracted from cells and barcode
sequencing libraries were prepared as described previously4.

Polyclonal software80 (version 6.9) was used to analyze mutation-level escape and fit neutralization curves to the
data. An example for data fitting for one sera sample can be found at
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/notebooks/fit_escape_antibody_escape_Lib1-230815-ser
a-343C_mediumACE2.html for XBB.1.5 full spike library and at
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/notebooks/fit_escape_antibody_escape_Lib1-230815-sera
-343C_mediumACE2.html for XBB.1.5 RBD library. The HTML documentation of the pipeline linked in the Data
availability section has links to comparable fitting notebooks for each biological replicate, as well as all other sera fits.
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Validation of escape using standard pseudovirus neutralization assay
To validate serum escape mutations, we cloned desired point mutants into an expression plasmid coding for XBB.1.5
spike. The sequence of this XBB.1.5 expression plasmid is at https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5
_Spike_DMS_validations/blob/main/plasmid_maps/3813_HDM_XBB15_with_F490S.gb (note this spike sequence
contains F490S mutation). Pseudoviruses were generated and titrated as described in Crawford et al. (2020)5 except that
pHAGE6_Luciferase_IRES_ZsGreen backbone was used which requires only Gag/Pol (BEI: NR-52517) helper plasmid to
produce pseudoviruses. Pseudovirus stocks were diluted to stock concentration of >200,000 relative light units per ul
and neutralization assays were performed on medium-ACE2 cells. Starting serum dilution for neutralization assays was
1:30 and it was serially diluted 1:3 to generate neutralization curves. Neutralization curves were plotted by fitting a Hill
curve to fraction infectivity data for each variant. This was done using neutcurve package
(https://jbloomlab.github.io/neutcurve/, version 0.5.7). Analysis notebook for neutralization curves is at
https://github.com/jbloomlab/SARS-CoV-2-XBB.1.5_Spike_DMS_validations/tree/main.

Cells
All cells in this study were maintained in D10 media (Dulbecco’s Modified Eagle Medium with 10% heat-inactivated fetal
bovine serum, 2 mM l-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin). 293T-ACE2 cells expressing
medium amount of ACE2 (‘medium-ACE2’ cells described in Farrell et al. 202138) were additionally supplemented to 2
µg/ml of doxycycline. Cells used to store spike libraries were maintained in media supplemented with doxycycline-free
FBS as described previously4.

Ethics statement
XBB* infection sera were collected after informed consent from participants in the prospective longitudinal Hospitalized or
Ambulatory Adults with Respiratory Viral Infections (HAARVI) study from Washington State, USA, which was approved by
University of Washington Institutional Review Board (protocol #STUDY00000959).

Comparison of deep mutational scanning phenotypes to changes in clade growth
To estimate clade growth rates, we used a multinomial logistic regression model of global lineage frequency data. GISAID
sequences were obtained from the bulk .fasta download (dated 2023-10-02) and processed with Nextclade (v2.14.0)
using the BA.2 reference (`sars-cov-2-21L`). Using Nextclade quality metrics, only sequences with >90% coverage and
an overall QC status of "good" were retained. Since outlier dates could distort model estimates, we required sequences
to have a fully specified deposition and collection date (ie. year, month, and day), and to have a collection date within 150
days of deposition (primarily to avoid collection dates where the year was incorrectly annotated). Finally, for each lineage,
we excluded sequences with dates that were extreme outliers for that specific lineage, falling outside of 3.5 times the
interquartile range of the median. For the model fit, we retained countries with >500 sequences, and lineages with >200
sequences. Counts for each lineage were aggregated per country, per day.

We model lineage counts using multinomial logistic regression. For the ith lineage, gi denotes the global (ie.
shared across all regions) per-lineage relative growth rate parameter (these are the parameters we wish to estimate), and
cij is a "nuisance" intercept parameter for the ith lineage in the jth region. We assume that the ratio of the frequency of any
two lineages varies approximately exponentially over time t (here in years), and model the probability of the nth sample
St

j[n] being from lineage i as:
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We use gradient descent to minimize the negative log probability -Σnlog[P(St
j[n]= i)], with the relative growth rate

parameters "centered" to have their mean equal to zero, removing a superfluous degree of freedom. Growth rates are
interpreted such that the ratio of the frequencies of two lineages changes with time as
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where gi - gq is the difference in the growth rates between the two lineages and, for a given region, K=exp(cij-cqj) is a
constant determined by their intercepts.
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The model was implemented in the Julia language, using Flux.jl and CUDA.jl to allow for GPU computation, and
optimized using Flux's "AdamW" optimizer with very weak (10-10) "weight decay" numerical regularization of the
parameters. The model implementation can be viewed at: https://github.com/MurrellGroup/MultinomialLogisticGrowth.

