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Abstract: Background

Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are
involved in the transmission and maintenance of infectious diseases. Most importantly,
despite their importance, diseases transmitted by rodents have been neglected. To
date, there have been limited epidemiological studies on rodents and their information
is still scarce in the Republic of Korea (ROK).

Methodology/Principal findings

We investigated rodent-borne pathogens by PCR/RT-PCR from 156 rodents, including
151 Apodemus agrarius and 5 Rattus norvegicus collected from 27 regions in eight
provinces across the ROK between March 2019 and November 2020. Spleen, kidney,
and blood samples were used for detecting Anaplasma phagocytophilum, Bartonella
spp., Borrelia burgdorferi sensu lato group, Coxiella burnetii, Leptospira interrogans,
and severe fever with thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents,
73 (46.8%) were infected with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%)
with L. interrogans, 21 (13.5%) with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5
(3.2%) with Borrelia afzelli. Co-infections with two and three pathogens were detected
in 33 (21.1%) and 11 rodents (7.1%), respectively. A. phagocytophilum was detected in
all regions, with a widespread occurrence in the ROK. The infection rates of Bartonella
spp. were 83.3% for B. grahamii and 16.7% for B. taylorii.

Conclusions/Significance

To our best knowledge, this is the first report of C. burnetii and SFTSV infections in
rodents in the ROK. Our study also provides the first description of various rodent-
borne pathogens through an extensive epidemiological survey in the ROK. Our results
suggest that rodents harbor various pathogens, posing a potential threat to public
health. Altogether, this study provides useful information on the occurrence and
distribution of zoonotic pathogens disseminated among rodents and emphasizes the
urgent need for rapid diagnosis, prevention, and control strategies toward these
zoonotic diseases.
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Abstract 17 

Background 18 

Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are 19 

involved in the transmission and maintenance of infectious diseases. Most importantly, despite 20 

their importance, diseases transmitted by rodents have been neglected. To date, there have been 21 

limited epidemiological studies on rodents and their information is still scarce in the Republic 22 

of Korea (ROK). 23 

 24 

Methodology/Principal findings 25 

We investigated rodent-borne pathogens by PCR/RT-PCR from 156 rodents, including 26 

151 Apodemus agrarius and 5 Rattus norvegicus collected from 27 regions in eight provinces 27 

across the ROK between March 2019 and November 2020. Spleen, kidney, and blood samples 28 

were used for detecting Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi 29 

sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with 30 

thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected with 31 

Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%) with 32 

A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelli. Co-infections 33 

with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%), respectively. 34 

A. phagocytophilum was detected in all regions, with a widespread occurrence in the ROK. The 35 

infection rates of Bartonella spp. were 83.3% for B. grahamii and 16.7% for B. taylorii.  36 

 37 

Conclusions/Significance 38 

To our best knowledge, this is the first report of C. burnetii and SFTSV infections in 39 

rodents in the ROK. Our study also provides the first description of various rodent-borne 40 
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pathogens through an extensive epidemiological survey in the ROK. Our results suggest that 41 

rodents harbor various pathogens, posing a potential threat to public health. Altogether, this 42 

study provides useful information on the occurrence and distribution of zoonotic pathogens 43 

disseminated among rodents and emphasizes the urgent need for rapid diagnosis, prevention, 44 

and control strategies toward these zoonotic diseases. 45 

 46 

Author summary 47 

Rodents live anywhere in the world and transmit various infectious diseases to humans 48 

and other animals. All the six pathogens examined in this study were detected in rodents. Our 49 

findings demonstrated that 66.7% (104/156) of rodents were infected with at least one pathogen. 50 

We also observed differences in the pathogens detected in rodents by region. Our results 51 

support evidence that rodents play an important role in the transmission of SFTSV. Although 52 

we did not screen all rodent-borne diseases, these data will help understand the emerging 53 

rodent-borne diseases disseminated in the ROK. These results emphasize the risk of occurrence 54 

of rodent-borne diseases. 55 

   56 
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Introduction 57 

 Rodents are globally abundant and well-known reservoirs and vectors of infectious 58 

diseases affecting both livestock and humans [1, 2]. The current global change context (e.g., 59 

land-use change, urbanization, and temperature increase) is particularly suitable for the 60 

expansion of several rodent species beyond their natural distribution areas [3, 4]. Rodents are 61 

widespread in rural and urban areas and, in particular, cause numerous human infections in 62 

areas where humans are in close contact with rodents. Rodents are reservoir hosts for at least 63 

