
Supplementary Material for “Deep IDA: A Deep Learning Approach

for Integrative Discriminant Analysis of Multi-omics Data with

Feature Ranking- An Application to COVID-19”

1 More on Methods

1.1 Unique Features of Proposed Method

Property/ Linear Joint Methods Deep IDA Randomized Deep CCA∗,

Methods Methods (Proposed) KCCA∗ Deep GCCA+

Nonlinear Relationships ✓ ✓ ✓

Classification ✓ ✓

Variable ranking/selection ✓ ✓

Covariates ✓ ✓ ✓

Joint methods ✓ ✓

Table 1: Unique features of Deep IDA compared to other methods. *Only applicable to two views. +Covariates

could be added as additional view in Deep GCCA. Joint Methods refere to methods that combine integration

and classification simultaneously.

1.2 Integrative Discriminant Analysis (IDA) for joint association and classification

Let Sd
b and Sd

w be the between-class and within-class covariances for the d-th view, respectively. That is,

Sd
b = 1

n−1

∑K
k=1 nk(µ

d
k − µd)(µd

k − µd)T; Sd
w = 1

n−1

K∑
k=1

n∑
i=1

(xd
ik − µk)(x

d
ik − µd

k)
T, and µd

k = 1
nk

∑nk

i=1 x
d
ik

is the mean for class k in view d. Let Sdj , j < d be the cross-covariance between the d-th and j-th views.

Let Md = Sd−1/2

w Sd
bS

d−1/2

w and Ndj = Sd−1/2

w SdjS
j−1/2

w . The IDA method finds linear discriminant vectors

(Γ̂
1
, . . . , Γ̂

d
) that maximally associate the multiple views and separate the classes within each view by solving

the optimization problem:

max
Γ1

,··· ,ΓD
{ρ

D∑
d=1

tr(ΓdTMdΓd) +
2(1− ρ)

D(D − 1)

D∑
d=1,d ̸=j

tr(

ΓdTNdjΓ
jΓjTNjdΓ

d)} subject to tr(ΓdTΓd) = K − 1. (1)

1



The first term in equation (1) maximizes the sum of the separation of classes in each view, and the second

term maximizes the sum of the squared pairwise correlations between two views. Here, ρ was used to control

the influence of separation and association in the optimization problem. The optimum solution for equation (1)

was shown to solve D systems of eigenvalue problem [12]. The discriminant loadings (Γ̂
1
, . . . , Γ̂

d
) correspond to

the eigenvectors that maximally associate the views and separate the classes within each view. The views were

projected onto the discriminant loadings to yield discriminant scores and samples were classified using nearest

centroid. In the Method Section, we propose a novel nonlinear formulation of IDA using deep nueral networks

(DNN) to study nonlinear associations among two or more views and separation of classes within a view. We

also propose a homogeneous ensemble approach for feature ranking to identify features contributing most to

the association of the views and the separation of the classes in a view.

1.3 Theorems and Proofs

Theorem 1. Let Sd
t and Sd

b respectively be the total covariance and the between-class covariance for the top-

level representations Hd, d = 1, . . . , D. Let Sdj be the cross-covariance between top-level representations d

and j. Assume Sd
t ≻ 0. Define Md = Sd

t
− 1

2Sd
bS

d
t
− 1

2 and Ndj = Sd
t
− 1

2SdjS
j
t

− 1
2 . Then Γd ∈ ℜod×l, l ≤

min{K − 1, o1, . . . , oD} in equation (4) of main text are eigenvectors corresponding respectively to eigenvalues

Λd =diag(λdk
, . . . , λdl

), λdk
> · · · > λdl

> 0 that iteratively solve the eigensystem problems:c1Md + c2

D∑
j ̸=d

NdjΓjΓ
T

jN T

dj

Γd = ΛdΓd,∀d = 1, ..., D

where c1 = ρ
D and c2 = 2(1−ρ)

D(D−1) .

Prove. Solving the optimization problem is equivalent to iteratively solving the following generalized eigen-

value systems: c1M1 + c2

D∑
j=2

N1jΓjΓ
T
j N T

1j

Γ1 = Λ1Γ1

...c1Md + c2

D∑
j=1,j ̸=d

NdjΓjΓ
T
j N T

dj

Γd = ΛdΓd

...c1MD + c2

D−1∑
j=1

NDjΓjΓ
T
j N T

Dj

ΓD = ΛDΓD

where c1 = ρ
D and c2 = 2(1−ρ)

D(D−1) .

Proof. The Lagrangian is

L(Γ1, ...,ΓD, λ1, ..., λD) = ρ
1

D

D∑
d=1

tr[ΓT
d MdΓd] + (1− ρ)

2

D(D − 1)

D∑
d=1

D∑
j,j ̸=d

tr[ΓT
d NdjΓjΓ

T
j N T

djΓd]−
D∑

d=1

ηd(tr[Γ
T
d Γd]− l)

= c1

D∑
d=1

tr[ΓT
d MdΓd] + c2

D∑
d=1

D∑
j,j ̸=d

tr[ΓT
d NdjΓjΓ

T
j N T

djΓd]−
D∑

d=1

λd(tr[Γ
T
d Γd]− l) (2)

2



The first order stationary solution for Γd(∀d = 1, ..., D) is

∂L(Γ1, ...,ΓD, λ1, ..., λD)