Visual inspection of the model fits to count data, aggregated daily for each lineage and region, showed an
acceptable fit at the region level, despite using globally shared growth rate parameters, indicating relatively consistent
growth rates across regions. A representative example (from Switzerland) is shown at Extended Data 16.
See https://github.com/MurrellGroup/MultinomialLogisticGrowth/tree/main/plots for similar visualizations across all
regions used in the global model fit. Note that when a region has no samples for a given period, this will not inform the
growth rate estimates, but we still plot the model's expected lineage frequencies.

The growth rate estimates themselves are at
https://github.com/MurrellGroup/MultinomialLogisticGrowth/blob/main/model_fits/rates.csv. For the analyses in this
paper, we considered only growth estimates from XBB descended clades with at least 400 sequences, since clades with
more sequences have more accurate growth estimates. The definitions of the clades (e.g., which mutations they contain)
as well as their phylogeny (parents and descendants for each clade) were taken from
https://github.com/corneliusroemer/pango-sequences/blob/main/data/pango-consensus-sequences_summary.json.

As described in the results and Fig. 6 and Extended Data Figs. 12 and 13, directly predicting growth rates of
clades from the deep mutational scanning is a confounded approach due to both phylogeny and the simple fact that
newer clades tend to have both more spike mutations and higher growth rates, leading to a trivial correlation of clade
growth rate with number of spike mutations. The real question of interest is not whether more fit clades with additional
mutations will be selected over time (we know they will), but rather which of the mutant clades present at any given time
will be more successful. Therefore, as indicated in Fig. 6b, we computed the change in growth rate for each
parent-descendant clade pair with estimates for both clade members and at least one spike mutation. We then also
computed the change in each spike phenotype as measured by deep mutational scanning for the clade pairs based on
the mutations separating the pair members, simply adding together the mutation effects for pairs separated by multiple
spike mutations. Non-spike mutations were ignored. The Pearson correlations with each phenotype are shown in Fig.
6c, and the statistical significance of the correlations were assessed by randomizing the deep mutational scanning
measurements among mutations 100 times and assessing how many randomizations had a correlation greater than or
equal to the observed value. To test the predictive value of combining all spike phenotypes, we performed a similar
analysis but using ordinary least squares multiple linear regression on all three phenotypes. Those results are shown in
Fig. 6d, with the significance again assessed by comparing the actual Pearson correlation to that generated by fitting the
model to data randomized among sites. To compute the unique variance explained by each phenotype, we removed the
phenotypes one-by-one and computed the unique variance explained as the squared Pearson correlation for the full
model minus the squared Pearson correlation for the model with that phenotype removed. See
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/notebooks/current_dms_compare_natural.html for the
notebook performing this analysis, and
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/blob/main/results/compare_natural/current_dms_clade
_pair_growth.csv for the numerical data on the clade pairs and their changes in spike phenotypes.

We compared the predictive value of the full-spike deep mutational scanning to the predictive value of models
based on several other values. The first such comparator model simply involves counting the change in number of spike
mutations relative to Wuhan-Hu-1 in each clade pair; as shown in Extended Data Fig. 12d, this model has no predictive
value.

The second comparator model uses the effect of RBD mutations on ACE2 affinity and RBD expression as
measured in yeast-display deep mutational scanning of the XBB.1.5 RBD22 as well as per-site escape values (same value
assigned to each mutation at each site) as computed using the default settings of the antibody escape calculator9 at
https://github.com/jbloomlab/SARS2-RBD-escape-calc/tree/5ebb88e5b8c9adc1b601b3cb1cc5308532d97a38 which
is based on monoclonal antibody deep mutational scanning data54. For this model, all non-RBD mutations were assigned
a value of zero for all phenotypes. As shown in Extended Data Fig. 13b,d, the predictions of this model are not
significant at a level of P = 0.05 compared to models with the measurements randomized among sites.
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The third comparator model uses the effects of mutations to XBB.1.5 as estimated using the EVEscape method
(https://evescape.org/data)55. As shown in Extended Data Fig. 13c,f, the predictions of this model are not significant at
a level of P = 0.05.