60 zoonotic diseases and play a vital role in their transmission, which spread directly through 64 

contact or bite or indirectly through arthropods [5-7]. Despite their potential threat to public 65 

health, there has been less focus on diseases transmitted by rodents [8, 9]. Moreover, the control 66 

of rodents is tremendously difficult, considering their behavioral plasticity, life history traits, 67 

and high breeding potential [3]. 68 

 Anaplasma phagocytophilum is a tick-transmitted, obligatory intracellular zoonotic 69 

bacterium and infects neutrophils of various hosts, including humans, dogs, cats, horses, 70 

domestic animals, and wild animals [10-13]. The clinical signs of A. phagocytophilum infection 71 

range from asymptomatic to serious symptoms of veterinary and public health importance. The 72 

occurrence of A. phagocytophilum is increasing along with climate change worldwide. A broad 73 

variety of animal species are known to harbor A. phagocytophilum, and humans are incidental 74 

dead-end hosts [14]. Vertebrate hosts are crucial for the maintenance and circulation of this 75 

pathogen in enzootic foci. Of them, in particular, small rodents and wild ruminants have been 76 

suggested as primary reservoirs [15-19]. In the United States, the white-footed mouse 77 

(Peromyscus leucopus) is considered a well-established reservoir species [20, 21]. In the 78 
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Republic of Korea (ROK), A. phagocytophilum has also been detected in small mammals such 79 

as rodents and shrew (Crocidura lasiura) [22, 23]. 80 

 Bartonella spp. are facultative intracellular bacteria that cause persistent infections in 81 

erythrocytes and endothelial cells of mammalian hosts [24]. The clinical manifestations caused 82 

by these species are characterized by fever, endocarditis, myocarditis, neuroretinitis, 83 

lymphadenopathy, and a range of vascular pathologies [24-28]. Currently, more than 30 84 

Bartonella spp. and three subspecies are identified [29], and at least 20 species are associated 85 

with rodents, indicating that rodents serve as potential reservoirs for zoonotic Bartonella spp. 86 

[30-32]. Among the rodent adapted Bartonella spp., B. elizabethae, B. grahamii, B. rochalimae, 87 

B. tribocorum, B. vinsonii, and B. washoensis have been found to cause human infections [32, 88 

33]. In general, Bartonella spp. have been considered to be transmitted by arthropods [24, 31]. 89 

Although Bartonella infections are widely distributed in rodents of different geographic 90 

regions [34-41], there is extremely little information on the distribution and prevalence of these 91 

species in rodents in the ROK [22, 42, 43]. 92 

 Lyme borreliosis (LB) is one of the most common vector-borne diseases in North 93 

America and Eurasia and caused by a spirochete belonging to the Borrelia burgdorferi sensu 94 

lato (s.l.) group [44]. Among this group, B. burgdorferi sensu stricto (s.s.), B. afzelii, and B. 95 

garinii are the major causative agents of LB in humans and exhibit different geographical 96 

distributions [45, 46]. These species are transmitted between vertebrate hosts and tick vectors 97 

[47]. B. burgdorferi s. s. occurs in North America and Europe and has various reservoir hosts 98 

(e.g., rodents and birds), whereas B. afzelii and B. garinii occur in Eurasia and can only use 99 

specific vertebrates such as rodents and birds, respectively [44, 45]. Different Borrelia species 100 

cause different symptoms in humans. For instance, B. burgdorferi s. s. infection is associated 101 

with Lyme arthritis, whereas B. garinii is mostly linked to neuroborreliosis, and B. afzelii 102 
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infection is related to a chronic skin condition known as acrodermatitis [44, 48-50]. In the ROK, 103 

B. burgdorferi s.l. was first detected in 1993 and sporadically identified in ticks, dogs, horses, 104 

wild rodents, and humans [51-56]. 105 

 Coxiella burnetii is an obligate intracellular bacterium with a worldwide distribution 106 

and is the causative agent of Q fever in humans and a wide range of animals [57]. It is highly 107 

infectious and has the ability to form spore-like particles that withstand harsh environmental 108 

conditions and can be easily dispersed by airflow [58]. Humans acquire C. burnetii infection 109 

through inhalation of contaminated aerosols or dust particles [59]. Q fever is a public health 110 

concern as it ranks as one of the 13 leading global priority zoonoses. Moreover, it has been 111 

considered a potential biological weapon due to its widespread availability, aerosolized use, 112 

and environmental stability [60]. The clinical manifestation of C. burnetii infection is 113 

characterized by fever and flu-like symptoms. The major sources for these infections are 114 

infected ruminants in which the agent may cause abortion and infertility. Ticks and rodents are 115 

also known as natural reservoirs of C. burnetii [61]. Recently, studies have been conducted on 116 

the molecular characterization of this pathogen in domestic animals in the ROK [57, 62]; 117 

however, these studies have limited distribution on spatially and are species-specific. 118 