∂ΓT
d

= 2c1MdΓd + 2c2

D∑
j,j ̸=d

(NdjΓjΓ
T
j N T

dj)Γd − 2λdΓd = 0 (3)

Rearranging the equation 3 we havec1Md + c2

D∑
j,j ̸=d

NdjΓjΓ
T
j N T

dj

Γd = λdΓd

For Γj ,∀j ̸= d fixed, the above can be solved for the eigenvalues of (c1Md + c2
∑D

j,j ̸=d NdjΓjΓ
T
j N T

dj). Arrange

the eigenvalues from large to small and denote Λd ∈ Rod×od as the diagonal matrix of those values. For the

top l largest eigenvalues, denote the corresponding eigenvectors as Γ̂d = [γd,1, ..., γd,l]. Therefore, starting from

d = 1, following this process, Γ̂1 is updated; then, update Γ̂2 and so on; finally, update Γ̂D. We iterate until

convergence, which is defined as,
∥Γ̂d,new−Γ̂d,old

∥2
F

∥Γ̂d,old
∥2
F

< ϵ. When convergence is achieved, set Γ̃d = Γ̂d,∀d =

1, ..., D.

Theorem 2. For d fixed, let ηd,1, . . . , ηd,l, l ≤ min{K − 1, o1, . . . , oD} be the largest l eigenvalues of c1Md +

c2
∑D

j ̸=d NdjΓjΓ
T

jN T

dj. Then the solution f̃d to the optimization problem in equation (5) [main text] for view d

maximizes

l∑
r=1

ηd,r. (4)

Proof. Fix d and let ηd,1, ηd,2, ..., ηd,l be the top l eigenvalues of

c1Md + c2

D∑
j ̸=d

NdjΓ̃jΓ̃
T

j N T
dj .

Then,

l∑
r=1

ηd,r = c1tr[Γ̃
T

d MdΓ̃d] + c2

D∑
j,j ̸=d

tr[Γ̃
T

d NdjΓ̃jΓ̃
T

j N T
dj Γ̃d]

Proof.

c1tr[Γ̃
T

d MdΓ̃d] + c2

D∑
j,j ̸=d

tr[Γ̃
T

d NdjΓ̃jΓ̃
T

j N T
dj Γ̃d]

= tr(Γ̃
T

d (c1Md + c2

D∑
j,j ̸=d

NdjΓ̃jΓ̃
T

j N T
dj)Γ̃d)

= tr(Γ̃
T

d ΛdΓ̃d)

=

l∑
r=1

ηd,r

1.4 Comparison of Deep IDA with some existing nonlinear methods

Unlike Deep CCA [1] and Deep generalized CCA [2] which use DNN networks to learn transformations of

nonlinearly transformed views to maximize associations between two (Deep CCA) or more (Deep generalized

CCA) views, we maximize both association of views and separation of classes in a view jointly, thus we do not

3



need any sophisticated classification algorithm which could add another layer of computational complexity. Our

proposed method is closely related to the method (multiview linear discriminant analysis network, MvLDAN in

short) in [5] since we too find linear projections of nonlinearly transformed views that separate classes within

each view and maximize correlation between multiple views. In [5], the authors proposed to solve the following

optimization problem for linear projection matrices A1, · · · ,AD and neural network parameters (weights and

biases):

argmax
f1,··· ,fD,A1,··· ,AD

tr
(
(Sw + βATA)−1(Sb + λSc)

)
, (5)

where A = [AT
1 · · ·ADT

]T is a concatenation of projection matrices from all views, Sb and Sw are the between-

class and within-class covariances for all views, respectively, and Sc is the cross-covariance matrix for all views.

Further, λ and β are regularization parameters. The authors then considered to learn the parameters of the

deep neural network by maximizing the smallest eigenvalues of the generalized eigenvalue problem arising from

equation (5) that do not exceed some threshold that is specified in advance. Although we have the same goal,

our optimization formulation in equation (2) of the main text, and our loss function is different. We constrain

the total covariance matrix St instead of Sw and as noted above, our loss function is bounded. As such, we

do not have convergence issues when training our deep learning parameters. Deep LDA ([3]), a deep neural

network-based linear discriminant analysis, suffers from this convergence issue. A major drawback of MvLDAN,

Deep CCA, Deep generalized CCA and most existing DNN methods is that they cannot be used to identify

variables contributing most to the association among the views and/or separation in the classes. Recently,

a DNN method for multiview multi-task classification problems, MOMA, that uses attention mechanism for

interpretability has been proposed [10]. We note that although MOMA is developed for two or more views, the

algorithm the authors provide is applicable to only two views.

1.5 Optimization and Algorithm

The training process of DeepIDA is as follows:

• Feed forward and calculate the loss. The output for D deep neural networks areH1, ...,HD, which includes

the neural network parameters (i.e., the weights and biases). Based on the objective in equation (6) of

the main text, the final loss is calculated and denoted as L = −
∑D

d=1

∑l
r=1 ηd,r.

• Gradient of the loss function. The loss function L depends on the estimated linear projections Γ̃
d
, d =

1, · · · , D and since these linear projections use the outputs of the last layer of the network, there are no

parameters involved. Therefore, we calculate the gradient of the loss with respect to the view-specific

output, i.e., ∂L
∂Hd , d = 1, . . . , D.