The numerical data used for all the comparator models is at
https://github.com/dms-vep/SARS-CoV-2_XBB.1.5_spike_DMS/tree/main/data/compare_natural_datasets.
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Fig. 1: Deep mutational scanning to measure phenotypes of the XBB.1.5 and BA.2 spikes
a, We measure the effects of mutations in spike on cell entry, receptor binding and serum escape.
We then use these measurements to predict the evolutionary success of human SARS-CoV-2
clades. b, Distribution of effects of mutations in XBB.1.5 and BA.2 spikes on entry into 293T-ACE2
cells for all mutations in the deep mutational scanning libraries, stratified by the type of mutation
and the domain in spike. Negative values indicate worse cell entry than the unmutated parental
spike. Note that the library design favored introduction of substitutions and deletions that are well
tolerated by spike, explaining why many mutations of these types have neutral to only modestly
deleterious impacts on cell entry. c, Cell entry effects of mutations F456L, P1143L and deletion of
V483 relative to the distribution of effects of all substitution and deletion mutations in the libraries.
Interactive heatmaps with effects of individual mutations across the whole spike on cell entry are at
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/293T_high_ACE2_entry_func_
effects.html and https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/
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293T_high_ACE2_entry_func_effects.html . The boxes in panels b and c span the interquartile
range, with the horizontal white line indicating the median. For panel c, the effect of deleting V483
was not measured in the BA.2 spike.

23

https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/293T_high_ACE2_entry_func_effects.html


Fig. 2: Effects of mutations on full-spike ACE2 binding measured using pseudovirus deep
mutational scanning
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a, Neutralization of pseudoviruses with the indicated spikes by soluble monomeric ACE2. Viruses
with spikes that have stronger binding toACE2 are neutralized more efficiently by soluble ACE2
(lower NT50), whereas viruses with spikes with worse binding are neutralized more weakly. ACE2
affinity values measured by surface plasmon resonance for BA.2 and Wu-1+D614G are shown in
brackets19. b, Correlation between neutralization NT50 by soluble ACE2 versus the RBD affinity for
ACE2 as measured by titrations using yeast-displayed RBD20. c, Effects of NTD and RBD
mutations on full-spike ACE2 binding as measured using pseudovirus deep mutational scanning.
Mutations that enhance ACE2 binding are shaded blue, mutations that decrease affinity are shaded
orange, mutations that are too deleterious for cell entry to be measured in the binding assay are
dark gray, and light gray indicates mutations not present in our libraries. Interactive heatmaps
showing mutational effects on ACE2 binding for the full XBB.1.5 and BA.2 spikes are at
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.
html and https://dms-vep.org/SARS-CoV-2_Omicron_BA.2_spike_ACE2_binding/htmls/
monomeric_ACE2_mut_effect.html . Note that a few sites are missing in the static heatmap in this
figure due to lack of coverage or deletions in the XBB.1.5 spike; see the interactive heatmaps for
per-site numbering. d, Correlations between the effects of RBD mutations on ACE2 binding
measured using the pseudovirus-based approach (this study) and yeast-based RBD display20,22. e,
Distribution of effects of individual mutations on full-spike ACE2 binding for all functionally tolerated
mutations in our libraries, stratified by RBD versus non-RBD mutations. Note that effects of
magnitude greater than two are clamped to the limits of the plots’ x-axes.
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Fig. 3: Non-RBD mutations impact ACE2 binding
a, ACE2 binding measurements using mass photometry. Histogram on the left shows distribution
of spike molecular mass when no (S0xACE2) one (S1xACE2), two (S2xACE2) or three (S3xACE2) ACE2
molecules are bound. We measure how this mass distribution changes as spike is incubated with
increasing concentrations of soluble dimeric ACE2. RBD occupancy is the fraction of RBDs bound
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to ACE2, calculated using Gaussian components for S0xACE, S1xACE2, S2xACE2 and S3xACE2 at each
ACE2 concentration. b, RBD occupancy measured using mass photometry for different BA.2 and
XBB.1.5 spike variants. Top left panel shows that a BA.2 spike mutation known to increase ACE2
binding (R493Q/blue) has greater RBD occupancy relative to unmutated BA.2 (black) spike, by
contrast a mutation known to decrease ACE2 binding (R498V/green) has lower RBD occupancy in
both BA.2 (top left panel) and XBB.1.5 (bottom left panel) backgrounds. Panels on the right show
RBD occupancy for BA.2 (top right) and XBB.1.5 (bottom right) spike variants with mutations in S1