 Leptospirosis is a zoonotic infectious disease with a global distribution and is caused 119 

by a spirochete of the genus Leptospira [63, 64]. It infects more than one million people 120 

annually, with 60,000 deaths recorded [65]. Leptospira is maintained in several wild and 121 

domestic animal hosts through the renal carriage and is excreted in the urine for several months 122 

[66, 67]. Infection in humans and animals primarily occurs through direct contact with the urine 123 

of infected hosts or indirect exposure to contaminated water, soil, or food [68]. Its clinical 124 

manifestations in humans range from mild febrile illness to life-threatening renal failure, 125 

pulmonary hemorrhage, and/or cardiac complications [69]. Recent studies suggest that an 126 
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increase in the incidence of leptospirosis in humans is often associated with climate changes 127 

such as heavy rainfall and flooding [70, 71]. Rodents are considered the most important 128 

reservoir of pathogenic Leptospira spp. because of their close contact with humans and 129 

domestic animals, contributing to disease transmission [72]. L. interrogans, L. borgpetersenii, 130 

and L. kirschneri are the most abundant species circulating in humans and animals worldwide 131 

[73], with L. interrogans being the most described in rodents [72]. 132 

 Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral 133 

disease and has been primarily reported in China, the ROK, Japan, Vietnam, and Taiwan [74-134 

78]. SFTS is caused by Huaiyangshan banyangvirus [formerly the SFTS virus (SFTSV)] 135 

belonging to the genus Banyangvirus in the family Phenuiviridae. SFTSV infections are 136 

characterized by high fever, fatigue, myalgia, gastrointestinal symptoms, thrombocytopenia, 137 

and multiorgan failures [74, 79]. SFTSV could also spread from person to person through 138 

exposure to infected blood [80]. Due to the life-threatening threat to public health, SFTS was 139 

chosen as one of the nine emerging diseases given a priority for research and development by 140 

the World Health Organization in 2017 [81]. As humans are often in close contact with 141 

domestic animals and may encounter rodents when they work outdoors, transmission between 142 

animals and humans is another possible major transmission route [82]. The overall mortality 143 

rate of this disease has been reported to be 3%30% in different countries [74, 83, 84]. 144 

Although SFTSV was identified in various animals, its natural reservoir hosts have not been 145 

determined. 146 

As such, rodents are involved in the transmission cycles of various diseases. Recently, 147 

the incidence of various infectious diseases is rapidly increasing worldwide due to global 148 

warming. Rodent populations are also growing exponentially due to climate change and 149 

urbanization. To date, most studies on rodent-borne diseases in the ROK have been primarily 150 
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focused on identifying hantavirus infection. Although rodents are considered important 151 

reservoirs of zoonotic infectious pathogens, their epidemiological information has been limited 152 

in the ROK. Therefore, the aims of this study were to investigate the occurrence of rodent-153 

borne diseases, characterize the genetic relationship, and determine their role as reservoir hosts 154 

for these diseases. 155 

  156 
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Methods 157 

Ethical statement 158 

 Rodent collection was approved by the Seoul National University Institutional Animal 159 

Care and Use Committee (No. SNU-190524-2-1) and performed according to Seoul National 160 

University Guidelines on the care and use of laboratory animals. 161 

 162 

Sample collection 163 

Rodents were captured using Sherman traps (3  3.5  9 inches folding traps; H.B. 164 

Sherman Traps, Tallahassee, FL, USA) from 27 regions in eight provinces across the country 165 

between March 2019 and November 2020. These traps were set where human infections with 166 

SFTSV had been reported based on statistical data of the Korea Disease Control and Prevention 167 