• Gradient within each sub-network. Since each view-specific sub-network is propagated separately, we

can calculate the gradient of each sub-network independently. As the neural network parameters (i.e.,

weights and biases) of view d network is denoted as θd, we can calculate the partial derivative of last layer

with respect to sub-network parameters as ∂Hd

∂θd . These networks include shallow or multiple layers and

nonlinear activation functions, such as Leaky-ReLu [8].

• Deep IDA update via gradient descent. By the chain rule, we can calculate ∇θdL = ∂L
∂Hd · ∂Hd

∂θd . We

use the autograd function in the PyTorch [11] package to compute this gradient. Therefore, for every

4



optimization step, a stochastic gradient descent-based optimizer, such as Adam [6], is used to update the

network parameters.

We describe the Deep IDA algorithm in Algorithm 1. We also describe in Algorithm 2 the approach for

obtaining the linear projections using the output of the final layer.

Algorithm 1 Algorithm of Deep IDA

Input: Training data X = {X1,X2, ...,XD} and class labels y; number of nodes of each layer in D neural

networks (including dimensions of linear sub-spaces to project onto, o1, o2, ..., oD); learning rate α

Output: Optimized weights and biases for D neural networks and corresponding estimates

(f̃1(X1), ..., f̃D(XD))

1: Initialization Assign random numbers to weights and biases for D neural networks

2: while loss not converge do

3: Feed forward the network of each view with latest weights and biases to obtain the final layer Hd =

fd(Xd) ∈ Rn×od , d = 1, 2, .., D

4: Apply Algorithm 2 to obtain Γ̃1, ..., Γ̃D

5: Compute eigenvalues of c1Md + c2
∑D

j,j ̸=d NdjΓ̃jΓ̃
T

jN T

dj to obtain the loss function −
∑D

d=1

∑l
i=1 ηd,i

6: Compute the gradient of weights and biases for each network by the PyTorch Autograd function

7: Update the weights and biases with the specified learning rate α

8: end while

Algorithm 2 Algorithm for iteratively solving Eigenvalue Problem

Input: Training data H = {H1,H2, ...,HD} and corresponding class labels y; convergence criteria ϵ

Output: Optimized discriminant loadings Γ̃1, ..., Γ̃D

1: Compute Md, Ndj for d, j = 1, 2, .., D

2: while maxd=1,..,D
∥Γ̂d,new−Γ̂d,old

∥2
F

∥Γ̂d,old
∥2
F

> ϵ do

3: for d = 1, .., D do: fix Γ̂j ,∀j ̸= d, compute Γ̂d by Theorem 1

4: end while

5: Set Γ̃d = Γ̂d,∀d = 1, ..., D

1.6 Run Time

For a desktop with memory = 32G, one single run of DeepIDA usually takes two minutes until convergence

(around 50 epochs) on data with sample size 6000 and feature size 2000. In addition, the feature ranking process

for one bootstrap averages around 4 hours for data of dimension 6000 × 2000. However, with parallel computing,

it’s possible to train 50 bootstraps concurrently within the same timeframe. For datasets with smaller sample

sizes, like those in our real data analysis, a single Deep IDA run takes less than 10 seconds. The total time for

feature ranking based on 50 bootstraps is approximately 1.5 hours when using 15-core parallel computing.

5



2 Simulations

2.1 Set-up

We conduct simulation studies to assess the performance of Deep IDA for varying data dimensions, and as the

relationship between the views and within a view become more complex. We demonstrate that Deep IDA is

capable of i) simultaneous association of data from multiple views and discrimination of sample classes, and ii)

identifying signal variables.

We consider two different simulation Scenarios. In Scenario One, we simulate data to have linear relationships

between views and linear decision boundaries between classes (Refer to Supplementary Material for set-up and

results). In Scenario Two, we simulate data to have nonlinear relationships between views and nonlinear decision

boundaries between classes. There are K = 3 classes and D = 2 and D = 3 views in Scenario One. In Scenario

Two, there areK = 2 classes and D = 2 views. In all Scenarios, we generate 20 Monte Carlo training, validation,

and testing sets. We evaluate the proposed and existing methods using the following criteria: i) test accuracy,

and ii) feature selection. For feature selection, we evaluate the methods ability to select the true signals. In

Scenario One, the first 20 variables are important, and in Scenario Two, the Top 10% of variables in view 1 are

signals. Since Deep IDA and the teacher-student (TS) framework rank features, and SIDA assigns zero weights

to unimportant variables, for fair comparison, we only assess the number of signal variables that are in the Top

20 (for Scenario One) and the Top 10% (for Scenario Two) variables selected by the methods. We compare test

accuracy for Deep IDA with and without the variable ranking approach proposed in this manuscript.

2.2 Comparison Methods

We compare Deep IDA with classification-, association-, and joint association and classification-based methods.

For classification-based methods, we consider the support vector machine [4] on stacked views. For association-

based methods, we consider nonlinear methods such as deep canonical correlation analysis (Deep CCA) [1] and

deep generalized CCA (DGCCA) [2] when there are three or more views. The association-based methods only

consider nonlinear associations between views, as such we follow with SVM to perform classification using the

learned low-dimensional representations from the methods. We also compare Deep IDA to SIDA [12], a joint

association and classification method that models linear relationships between views and among classes in each

view. We perform SIDA using the Matlab codes the authors provide. We perform Deep CCA and DGCCA

using the PyTorch codes the authors provide. We couple Deep CCA and DGCCA with the teacher-student

framework (TS) [9] to rank variables. We also investigate the performance of these methods when we use

variables selected from Deep IDA.