or S2 subunits measured to increase ACE2 binding in the deep mutational scanning. Values shown
in parentheses after the mutation in the legend are the effect on ACE2 binding measured by deep
mutational scanning. c, Non-RBD mutations measured to increase ACE2 binding in deep
mutational scanning experiments that have arisen independently as defining mutations in at least
four XBB-descended clades.
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Fig. 4: Serum antibody escape mutations for individuals with prior XBB* infections
a, Escape at each site in the XBB.1.5 spike averaged across 10 sera collected from individuals with
prior XBB* infections. The points indicate the total positive escape caused by all mutations at each
site. See https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary
_overlaid.html for an interactive version of this plot with additional mutation-level data. b, Zoomed
view of the escape at each site in RBD with each line representing one of the 10 sera. Key sites are
labeled with red circles indicating escape for each of the 10 sera. Red data points indicate escape
for each individual at select RBD positions. c, Logo plots showing the 16 sites of greatest total
escape after averaging across the sera. Letter heights indicate escape caused by mutation to that
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amino acid, and letters are colored light yellow to dark brown depending on the impact of that
mutation on ACE2 binding (cf. color key). The top plot shows all amino-acid mutations measured,
and the bottom plot shows only amino acids accessible by a single nucleotide mutation to the
XBB.1.5 spike. d, Left: correlation between DMS escape scores and pseudovirus neutralization
assay IC90 values for three sera. Right: logo plot showing escape for all sites with mutations
validated in the neutralization assays, with the specific validated mutations in red.
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Fig. 5: Sera escape and ACE2 binding are inversely correlated for non-RBD and
ACE2-distal RBD sites
a, Left: correlation between ACE2 binding and sera escape for amino-acid mutations at non-RBD
sites with the highest mutation-level sera escape (each point is a distinct amino acid mutation).
Average escape for each mutation across all sera is shown. Right: logo plot for the same sites, with
letter heights proportional to escape caused by that mutation (negative heights mean more
neutralization), and letter colors indicating effect on ACE2 binding (green means better binding). b,
A similar plot for RBD sites that are distal (at least 15 Å) from ACE2. c, A similar plot for RBD sites
proximal to ACE2. Only sites with at least seven different mutations measured are included in the
logo plots. d, Top-down view of XBB spike (PDB ID: 8IOT) with the non-RBD and ACE2-distal sites
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shown in panels a and b highlighted as spheres. The RBD is pink, the NTD is blue, and sites in
SD1 are green.