Agency. They were installed at regions near rivers, valleys, farms, mountains, and lakes 168 

between 5 p.m. and 6 p.m. and retrieved the next day between 9 a.m. and 10 a.m. The captured 169 

rodents were transported to the laboratory in an icebox with traps, the species was identified, 170 

and they were euthanized using CO2. Thereafter, blood, spleen, and kidney samples were 171 

collected from each animal. A whole blood sample was also collected in an SST, and then 172 

serum was separated and used for RNA extraction. 173 

 174 

DNA/RNA extraction and PCR analysis 175 

 DNA was extracted from spleen (10 mg) and kidney (25 mg) samples using the 176 

DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 177 

instructions and stored at 20°C until analysis. Splenic DNA was subjected to PCR 178 
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amplification to detect A. phagocytophilum, Bartonella spp., Borrelia spp., and C. burnetii, 179 

whereas kidney DNA was subjected to detect L. interrogans. These pathogens were screened 180 

using each specific primer by the nested PCR method under the following conditions: 93°C‒181 

95°C for 5 min, followed by 30-40 cycles of 93°C‒95°C for 1 min, the annealing temperature 182 

of each pathogen, 72°C for 1 min, and a final extension step at 72℃ for 10 min (Table 1). 183 

Distilled water was used as a negative control in all PCRs. Secondary PCR products were 184 

visualized on 1.5% agarose gels stained with ethidium bromide. 185 

 RNA was extracted from 200-µL aliquots of serum using the Gene-spin Viral 186 

DNA/RNA Extraction Kit (iNtRON Biotechnology, Seongnam, ROK) according to the 187 

manufacturer’s instructions. The viral RNA was stored at − 80°C until use. Each RNA sample 188 

was tested using nested reverse transcription-polymerase chain reaction (RT-PCR) assays to 189 

detect the small (S) segment of SFTSV. Primary PCR was performed using one-step RT-PCR 190 

premix (Solgent, Daejeon, ROK) under the following conditions: an initial step of 30 min at 191 

50°C and 15 min at 95°C for denaturation, followed by 40 cycles of 20 s at 95°C, 40 s at 52°C, 192 

and 30 s at 72°C, with a final extension step of 5 min at 72°C. Nested PCR was conducted 193 

using 1 µL of the primary PCR product as a template (BIOFACT, Daejeon, ROK). The reaction 194 

for the nested PCR consisted of 25 cycles of 20 s at 94°C, 40 s at 55 °C, and 30 s at 72°C. The 195 

primer information used to detect SFTSV was listed in Table 1. Secondary PCR products were 196 

visualized on 1.5% agarose gels stained with ethidium bromide. 197 

 198 

Phylogenetic analysis 199 

The secondary PCR products were purified using an AccuPrep® PCR Purification Kit 200 

(Bioneer, Daejeon, ROK) according to the manufacturer’s instructions and directly sequenced 201 

(Macrogen Inc., Seoul, Korea). All the obtained nucleotide sequences for each pathogen were 202 
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aligned using the BioEdit software and then compared with reference sequences from the 203 

National Center for Biotechnology Information database (http://www.ncbi.nlm.nih.gov) to 204 

determine similarity. Phylogenetic analysis of each pathogen was performed using the 205 

maximum-likelihood method implemented in MEGA11 using the best substitution model. 206 

Bootstrap values were calculated by analyzing 1000 replicates to evaluate the reliability of 207 

clusters. The models used in this study were K2 + G for A. phagocytophilum, Tamura 3-208 

parameter + G + I for Bartonella spp., Tamura-Nei for Borrelia spp., and Kimura 2-parameter 209 

model for C. burnetii, L. interrogans, and SFTSV. The nucleotide sequences obtained in this 210 

study were assigned the following accession numbers: OR287077OR287091 for A. 211 

phagocytophilum, OR288176OR288190 for B. grahamii, OR288191OR288193 for B. 212 

taylorii, OR284310OR284311 for B. afzelii, OR284312OR284321 for C. burnetii, 213 

OR284322OR284324 for L. interrogans, and OR257718  OR257726 for SFTSV. 214 

  215 

http://www.ncbi.nlm.nih.gov/
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Results 216 

Collection of samples 217 

A total of 175 rodents were captured and morphologically classified as follows: 218 

Apodemus agrarius (striped field mouse) (n = 151), Rattus norvegicus (Norway rat) (n = 5), 219 

and unknown (n = 19). Information of the captured rodents was presented in Table 2. Unknown 220 

samples were excluded from this study, and the remaining 156 rodents were used for data 221 

analysis. A. agrarius was mostly found in the ROK, whereas R. norvegicus was captured in 222 

only two regions. 223 

 224 

Prevalence of pathogens detected from captured rodents 225 

The presence of six pathogens was investigated by PCR analysis from the two species, 226 