2.3 Linear Simulations

We consider two simulation settings in this Scenario and we simulate data similar to simulations in [12]. In

Setting One, there are D = 2 views X1 and X2, with p1 = 1, 000 and p2 = 1, 000 variables respectively.

There are K = 3 classes each with size nk = 180, k = 1, 2, 3 giving a total sample size of n = 540. Let

Xd = [Xd
1,X

d
2,X

d
3], d = 1, 2 be a concatenation of data from the three classes. The combined data

(
X1

k,X
2
k

)
for

each class are simulated from N(µk,Σ), µk = (µ1
k,µ

2
k)

T ∈ ℜp1+p2 , k = 1, 2, 3 is the combined mean vector for

class k; µ1
k ∈ ℜp

1,µ
2
k ∈ ℜp

2 are the mean vectors for X1
k and X2

k respectively. The covariance matrix Σ for the

6



combined data for each class is partitioned as

Σ =

 Σ1 Σ12

Σ21 Σ2

 ,Σ1 =

 Σ̃
1

0

0 Ip1−20

 ,Σ2 =

 Σ̃
2

0

0 Ip2−20


where Σ1, Σ2 are respectively the covariance of X1 and X2, and Σ12 is the cross-covariance between the two

views. We generate Σ̃
1
and Σ̃

2
as block diagonal with 2 blocks of size 10, between-block correlation 0, and each

block is a compound symmetric matrix with correlation 0.8. We generate the cross-covariance matrix Σ12 as

follows. Let V1 = [V1
1, 0(p1−20)×2]

T ∈ ℜp1×2 and the entries of V1
1 ∈ ℜ20×2 are i.i.d samples from U(0.5,1).

We similarly define V2 for the second view, and we normalize such that V1TΣ1V1 = I and V2TΣ2V2 = I.

We then set Σ12 = Σ1V1DV2TΣ2, D = diag(0.4, 0.2) to depict moderate association between the views. For

class separation, define the matrix [ΣA,0(p1+p2)] ∈ ℜ(p1+p2)×3; A = [A1,A2]T ∈ ℜ(p1+p2)×2, and set the first,

second, and third columns as the mean vector for class 1, 2, and 3, respectively. Here, the first column of

A1 ∈ ℜp1×2 is set to (c110,0p1−10) and the second column is set to (010,−c110,0p−20); we fix c at 0.2. We set

A2 ∈ ℜp2×2 similarly, but we fix c at 0.1 to allow for different class separation in each view.

In Setting Two, we simulate D = 3 views, Xd, d = 1, 2, 3, and each view is a concatenation of data from

three classes as before. The combined data
(
X1

k,X
2
k,X

3
k

)
for each class are simulated from N(µk,Σ), where

µk = (µ1
k,µ

2
k,µ

3
k)

T ∈ ℜp1+p2+p3 , k = 1, 2, 3 is the combined mean vector for class k; µd
k ∈ ℜpd , j = 1, 2, 3 are the

mean vectors for Xd
k, d = 1, 2, 3. The true covariance matrix Σ is defined similar to Setting One but with the

following modifications. We include Σ3, Σ13, and Σ23, and we set Σ13 = Σ23 = Σ12. Like Σ1 and Σ2, Σ3 is

partitioned into signals and noise, and the covariance for the signal variables, Σ̃
3
, is also block diagonal with 2

blocks of size 10, between-block correlation 0, and each block is compound symmetric matrix with correlation 0.8.

We take µk to be the columns of [ΣA,0(p1+p2+p3)] ∈ ℜ(p1+p2+p3)×2, and A = [A1,A2,A3]T ∈ ℜ(p1+p2+p3)×2.

The first column of Aj ∈ ℜpj×2 is set to (cj110,0p1−10) and the second column is set to (010,−cj110,0p−20)

for j = 1, 2, 3. We set (c1, c2, c3) = (0.2, 0.1, 0.05) to allow for different class separation in each view.

2.3.1 Results for Linear Simulations

Table 2 gives classification accuracy for the methods and the true positive rates for the top 20 variables selected.

We implemented a three-hidden layer network with dimensions 512, 256, and 64 for both Deep IDA and Deep

CCA. The dimension of the output layer was set as 10. Table 7 lists the network structure used for each setting.

For Deep IDA + Bootstrap, the bootstrap algorithm proposed in the Methods Section was implemented on the

training data to choose the top 20 ranked variables. We then implemented Deep IDA on the training data but

with just the variables ranked in the top 20 in each view. The learned model and the testing data were used to

obtain the test errors. To compare our feature ranking process with the teacher-student (TS) network approach

for feature ranking, we also implemented Deep IDA without the bootstrap approach for feature ranking, and

we used the learned model from Deep IDA in the TS framework for feature ranking. We also performed

feature ranking using the learned model from Deep CCA (Setting One) and Deep GCCA (Setting Two). The

average error rates for the nonlinear methods are higher than the error rate for SIDA, a linear method for joint

association and classification analysis. This is not surprising as the true relationships among the views, and

the classes within a view are linear. Nevertheless, the average test error rate for Deep IDA that is based on

the top 20 variables in each view from the bootstrap method (i.e., Deep IDA + Bootstrap) is lower than the

average test error rates from Deep CCA and SVM (on stacked views). When we implemented Deep CCA, SVM,