Fig. 6: Spike phenotypes measured by deep mutational scanning partially predict the
evolutionary success of SARS-CoV-2 clades
a, Phylogenetic tree of XBB-descended Pango clades, colored by their relative growth rates. The
tree shows only clades with at least 400 sequences and at least one new spike mutation, and their
ancestors. Ancestor clades with insufficient sequences for growth rate estimates are in white. b,
The same phylogeny but with branches colored by the change in growth rate between
parent-descendant clade pairs. c, Correlation between the changes in growth rate for
parent-descendant clade pairs versus the change in each spike phenotype measured in the
XBB.1.5 full-spike deep mutational scanning (multiple mutations are assumed to have additive
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effects). The text above each plot shows the Pearson correlation (r) and a P-value computed by
comparing the actual correlation to that for 100 randomizations of the experimental data among
mutations. d, Ordinary least squares multiple linear regression of changes in growth rate versus all
three measured spike phenotypes. The small text indicates the unique variance explained by each
variable as well as the coefficients in the regression. See https://dms-vep.github.io/SARS-CoV-2_
XBB.1.5_spike_DMS/htmls/current_dms_clade_pair_growth.html and https://dms-vep.github.io/
SARS-CoV-2_XBB.1.5_spike_DMS/htmls/current_dms_ols_clade_pair_growth.html for interactive
versions of panels c and d where points can be moused over for details on clades and their
mutations. See Extended Data Fig. 14 for a similar analysis that also includes BA.2 and BA.5
descended clades.
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Extended Data Fig. 1: XBB.1.5 and BA.2 spike deep mutational scanning libraries
a, Number of targeted and final number of mutations and barcoded variants in the XBB.1.5 and
BA.2 full spike and XBB.1.5 RBD pseudovirus-based deep mutational scanning libraries. b, Total
number of unique spike amino-acid mutations present in BA.2, BA.5, BA.2.86, and XBB
descended Pango clades and the number of those mutations that are present in at least three
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barcoded variants in each replicate of the XBB.1.5 full spike libraries, which was the minimum
number of occurrences we needed to make high-confidence estimates of the mutational effects on
cell entry. The first number is the total number of mutations meeting the criteria and the number in
parentheses is the number of these mutations covered in the libraries: for example, there are 108
spike amino-acid mutations that occur in more than one XBB-descended clade, and 107 of those
mutations are well covered in our XBB.1.5 full spike libraries. c, Method for creating
genotype-phenotype linked spike deep mutational scanning libraries, as previously described in
Dadonaite et al. (2023)4. Lentivirus backbone plasmids encoding barcoded mutagenised spike
genes together with helper and VSV-G expression plasmids are transfected into 293T cells to make
VSV-G pseudotyped virus. These viruses are used to infect 293T-rtTA cells at MOI < 0.01 so that
no more than one spike variant is integrated into each cell. Transduced cells are selected for
lentiviral integration, and spike pseudotyped virus libraries are produced from these cells by
transfecting helper plasmids in the presence of doxycycline to induce spike expression. In the
absence of doxycycline and with added VSV-G expression plasmid, VSV-G pseudotyped virus
libraries are also produced from the same cell lines; these VSV-G pseudotyped viruses are used to
help estimate effects of spike mutations on cell entry as described in the next panel. d, Method
used to measure effects of mutations in spike on cell entry. The ability of each spike variant to
mediate cell entry is assessed by quantifying its relative frequency in 293T-ACE2 cells infected with
spike-pseudotyped versus VSV-G pseudotyped libraries. e, Correlations between the effects of
mutations on cell entry measured using each of the two independent full spike libraries of XBB.1.5
or BA.2. Throughout the rest of this paper, we report the mean value between the two libraries. f,
Correlation between mutational effects on cell entry measured for the XBB.1.5 versus BA.2 full
spike libraries. g, Cell entry effects for mutations in the pseudovirus libraries that saturate all
mutations in the XBB.1.5 RBD. The black line indicates the median entry effect, and the boxes
indicate the interquartile range. Note how the mutational effects in this saturated library tend to be