A. agrarius and R. norvegicus. Of the 156 rodents, 104 (66.7%) were infected with at least one 227 

pathogen. None of the tested pathogens were detected in 52 rodents (33.3%). In terms of 228 

pathogen, Bartonella spp. were the mostly detected (73/156, 46.8%), followed by C. burnetii 229 

(25/156, 16.0%), L. interrogans (24/156, 15.4%), A. phagocytophilum (21/156, 13.5%), 230 

SFTSV (9/156, 5.8%), and then Borrelia spp. (5/156, 3.2%) (Table 3). The details of the 231 

pathogens determined according to the regions are shown in Table 3. All six pathogens were 232 

detected in Gangwon, Chungbuk, and Gyeongbuk provinces. Five pathogens, except for 233 

SFTSV, were found in Gyeongnam province, whereas only one pathogen was detected in 234 

Chungnam and Jeonnam provinces (Table 3). Co-infections with two and three pathogens from 235 

the captured rodents were also detected in 33 and 11 animals, respectively (Table 4), with co-236 

infection with Bartonella spp. and L. interrogans being most frequently detected (Table 4). 237 

SFTSV was co-infected with Bartonella spp. The information of pathogens identified 238 
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according to the region is marked in a map (Fig 1). To the best of our knowledge, this is the 239 

first study to report C. burnetii and SFTSV infections in rodents in the ROK. 240 

 241 

Phylogenetic trees of rodent-associated pathogens 242 

Anaplasma phagocytophilum 243 

 A. phagocytophilum was detected only in A. agrarius and found in all the examined 244 

regions, indicating that this pathogen was spread in the ROK. Of the 21 positive samples, 15 245 

were successfully sequenced and confirmed as A. phagocytophilum by the phylogenetic tree 246 

analysis based on the 16S rRNA gene (Fig 2). Our sequences exhibited 97.6%–99.9% identity 247 

to each other and 95.6%–100% identity with those reported from the ROK. The 15 sequences 248 

obtained from A. agrarius were similar to those previously reported from several different hosts 249 

such as cat, cattle, dog, horse, human, tick, and rodents in other countries, sharing 95.9%–100% 250 

nucleotide identities with these. Furthermore, several variants co-existed in the same 251 

geographical area. According to the phylogenetic tree, A. phagocytophilum was divided into 252 

clade 1 and clade 2, and all our sequences from A. agrarius belonged to clade 1 (Fig 2). The 253 

difference in sequences between clade 1 and clade 2 revealed 94.7%–98.5% identities. Clade 254 

2 had 10 nucleotide differences compared with those of clade 1. Genetic variants were detected 255 

in A. phagocytophilum circulating in the ROK. 256 

 257 

Bartonella spp. 258 

 Bartonella spp. were the most detected in A. agrarius in the ROK, but they were not 259 

found in all regions. Bartonella spp. were detected in both A. agrarius and R. norvegicus. Of 260 

the 73 ITS PCR-positive samples, 18 sequences were successfully obtained, and all these 261 
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originated from A. agrarius, not R. norvegicus (Table 3). According to the phylogenetic tree 262 

based on internal transcribed spacer (ITS), Bartonella spp. circulating in the examined rodents 263 

were identified as two species, viz., B. grahamii, and B. taylorii (Fig 3). The prevalence of B. 264 

grahamii was 83.3% (15/18), and that of B. taylorii was 16.7% (3/18). The 15 sequences 265 

belonging to B. grahamii showed 92.9%–100% identity to each other and formed the same 266 

group with leeches (KX270012) and another A. agrarius (JN810851) reported in the ROK, 267 

exhibiting 95.9%–99.8% identity with those. Furthermore, another sequence (JN810855) 268 

reported from A. agrarius in the ROK demonstrated 87.1%–90.8% similarity to sequences 269 

reported in our study. The three sequences classified into B. taylorii exhibited 100% identity to 270 

each other and shared 92.5%–100% identity with those belonging to this species. 271 