7



and DGCCA on the top 20 variables that were selected by our proposed method, we observed a decrease in

the error rate across the methods. For instance, the error rates for Deep CCA using all variables compared to

using the top 20 variables identified by our method were 33.17% and 22.95%, respectively. Further, compared

to Deep IDA on all variables (i.e., Deep IDA + TS), Deep IDA + Bootstrap has a lower average test error,

demonstrating the advantage of variable selection. In Setting Two, the classification accuracy for Deep GCCA

was poor. In terms of variable selection, compared to SIDA, the proposed method was competitive at identifying

the top-ranked 20 variables. The TS framework for ranking variables was sub-optimal as evident from the true

positive rates for Deep IDA + TS, Deep CCA + TS, and Deep GCCA + TS.

Table 2: Linear Setting: RS; randomly select tuning parameters space to search. TPR-1; true positive rate for
X1. Similar for TPR-2. TS: Teacher student network. − indicates not applicable. Deep IDA on selected top 20
variables is when we use the bootstrap algorithm to choose the top 20 ranked variables, train Deep IDA with
the top 20-ranked variables, and then use the learned model and the test data to obtain test errors.

Method Error (%) TPR-1 TPR-2 TPR-3

Setting One
Deep IDA on selected top 20 variables 24.69 100.00 95.25 -
Deep IDA+ TS 33.87 33.25 21.75 -
SIDA 20.81 99.50 93.50 -
Deep CCA + TS 33.17 4.25 3.25 -
Deep CCA on selected top 20 variables 22.95 - - -
SVM (Stacked views) 31.53 - - -
SVM on selected top 20 variables (Stacked views) 22.03 - - -
Setting Two
Deep IDA on selected top 20 variables 23.16 100.00 94.75 78.75
Deep IDA + TS 31.22 72.00 57.75 47.75
SIDA 19.79 99.75 99.50 97.25
DGCCA + TS 60.01 2.0 2.0 2.25
DGCCA on selected top 20 variables 57.40 - - -
SVM (Stacked views) 29.06 - - -
SVM on selected top 20 variables (Stacked views) 19.56 - - -

3 More Results From Real Data Analysis

3.1 Evaluation of the Noisy MNIST digits data

The original MNIST handwritten image dataset [7] consists of 70,000 grayscale images of handwritten digits

split into training, validation and testing sets of 50,000, 10,000 and 10,000 images, respectively. The validation

set was used to select network parameters from the best epoch (lowest validation loss). Each image is 28× 28

pixels and has associated with it a label that denotes which digit the image represents (0-9). In [13], a more

complex and challenging noisy version of the original data was generated and used as a second view. First,

all pixel values were scaled to 0 and 1. The images were randomly rotated at angles uniformly sampled from

[−π
4 ,

π
4 ], and the resulting images were used as view 1. Each rotated image was paired with an image of the

same label from the original MNIST data, independent random noise generated from U(0,1) was added, and

the pixel values were truncated to [0,1]. The transformed data is view 2. Figure 1 shows two image plots of a

digit for views 1 and 2. Of note, view 1 is informative for classification and view 2 is noisy. Therefore, an ideal

multiview classification method should be able to extract the useful information from view 1 while disregarding

the noise in view 2.

8



Figure 1: An example of Noisy MNIST data. For the subject with label ”9”, view 1 observation is on the left

and view 2 observation is on the right.

The goal of this application is to evaluate how well the proposed method without feature ranking can classify

the digits using the two views. Thus, we applied Deep IDA without feature ranking and the competing methods

to the training data and we used the learned models and the testing data to obtain test classification accuracy.

The validation data was used in Deep IDA and Deep CCA to choose the best model among all epochs. Table 9 in

the supplementary material lists the network structure used in this analysis. Table 3 gives the test classification

results of the methods. We observe that the test classification accuracy of the proposed method with nearest

centroid classification is better than SVM on the stacked data, and is comparable to Deep CCA. We observe a

slight advantage of the proposed method when we implement SVM on the final layer of Deep IDA.

Table 3: Noisy MNIST data: SVM was implemented on the stacked data. For Deep CCA + SVM, we trained

SVM on the combined outputs (from view 1 and view 2) of the last layer of Deep CCA. For Deep IDA + NCC,

we implemented the Nearest Centroid Classification on the combined outputs (from view 1 and view 2) of the

last layer of Deep IDA. For Deep IDA + SVM, we trained SVM on the combined outputs (from view 1 and

view 2) of the last layer of Deep IDA.