more deleterious than the effects of RBD mutations in the XBB.1.5 full-spike libraries (Fig. 1b),
since the full-spike libraries were designed with the goal of including mostly tolerated mutations
rather than all mutations. h, Cell-entry effects as measured in the deep mutational scanning of
mutations in either the flexible loops or core β-sheets of the NTD. The left plot shows the effects of
amino-acid mutations; the right plot shows the effects of single-residue deletions. The black line
indicates the median entry effect, and the boxes indicate the interquartile range. i, Correlation
between mutational effects measured with the XBB.1.5 or BA.2 full spike libraries and fitness
effects of those mutations estimated from actual human SARS-CoV-2 sequences15.
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Extended Data Fig. 2: Correlations among measured mutational effects on ACE2 binding.
a, Correlation between effects of mutations on ACE2 binding measured with XBB.1.5 full spike and
XBB.1.5 RBD pseudovirus libraries. b, Correlation between effects of mutations on ACE2 binding
measured using XBB.1.5 RBD pseudovirus library with monomeric and dimeric ACE2. Heatmaps
with the XBB.1.5 RBD pseudovirus measurements made using monomeric and dimeric ACE2 are
at https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/monomeric_ACE2_mut_
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effect.html and https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_RBD_DMS/htmls/dimeric_ACE2_
mut_effect.html, respectively c, Correlation between effects of mutations on ACE2 binding and
spike-mediated cell entry for different libraries. d, ACE2 binding heat map showing key non-RBD
sites that have mutated in the past major SARS-CoV-2 variants. Specific variant mutations are
highlighted in red outline. Table on the right indicates variants in which these mutations occurred.
Interactive plot showing ACE2 binding for all mutations measured in spike is at
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/monomeric_ACE2_mut_effect.
html.
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Extended Data Fig. 3: Mass photometry measurements for individual BA.2 spike variants
Spike molecular mass distributions measured using mass photometry for each biological replicate
(blue and orange) corresponding to independent purification batches. Each row shows a BA.2
spike mutant and each column shows measurements at different ACE2 concentrations. In the
absence of ACE2, some samples had a small peak to the left which may be a misfolded spike
monomer82 which was present only in some protein preparations and is excluded from Gaussian
curve fitting in the presence of ACE2.
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Extended Data Fig. 4: Mass photometry measurements for individual XBB.1.5 spike
variants
Spike molecular mass distributions measured using mass photometry for each biological replicate
(blue and orange) corresponding to independent purification batches. Each row shows an XBB.1.5
spike mutant and each column shows measurements at different ACE2 concentrations. In the
absence of ACE2, some samples had a small peak to the left which may be a misfolded spike
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monomer82 which was present only in some protein preparations and is excluded from Gaussian
curve fitting in the presence of ACE2.
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Extended Data Fig. 5: BA.2 and its mutant spike preparations
a, Reducing SDS-PAGE gel for purified BA.2 wildtype and mutant spike ectodomains. All
constructs are pre-fusion stabilized with HexaPro mutations28. 3µg of purified protein loaded. Single
major band for all samples confirms sample purity. b, Negative stain electron microscopy images
for the purified BA.2 spike mutants to confirm proper folding and monodispersity of the samples. c,
Reducing SDS-PAGE gel for purified XBB.1.5 wildtype and mutant spike ectodomains. All
constructs are pre-fusion stabilized with HexaPro mutations28. d, Negative stain electron
microscopy images for the purified XBB.1.5 spike mutants.
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Extended Data Fig. 6: Mass photometry measurements for S1 and S2 occupancy
a, Illustration of Gaussian components for no (S0xACE2), one (S1xACE2), two (S2xACE2), or three (S3xACE2)
ACE2-bound spikes. S1xRBD occupancy is the fraction of spikes bound by one ACE2 molecule and
S2xRBD occupancy is the fraction of spikes bound by two ACE2 molecules. b, Top row - S1xRBD