 272 

Borrelia spp. 273 

 Borrelia spp. were detected in five A. agrarius and the infection rate of Borrelia spp. 274 

was the lowest (3.2%) compared with that of other pathogens identified. Borrelia spp. were 275 

found in four regions (Table 3). Among the five PCR-positive samples, only two sequences 276 

were obtained and that demonstrated 98.6% identity to each other. The phylogenetic analysis 277 

based on outer surface protein A (ospA) gene revealed that our sequences were assigned to B. 278 

afzelii (Fig 4). The two sequences exhibited 98.9%100% homology with A. agrarius reported 279 

previously in the ROK. Our sequences showed 97.8%100% identity to those belonging to this 280 

group. Furthermore, these sequences displayed 98.2%99.6% similarity to those reported in 281 

humans from Austria, Germany, the Czech Republic, Korea, and Sweden. 282 

 283 

Coxiella burnetii 284 
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 C. burnetii was the second most frequently detected pathogen and identified in both A. 285 

agrarius and R. norvegicus. However, it was found in five different regions. Of the 25 positive 286 

samples, 10 sequences were obtained and included in the phylogenetic tree based on IS1111 287 

gene. These sequences showed 97.5%100% identity to each other. Only one sequence 288 

(OR284314) had the closest genetic relationship with those of febrile and pneumonic patients 289 

(KP645188 and JF970260), which were known as virulent strains, exhibiting 100% homology 290 

with those (Fig 5). The others formed a separate branch, exhibiting 99.0%99.5% identity to 291 

these two human isolates (KP645188 and JF970260). The phylogenetic tree revealed the 292 

presence of several genetic clades within C. burnetii sequences. These findings indicated the 293 

presence of genetic variations in the C. burnetii sequences identified in A. agrarius. 294 

 295 

Leptospira interrogans 296 

 L. interrogans was the third most detected pathogen and also found in both A. agrarius 297 

and R. norvegicus. Of the 24 positive samples, only three sequences were obtained and had 298 

97.7%99.5% identity to each other. The phylogenetic tree based on the RNA polymerase 299 

subunit beta (rpoB) gene revealed that these sequences belonged to L. interrogans (Fig 6). Two 300 

sequences (OR284322 and OR284323) were classified into L. interrogans serovar Lai and 301 

showed 99.2%100% identity with those reported in China and 99.4%100% identity with A. 302 

agrarius reported in Korea. The other sequence (OR284324) belonged to L. interrogans 303 

serovar Manilae detected in Mus musculus in Japan, exhibiting 98.2% similarity to them (Fig 304 

6). At least two serovars of L. interrogans were found to be circulating in A. agrarius in the 305 

ROK. 306 

 307 

Severe fever with thrombocytopenia syndrome virus 308 
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 SFTSV was detected in nine A. agrarius (5.7%) and found in four different regions 309 

(Table 3). Of the nine SFTSV infections, single infection of SFTSV was detected only in two 310 

A. agrarius and the remaining were primarily co-infected with other pathogens such as 311 

Bartonella spp. and L. interrogans (Table 4). Nine sequences were obtained and included in 312 

the phylogenetic tree. These sequences demonstrated 95.95%100.0% identity to each other. 313 

The phylogenetic analysis based on the S segments revealed that five and four sequences were 314 

classified into subgenotype B-2 and genotype D, respectively (Fig. 7). The sequences 315 

belonging to genotype B-2 exhibited 94.51%97.4% homology with human and other animal 316 

samples reported in the ROK, whereas the four sequences showed 99.71%100.0% identity 317 

with human samples. These results revealed that genotype B-2 is prevalent in the ROK, and 318 

genetic variants exist within genotype B-2. 319 

  320 
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Discussion 321 

 This study demonstrated the prevalence and genetic characterization of potentially 322 

zoonotic pathogens by molecular analysis in rodents captured from throughout the ROK. A. 323 

agrarius was the most common species in the ROK. Rodents were trapped from areas with 324 

frequent movement of people, which may be associated with a high probability of disease 325 

transmission because humans and rodents share the same space. All the six pathogens 326 

examined in this study were detected in rodents. The results demonstrated that 66.7% (104/156) 327 

of rodents were infected with at least one pathogen. According to our findings, Bartonella spp. 328 

were most frequently detected, and Borrelia spp. were least detected in rodents. Although the 329 

infection rate was not very high, A. phagocytophilum was found in all regions. Considering 330 

that the number of rodents captured was different by the region and was small in some 331 

provinces, A. phagocytophilum may be the most widespread in the ROK. Furthermore, to the 332 

best of our knowledge, this is the first study to report C. burnetii and SFTSV infections in 333 

rodents in the ROK and an extensive study to investigate the infections of various pathogens. 334 

Our results demonstrate that rodents play a vital role in the natural infection cycle of Anaplasma, 335 