Method Accuracy (%)

SVM (combined view 1 and 2) 93.75

Deep CCA + SVM 97.01

Deep IDA + NCC 97.74

Deep IDA + SVM 99.15

RKCCA + SVM 91.79

3.2 Data pre-processing and application of Deep IDA and competing methods

Of the 128 patients, 125 had both omics and clinical data. We focused on proteomics, RNA-seq, and metabolomics

data in our analyses since many lipids were not annotated. We formed a four-class classification problem using

COVID-19 and ICU status. Our four groups were: with COVID-19 and not admitted to the ICU (COVID

Non-ICU), with COVID-19 and admitted to the ICU (COVID ICU), no COVID-19 and admited to the ICU

(Non-COVID ICU), and no COVID-19 and not admitted to the ICU (Non-COVID Non-ICU). The frequency dis-

tribution of samples in these four groups were: 40% COVID ICU, 40% COVID Non-ICU, 8% Non-COVID Non-

ICU, and 12% Non-COVID ICU. The initial dataset contains 18,212 genes, 517 proteins, and 111 metabolomics

features. Prior to applying our method, we pre-processed the data as follows. All genes which were missing in

our samples were removed from the dataset and 15,106 genes remained. We selected genes that more than half

9



of their variables are non-zero, and we applied box-cox transformation on each gene as the gene data were highly

skewed. The transformed data were standardized to have mean zero and variance one. We kept genes with

variance less than the 25th percentile. We then used ANOVA on the standardized data to filter out (p-values

> 0.05) genes with low potential to discriminate among the four groups. For the proteomics and metabolomics

data, we standardized each molecule to have mean zero and variance one, pre-screened with ANOVA and filtered

out molecules with p-values > 0.05. Our final data were X1 ∈ ℜ125×2,734 for the gene data, X2 ∈ ℜ125×269 for

the protoemics data, and X3 ∈ ℜ125×66 for the metabolomics data.

10



0.0 0.2 0.4 0.6 0.8 1.0
Normalized Relative Importance

LRRC29
C21orf62

ATP8A2
VANGL1

DNAL1
PLS3
SHC3

SAMD13
FBLN1
DOCK3
PRR22

NEDD4L
NR5A2
NEIL3

ACOXL
PRRT3
FITM1

RBM44
ANKRD2

MTRNR2L4
TIMP3
RAB3A

LOC101928841
ZNF90
CCL20

PPP1R13L
ZNF625

PLEKHH2
CFAP57
FCRLB

TAT
GRIK5

KIAA1614
ACSM1
VIPR2
MOG

TMEM233
GLIS2

SLC25A52
KCNMB4

SCN3B
SLC3A1
PRSS3

SLC22A17
ZNF236

CCDC74A
SH3TC2
ANKK1

CFAP97D1
NMNAT2

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Relative Importance

CFI
APOA5

TF
APMAP

AGT
EFEMP1
HABP2

ATRN
BTD

APOM
TIMP1

GSR
PON1

POSTN
PGK1

IGHV1OR15-1
LUM

SPARC
AZGP1

SERPINC1
PROZ

DEFA1
MSN

CNDP1
A1BG

TKT
SERPINA3

SHBG
FETUB
CSF1R
TNXB

ALB
IGLV5-37

TF
IGHV1-69

GSN
HRG

IGHV1-46
MASP1

C7
NID1

CFHR4
TUBB

IGHV1-8
CLU

LGALS3BP
APOA2

IGHV3-20
APOH

COL18A1

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Relative Importance

Sugar RT16.252331
Phosphorylethanolamine

Uric acid
L-Glutamine

Sugar RT16.657726
L-Proline

L-Kynurenine
Indol-5-ol

Glycine
Methylphenol

Sugar RT16.542108
Stearic acid

Sugar RT17.51909
L-Pyroglutamic acid

Cholesterol derivative
Sugar RT16.206201
Sugar RT12.405521
Sugar RT16.902669

3-hydroxyisovaleric acid
Sugar RT15.498817

L-Threonine
Phenylalanine

L-Lysine,
N2,N6,N6-tris(trimethylsilyl)

Hydroxybenzeneacetic acid
Inositol

Sugar
Aspartic acid, 3TMS derivative

Iminodiacetic acid
L-Valine

Quinolinic acid,
bis(trimethylsilyl) ester

L-Glutamic acid
Sugar RT14.882448

Salicylic acid
Sugar RT12.311732

2,3-Dihydroxybutanoic acid,
tris(trimethylsilyl)-

Naproxen
Sugar RT19.222404

Sugar acid
2-Ketoisocaproic acid mo-tms

3-Hydroxybutyric acid
2-Hydroxybutyric acid

Sugar RT17.885434
L-Isoleucine

Glycerol
1,2-Propanediol

Tryptophan
Sugar RT14.499155

L-Serine
L-Methionine

Sugar RT16.115755

Figure 2: Feature importance plots of the omics data used in the COVID-19 application. Upper left: RNA-Seq;

upper right: Proteomics ; lower left: Metabolomics. Feature importance for each variable was normalized to

the feature ranked highest for each omics.

11



Figure 3: Discrimination (3-D) plots: COVID-19 patient groups are well-separated in the training data. From

the testing data, the COVID ICU group seems to be separated from the COVID NON-ICU and NON-COVID

ICU groups, especially in the RNA-sequencing and proteomics data. Correlation plots (2-D): Overall (combining

all three discriminant scores), the mean correlation between the metabolomics and proteomics data was highest

(0.4) while the mean correlation between the metabolomics and RNA-sequencing data was lowest (0.09).

12



Figure 4: Comparison of protein levels among COVID-19 patient groups (p-value < 0.05, Kruskal-Wallis test).

COL18A1 was highly ranked by Deep IDA, and the other 8 proteins are shared by the “FXR/RXR Activation”

and “LXR/RXR Activation” pathways. Protein expression levels for ALB, APOM, and TF are lower in patients

with COVID-19 (especially in patients with COVID-19 who were admitted to the ICU). Protein expression levels

for AGT and CLU are higher in patients with COVID-19 admitted to the ICU compared to the other groups.