occupancy measured using mass photometry for different BA.2 spike mutants. Bottom row - S2xRBD

occupancy measured using mass photometry for different BA.2 spike mutants. c, Top row - S1xRBD

occupancy measured using mass photometry for different XBB.1.5 spike mutants. Bottom row -
S2xRBD occupancy measured using mass photometry for different XBB.1.5 spike mutants.
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Extended Data Fig. 7: Correlation among serum escape mapping experiments
a, Correlation between mutation escape scores for experiments using the full-spike XBB.1.5
libraries performed on 293T cells expressing high or medium amounts of ACE2 for four sera. Note
that the medium cells were used for all other figures shown in this paper. b, Correlation between
mutation escape scores for mutations in the XBB.1.5 full spike and RBD-only libraries. See
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare_high_medium_ace2
_escape.html and https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/compare
_spike_rbd_escape.html for interactive versions of these scatter plots that also show line plots of
per-site escape values for each serum.
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Extended Data Fig. 8: Escape at key sites for each serum
Logoplots showing XBB.1.5 spike escape at 16 highest escape sites for each of the 10 sera
measured. Letter heights indicate the escape caused by mutation to that amino acid. Letters are
colored light yellow to dark brown depending on mutation effect on ACE2 binding. Left: all
mutations measured. Right: mutations accessible with a single-nucleotide substitution.
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Extended Data Fig. 9: Mutations in XBB.1.5 spike that increase serum neutralization
Escape at each site in the XBB.1.5 spike averaged across the 10 sera from individuals with prior
XBB* infections, showing negative as well as positive values (Fig. 4 only shows positive values).
Sites with negative escape in this plot are ones where many mutations make spike more sensitive
to neutralization. Interactive plots with site and mutation-level escape are at
https://dms-vep.github.io/SARS-CoV-2_XBB.1.5_spike_DMS/htmls/summary_overlaid.html (set
‘floor escape at zero’ at the bottom of the chart to false to show negative escape).
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Extended Data Fig. 10: Only antibodies that bind RBD in the up conformation are escaped
by mutations outside the structural epitope
This figure shows previously generated and published deep mutational scanning escape maps for
three monoclonal antibodies, two of which bind to RBD only in the up conformation (REGN10933
and SC27) and one of which binds to the RBD in both the up and down conformation
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(LY-CoV1404). All antibodies are escaped by mutations in their direct structural epitope, but only
the antibodies that bind only the up conformation are escaped by ACE2-distal mutations outside
their epitope that affect RBD up/down conformation. a, REGN10933 escape profile mapped using
a Delta full spike deep mutational scanning library4. REGN10933 only binds RBD in the up
position83,84. Line plot shows mean escape at each position in Delta spike with sites that modulate
RBD movement highlighted in red. Heatmap shows mutation escape scores for sites highlighted in
red on the line plot. Surface representation of RBD is coloured by site mean escape score with
sites showing escape in the RBD outside the main antibody labeled (PDB ID: 6XDG). b, SC27
antibody escape profile mapped using the XBB.1.5 saturated RBD deep mutational scanning
library85. SC27 only binds RBD in the up conformation. (PDB ID: 7MMO). c, LY-CoV1404 escape
profile mapped using the BA.1 full spike deep mutational scanning library4. LY-CoV1404 binds RBD
in both up and down conformations86. (PDB ID: 7MMO).
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Extended Data Fig. 11: Sites with highest inverse correlation between ACE2 binding and
serum escape
a, Correlation between ACE2 binding and serum escape for sites in XBB.1.5 spike. Only sites with
at least 7 mutations measured and Pearson r < 0.82 are shown. b, Most sites with strongly
negative correlations between mutational effects on ACE2 binding and escape are at positions that
could plausibly impact the RBD conformation in the context of the full spike, since they tend to be
at the interface of the RBD and other spike domains. Left: all sites from a shown on spike structure
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as spheres. RBD is colored in light pink, NTD light blue, SD1 green and the S2 subunit in yellow.
Spheres are shown on only one chain for each domain for clarity (PDB ID: 8IOU). Right: RBD sites
from a shown on RBD in up position engaged with ACE2. RBD is colored in light pink and ACE2 is
gray.
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Extended Data Fig. 12: Correlations in absolute clade growth with absolute clade
phenotypes
a, Correlation between clade growth estimates made using the Murrell lab multinomial logistic
regression model (see methods) or a hierarchical multinomial logistic regression implemented by
the Bedford lab73 (see https://github.com/nextstrain/forecasts-ncov/). Both sets of estimates are for
clades designated after Jan-1-2023 and use the data available as of Oct-2-2023. The estimates
are highly correlated, and everywhere else in this paper we report analyses using the Murrell lab
estimates. b, Number of spike amino-acid mutations relative to the early Wuhan-Hu-1 virus in all
SARS-CoV-2 Pango clades versus the clade designation dates. XBB-descended clades are in
orange. As can be seen from this plot, newer clades tend to have more spike mutations. c,
Because newer clades tend to have both more mutations and better growth, clade growth rate is
trivially correlated with a clade’s relative distance (number of spike mutations) from Wuhan-Hu-1.
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However, this correlation is not informative as it is already known that new clades tend to have
more mutations. d, If we instead correlate the change in growth rate between parent-descendant
clade pairs separated by at least one spike mutation (Fig. 6b) with the change in spike mutational
distance to Wuhan-Hu-1 there is no correlation, since this approach removes the co-variation with
total mutation count. Therefore, simple mutation counting is not informative for predicting changes
in clade growth. e, Correlations for the phenotypes measured by the full spike deep mutational
scanning in the current paper; f, the phenotypes measured in yeast display RBD deep mutational
scanning; g, predicted by the EVEscape method. These plots differ from Fig. 6c and Extended
Data Fig. 13 in that they show the correlations in absolute clade growth with the absolute clade
phenotypes, rather than comparing the changes in both for each parent-descendant clade pair.
Absolute clade phenotypes are computed as the sum of mutation effects. The P-values above the
plots are the fraction of times the correlation is greater than that for the actual data after