Bartonella, Borrelia, Coxiella, Leptospira, and SFTSV in the ROK. Therefore, our findings 336 

suggest that rodents can directly or indirectly transmit several diseases to humans. Moreover, 337 

these data provide valuable information for evaluating the potential risk of rodents in public 338 

health. 339 

 Anaplasma phagocytophilum has been known as the third most common tick-borne 340 

pathogen in the USA and Europe [85] and was detected in 20 different rodent species [86]. A. 341 

phagocytophilum infection varies considerably in rodent species [86], which may be explained 342 

by differences in small mammals that maintain the tick species. In this study, the prevalence of 343 
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A. phagocytophilum from A. agrarius was 13.5%, which was rather low compared with that 344 

reported in a previous study conducted in the ROK (19.1%) [87]. To date, there has been no 345 

report of A. phagocytophilum infection from Rattus spp. in the ROK, although a high infection 346 

rate (31.5%) of A. phagocytophilum was reported in Rattus spp. from China [88]. This suggests 347 

that Rattus norvegicus is not involved as a reservoir in the transmission cycle of this bacterium 348 

in the ROK. A. phagocytophilum has been detected in a variety of animals, including ticks in 349 

the ROK, but its pathogenicity still remains unclear. When our sequences were compared with 350 

those of A. phagocytophilum human agent, we observed differences in four of the six 351 

nucleotides [89]. According to the phylogenetic analysis, A. phagocytophilum circulating in 352 

the ROK had several genetic variants. As of now, we cannot conclude whether these variants 353 

are pathogenic or non-pathogenic because A. phagocytophilum was detected using the 16S 354 

rRNA gene. Nevertheless, these variants can infect other hosts as well as humans irrespective 355 

of their pathogenicity, and they have been considered zoonotic. Haemaphysalis longicornis 356 

found primarily in the ROK may tend to use A. agrarius as the major host to maintain A. 357 

phagocytophilum, indicating that A. agrarius is an enzootic reservoir. Hence, further studies 358 

are required to determine its pathogenicity of A. phagocytophilum variants circulating in the 359 

ROK. 360 

 The overall prevalence of Bartonella spp. in A. agrarius was 46.8% and the highest 361 

compared with that of all other pathogens examined in this study. However, compared with a 362 

previous report (62.0%) based on ITS, the detection rate in the present study was rather low 363 

[43]; this difference may be because of the location where the rodents were captured. Moreover, 364 

its prevalence in rodents varied across countries, e.g., 5.5% in Turkey [37], 23.7% in Lithuania 365 

[90], 36.3% in Chile [32], 40.4% in Slovenia [34], and 65.8% in Eastern Germany [41]. The 366 

difference in prevalence by country may be due to rodent species. Nonetheless, Bartonella spp. 367 
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infections are highly prevalent in rodents. Moreover, Bartonella spp. that are prevalent in each 368 

country are different [27, 32, 34, 38, 90-93]. Although Bartonella was detected in both A. 369 

agrarius and R. norvegicus, it was not possible to confirm which species was detected in R. 370 

norvegicus because the amplified samples from only A. agrarius were sequenced. R. 371 

norvegicus and R. rattus have been known as major reservoirs for Bartonella spp. in several 372 

countries [27, 94-96], but there has been no report of Bartonella detection from other rodent 373 

species as well as R. norvegicus in the ROK [22]. Further studies are necessary to investigate 374 

Bartonella spp. infection in R. norvegicus. The present results demonstrated that B. grahamii 375 

was most predominant and B. taylorii was found in three rodents, a finding consistent with a 376 

previous study [43]. B. grahamii is a zoonotic pathogen and associated with neuroretinitis and 377 

retinal artery occlusion in humans [25]. B. taylorii can cause infection in animals [90], but its 378 

pathogenicity remains yet unclear. In Europe, B. taylorii is dominant in rodents [24, 37]. 379 

Although B. taylorii has been detected in some A. agrarius in the ROK, its transmission route 380 

remains unknown. B. grahamii identified in this study showed 87.1%99.8% similarity to 381 

those detected previously in the ROK, indicating that genetic diversity exists. At this point, we 382 

cannot determine whether the difference is due to host adaptation. Several studies have reported 383 

that although the ITS region has high sensitivity in detection, it provides a higher sequential 384 

diversity than to other genes [34, 43], which supports our results. Considering the high infection 385 

rate in A. agrarius and its close contact with humans and other animals, the importance of 386 