13



Table 4: Top 5 Canonical Pathways from Ingenuity Pathway Analysis (IPA).
Omics Data Top Canonical Pathway P-value Molecules Selected

RNA Sequencing 4-hydroxybensoate Biosynthesis 2.07E-03 TAT

4-hydroxyphneylpyruvate Biosythesis 2.07E-03 TAT

Tyrosine Degradation 1 1.03E-02 TAT

Role of IL-17A in Psoriasis 2.86E-02 CCL20

Fatty Acid Activation 2.86E-02 ACSM1

Proteomics LXR/RXR Activation 4.14E-11
AGT, ALB, APOA2, APOH, APOM,
CLU, PON1, TF

FXR/RXR Activation 5.02E-11
AGT, ALB, APOA2, APOH, APOM,
CLU, PON1, TF

Acute Phase Response
Signaling

3.30E-08
AGT, ALB, APOA2, APOH, HRG,
SERPINA3, TF

Atherosclerosis Signaling 1.06E-07
ALB, APOA2, APOM, CLU,
COL18A1, PON1

Clathrin-mediated Endocytosis
Signaling

1.09E-06
ALB, APOA2, APOM, CLU,
PON1, TF

Metabolomics tRNA Charging 2.25E-13

L-glutamic acid, L-Phenylalanine,
L-Glutamine, Glycine, L-Serine,
L-Methionine; L-Valine, L-Isoleucine,
L-Threonine, L-Tryptophan, L-Proline

Glutamate Receptor Signaling 5.43E-05 L-glutamic acid, glycine, L-Glutamine

Phenylalanine Degradation IV
(Mammalian, via Side Chain)

7.24E-05
L-glutamic acid, glycine, L-Glutamine,
L-Phenylalanine

Superpathway of Serine and
Clycine Biosynthesis I

3.28E-04 L-glutamic acid, glycine, L-serine

y-glutamyl Cycle 4.23E-04
L-glutamic acid, glycine,
pyrrolidonecarboxylic acid

14



Table 5: Top Diseases and Biological Functions from Ingenuity Pathway Analysis (IPA).

Top Diseases and Bio Functions P-value range Molecules Selected

RNA Sequencing
Cancer (such as non-melanoma solid tumor,

head and neck tumor)
4.96E-02 – 2.74E-05 48

Organismal Injury and Abnormalities 4.96E-02 – 2.74E-05 48

Neurological Disease (such as glioma cancer,

brain lesion, neurological deficiency)
4.86E-02 – 5.84E-05 36

Developmental Disorder (such as intellectual

diability with ataxia)
4.46E-02 – 3.76E-05 16

Hereditary Disorder (such as familial midline effect) 4.86E-02 – 2.02E-05 16

Proteomics
Infectious Diseases (such as Severe COVID-19,

COVID-19, infection by SARS coronavirus)
1.75E-03 – 8.31E-13 19

Inflammatory Response (such as inflammation of

organ, degranulation of blood platelets)
1.29E-03 – 1.34E-12 32

Metabolic Disease (such as amyloidosis,

Alzheimer disease, diabetes mellitus)
1.47E-03 – 2.48E-12 20

Organismal Injury and Abnormalities

(such as amyloidosis, tauopathy)
1.72E-03 – 2.48E-12 39

Neurological Disease (such as tauopathy, progressive

encephalopathy, progressive neurological disorder)
1.57E-03 – 3.41E-11 34

Metabolomics Cancer 3.63E-02 – 5.20E-14 18

Gastrointestinal Disease (such as digestive system

cancer, hepatocellular carcinoma)
3.64E-02 – 5.20E-14 20

Organismal Injury and Abnormalities

(such as digestive system cancer, abdominal cancer)
3.79E-02 – 5.20E-14 22

Hepatic System Disease

(such as hepatocellular carcinoma, liver lesion)
2.91E-02 – 1.66E-11 15

Developmental Disorder

(such as mucopolysaccharidosis type I, spina bifida)
2.44E-02 – 1.83E-09 11

15



Table 6: Top Molecular and Cellular Functions Functions from Ingenuity Pathway Analysis (IPA).

Molecular and Cellular Functions P-value range Molecules Selected

RNA Sequencing Cell Death and Survival 4.46E-02 – 2.00E-03 8

Amino Acid Metabolism 3.47E-02 – 2.07E-05 2

Cell-to-cell Signaling and Interaction 4.86E-02 – 2.07E-03 10

Cellular Assembly and Organization 4.46E-02 – 2.07E-03 9

Cellular Function and Maintenance 4.86E-02 – 2.07E-03 10

Proteomics Cellular Compromise 1.29E-03 – 1.34E-12 13

Cellular Movement 1.65E-03 – 2.19E-09 24

Lipid Metabolism 1.28E-03 – 2.95E-09 15

Molecular Transport 1.28E-03 – 2.95E-09 15

Small molecule Biochemistry 1.61E-03 – 2.95E-09 19

Metabolomics Amino Acid Metabolism 3.64E-02 – 3.99E-08 9

Molecular Transport 3.82E-02 – 3.99E-08 17

Small Molecule Biochemistry 3.64E-02 – 3.99E-08 18

Cellular Growth and Proliferation 3.79E-02 – 5.12E-08 16

Cell Cycle 3.63E-02 – 5.81E-07 10

Table 7: Linear Simulations Network structures for all deep learning based methods. In order to make fair

comparisons, for each dataset, the network structure for Deep CCA/Deep GCCA is the same as the proposed