randomizing the phenotypic effects among mutations. Note that the correlations are not reflective
of the P-values (there can be high correlations but non-significant P-values) for the reasons noted in
the main text and in c—phylogenetic correlations, and the fact that new clades have both more
mutations and higher growth so that any “phenotype” that amounts to counting mutations gives a
correlation in these plots. For this reason, comparing changes in clade growth to changes in spike
phenotypes as done in Fig. 6c and Extended Data Fig. 13 is the correct approach to test
whether a method can actually predict which new clades will be successful.
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Extended Data Fig. 13: Correlations of changes in growth with various other properties of
spike for XBB descended clades
This figure shows the change in growth rate between parent-descendant clade pairs versus the
change in various spike phenotypes, rather than showing the absolute clade growth and absolute
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spike phenotypes as in Extended Data Fig. 12. Comparing the changes removes phylogenetic
correlations as discussed in the main text. a, Correlation between the changes in growth rate for
parent-descendant clade pairs versus the change in each spike phenotype measured in the
XBB.1.5 full-spike deep mutational scanning described in the current paper (multiple mutations are
assumed to have additive effects). These panels are the same as those shown in Fig. 6c, and are
re-printed here to enable easier comparison to other panels in this figure. b, Correlations of
changes in clade growth with changes in site-level antibody escape, ACE2 affinity, and RBD
expression measured for RBD mutations in yeast-display deep mutational scanning. c, Correlation
of changes in the EVEscape score with changes in clade growth. d, Ordinary least-squares
regression of changes in the yeast-display RBD deep mutational scanning phenotypes versus
changes in XBB-descendant clade growth. The small text indicates the unique variance explained
by each variable as well as the coefficients in the regression. e, Ordinary least squares multiple
linear regression of changes in XBB-descendant clade growth rate versus all three measured spike
phenotypes using the XBB.1.5 full spike deep mutational scanning. This panel is the same as Fig.
6d, and is re-printed here to enable easier comparison to other panels in this figure. All panels are
labeled with the Pearson correlation (r) and a P-value determined by computing how many
randomizations of the mutational data yield correlations as large as the actual one.
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Extended Data Fig. 14: Correlations of changes in growth with various other properties of
spike for BA.2, BA.5, and XBB descended clades
This figure is the same as Extended Data Fig. 13 except that it includes clades descended from
any of BA.2, BA.5, and XBB whereas Extended Data Fig. 13 includes just clades descended
from XBB.
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Extended Data Fig. 15: Ability of various spike properties to distinguish the actual BA.2.86
and BA.2.86-descended clades from randomly mutated sequences
This figure assesses the ability of various spike properties to correctly identify that BA.2.86 and its
descendant clades (which have spread widely and so by definition have high fitness) from other
sequences with the same number of mutations drawn randomly from mutations observed in
human SARS-CoV-2 sequences. This test is inspired by that used in the ninth extended data figure
of Thadani et al55. a, The blue circles show the phenotype of the actual BA.2.86 spike relative to its
parent BA.2 as computed from the sum of the mutation effects measured in the XBB.1.5 full-spike
deep mutational scanning, XBB.1.5 RBD yeast-display, or predicted by EVEscape. The grow
shows min-max boxplots the phenotypes of 1,000 spike sequences generated by adding to the
BA.2 spike the same number of amino-acid mutations in BA.2.86 relative to BA.2, drawing the
mutations randomly from the set of all amino-acid mutations observed at least 50 times in GISAID.
The P-value represents the fraction of these randomly mutated sequences with phenotypes at least
as favorable as that of the actual BA.2.86 spike. Therefore, when the blue circle is far to the right of
the gray distribution (small P value) that means the spike phenotype is highly effective at
distinguishing the actual high-fitness BA.2.86 spike from randomly mutated sequences. For the
panels labeled “spike pseudovirus DMS (combined phenotypes)” and “RBD yeast-display DMS
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(combined phenotypes)”, the phenotype is a linear combination of the three phenotypes measured
in each type of deep mutational scanning weighted with the coefficients determined by the
multiple-linear regression on XBB-descended clades (see Fig. 6c and Extended Data Fig. 13).
Overall, this figure shows that full-spike pseudovirus sera escape, full-spike pseudovirus cell entry,
and RBD yeast-display ACE2 affinity are the three phenotypes with the best ability to distinguish
the actual BA.2.86 spike from randomly mutated sequences. b, An analysis conceptually similar to
that in panel a but comparing all designated Pango clades descended from BA.2.86 to their
parental BA.2.86 versus a set of randomly mutated sequences generated by adding the same
number of random mutations (observed at least 50 times in GISAID). The blue min-max boxplots
show the distribution of the phenotype among the actual BA.2.86-descended clades that have
evolved, whereas the gray shows the distribution of the phenotype among the randomly mutated
sequences. When the blue distribution is shifted far to the right relative to the gray distribution, that
indicates that the phenotype can effectively distinguish the actual clades that have evolved from
randomly mutated ones. See https://dms-vep.org/SARS-CoV-2_XBB.1.5_spike_DMS/notebooks/
compare_BA.2.86.html for the computer code implementing the analysis shown here.
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Extended Data Fig. 16: Example of model fit to lineage counts
A representative example of the modeled lineage counts using multinomial logistic regression (lines)
versus actual lineage counts (points) for Switzerland. Each color represents a different clade. These
fits were used to estimate the clade growth rates.
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Supplementary Table 1: Information on sera used in this study
Sera used in this study. Table shows the number and dates for infections and vaccinations each
individual had. All individuals either had a confirmed XBB* infection (marked by * in the table above)
or had the last recorded infection during the period when XBB or its descendant lineages were the
most common circulating variants in Washington state. In February 2023 70% of sequenced cased
were confirmed XBB or its descendant lineages and between March and May this number grew
from 88% to 97% according to the samples sequenced at University of Washington Virology labs87.
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