Deep IDA method. The activation function is Leakly Relu with parameter 0.1 by default. After activation,

batch normalization is also implemented. − indicates not applicable

Data Sample size Feature size Method Network structure Epochs Batch

(Train,Valid,Test) (p1, p2, p3) per run size

Setting 1 540,540,1080 1000,1000,- Deep IDA (+Bi-Bootstrap) Input-512-256-64-10 50 540

Setting 1 540,540,1080 1000,1000,- Deep CCA Input-512-256-64-10 50 180

Setting 2 540,540,1080 1000,1000,1000 Deep IDA (+Bi-Bootstrap) Input-512-256-20 50 540

Setting 2 540,540,1080 1000,1000,1000 Deep GCCA Input-512-256-64-20 200 540

16



Table 8: Nonlinear Simulations Network structures for all deep learning based methods. In order to make fair

comparisons, for each dataset, the network structure for Deep CCA/Deep GCCA is the same as the proposed

Deep IDA method. The activation function is Leakly Relu with parameter 0.1 by default. After activation,

batch normalization is also implemented.

Data Sample size Feature size Method Network structure Epochs Batch

(Train,Valid,Test) (p1, p2, p3) per run size

Setting 1 350,350,350 500,500 Deep IDA (+Bi-Bootstrap) Input-256*10-64-20 50 350

Setting 1 350,350,350 500,500 Deep CCA Input-256*10-64-20 50 350

Setting 2 5250,5250,5250 500,500 Deep IDA (+Bi-Bootstrap) Input-256-256-256-256-256-256-64-20 50 500

Setting 2 5250,5250,5250 500,500 Deep CCA Input-256-256-256-256-256-256-64-20 50 500

Setting 3 350,350,350 2000,2000 Deep IDA (+Bi-Bootstrap) input-256-256-256-256-256-256-256-64-20 50 350

Setting 3 350,350,350 2000,2000 Deep CCA input-256-256-256-256-256-256-256-64-20 50 350

Setting 4 5250,5250,5250 2000,2000 Deep IDA (+Bi-Bootstrap) Input-256-256-256-256-256-256-64-20 50 500

Setting 4 5250,5250,5250 2000,2000 Deep CCA Input-256-256-256-256-256-256-64-20 50 500

Table 9: Real Data Analysis Network structures for all deep learning based methods. In order to make fair

comparisons, for each dataset, the network structure for Deep CCA/Deep GCCA is the same as the proposed

Deep IDA method. The activation function is Leakly Relu with parameter 0.1 by default. After activation,

batch normalization is also implemented. For Covid-19 data, we select the top 50 features for each view from

Bootstrap Deep IDA with input-512-20. − indicates not applicable

Data Sample size Feature size Method Network structure Epochs Batch

(Train,Valid,Test) (p1, p2, p3) per run size

Noisy 50000,10000, 784,784,- Deep CCA Input-512-256-64-20 50 50000

MNIST 10000 non-Bootstrap Deep IDA

Covid-19 74,0,21 2734,269,66 non-Bootstrap Deep IDA Input-512-20 20 74

Covid-19 74,0,21 2734,269,66 Deep IDA on selected Input-512-256-20 20 74

top 50 features

Covid-19 74,0,21 2734,269,66 Deep IDA on selected Input-256-64-20 20 74

top 10 percent features

Covid-19 74,0,21 2734,269,66 Deep GCCA on Input-256-20 150 74

selected top 50 features

17



References

[1] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation analysis. Journal

of Machine Learning Research: Workshop and Conference Proceedings, 2013.

[2] Adrian Benton, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger, Sheng Zhang, and Raman Arora.

Deep generalized canonical correlation analysis. Proceedings of the 4th Workshop on Representation

Learning for NLP (RepL4NLP-2019), page 1–6, 2019.

[3] Matthias Dorfer, Rainer Kelz, and Gerhard Widmer. Deep linear discriminant analysis. arXiv preprint

arXiv:1511.04707, 2015.

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Second Edition). Springer, 2009.

[5] Peng Hu, Dezhong Peng, Yongsheng Sang, and Yong Xiang. Multi-view linear discriminant analysis net-

work. IEEE Transactions on Image Processing, 28(11):5352–5365, 2019.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[7] Yann LeCun, L´eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to

document recognition. Proc. IEEE, (11):2278–2324, 1998.

[8] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network

acoustic models. ICML, 2013.

[9] Ali Mirzaei, Vahid Pourahmadi, Mehran Soltani, and Hamid Sheikhzadeh. Deep feature selection using a

teacher-student network. arXiv:1903.07045, 2019.

[10] Sehwan Moon and Hyunju Lee. MOMA: a multi-task attention learning algorithm for multi-omics data

interpretation and classification. Bioinformatics, 38(8):2287–2296, 02 2022.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[12] Sandra E. Safo, Eun Jeong Min, and Lillian Haine. Sparse linear discriminant analysis for multiview

structured data. Biometrics, 2021.

[13] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On deep multi-view representation learning.

Journal of Machine Learning Research: Workshop and Conference, 2015.

18