Bartonella as a potential public health concern should not be ignored. 387 

 The detection rate of Borrelia spp. from A. agrarius was 3.2% and also the lowest 388 

compared with that of other pathogens examined in this study. Our result was different from 389 

that of previous studies conducted on heart from A. agrarius (29.6%) [56] and in ticks (33.6%) 390 

collected from wild rodents [97] in the ROK. This can be explained by the difference in the 391 
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sample used. For instance, Kim et al. reported that B. burgdorferi s.s. and B. garinii infected 392 

the spleen and B. afzelii exhibited a high detection rate in the heart [56]; however, B. 393 

burgdorferi s.s. and B. garinii were not detected in the spleen. It is speculated that the number 394 

of positive samples was small and could not be detected. Among the Borrelia burgdorferi s.l. 395 

group, only B. afzelii was identified in A. agrarius, which supports previous findings that B. 396 

afzelii is the predominant species in the ROK [54, 97]. Furthermore, our results were 397 

significantly lower than those reported in rodents from other countries, e.g., 24% in Austria 398 

[98], 16% in the Czech Republic [99], and 6.3% in Spain [100]. These differences in prevalence 399 

may be due to the tick vectors; the common tick vectors of Borrelia spp. in the ROK are Ixodes 400 

persulcatus, I. nipponensis, and I. granulatus [101]. B. afzelii is transmitted by Ixodes ricinus 401 

and hosted by small mammals, and it is the most common causative agent of human LB [45, 402 

102]. B. afzelii is known to cause acrodermatitis; it readily disseminates from the skin (ear) to 403 

joint and heart tissue in its primary natural hosts. The bacterial loads in each tissue differed 404 

between host species [44], which may depend on the host species it infects. Collectively, B. 405 

afzelii possesses the ability to replicate in and attach to a variety of tissues. In the ROK, B. 406 

afzelii has been primarily reported in ticks [54, 97, 103] and rarely in humans [104]. However, 407 

there is still a lack of information on B. afzelii. Considering that the infection rate of B. afzelii 408 

in the ROK is 62.5% in ticks [97] and 25.9% in rodents [56], the possibility that it also occurred 409 

in humans cannot be ruled out. In particular, there is very low awareness of the importance of 410 

most vector-borne diseases (VBDs) in the ROK, which may have resulted in an underdiagnosis 411 

of LB due to similar clinical manifestations of VBDs. Because a high prevalence of B. afzelii 412 

infection was detected in ticks and rodents, and most importantly, the possibility of LB 413 

transmission to humans due to climate change will increase, there exists a need for a systematic 414 

strategy for diagnosis, distribution, and control. 415 
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 This is the first report of C. burnetii in A. agrarius in the ROK. In this study, C. burnetii 416 

exhibited the second highest infection rate (16%), which was higher than that we anticipated. 417 

Nevertheless, our results were lower than those reported in China (18%) [105], Senegal (22.4%) 418 

[106], and Zambia (45%) [107], but higher than those reported in Brazil (4.6%) [93], Egypt 419 

(6.7%) [58], and Italy (1.4%) [61]. These differences may be explained by the rodent species 420 

and samples used for detection. Rodent species, which are predominant, differ in each country. 421 

In those studies, C. burnetii detection was performed using various samples such as blood, 422 

spleen, livers, and feces. Consequently, liver and spleen are considered suitable for the 423 

identification of C. burnetii. According to a previous study, the infection rate of C. burnetii in 424 

domestic livestock ranged from 6% to 22.7%, depending on the species [57]. Despite its 425 

significance, C. burnetii is an underestimated pathogen in the ROK, and there has been no 426 

sufficient research on this pathogen. Although C. burnetii is a tick-borne pathogen, there are 427 

only a few reports of C. burnetii in ticks in the ROK [108, 109]. Recent studies have reported 428 

about the co-infection of C. burnetii and SFTSV in ticks and humans [110, 111]; however, there 429 

was no co-infection with two pathogens in rodents. Once C. burnetii is detected in rodents, the 430 

possibility that C. burnetii infection in livestock is transmitted by rodents cannot be ruled out 431 

because rodents can frequently enter the barn and infected rodents can contribute to the spread 432 

and transmission of this pathogen. Despite the small number of R. norvegicus captured, C. 433 

burnetii infection was mostly detected in R. norvegicus, which can be because R. norvegicus 434 

may also serve as a reservoir in the ROK. A phylogenetic analysis based on IS1111 gene 435 

revealed the presence of two different genotypes within the sequences identified in A. agrarius. 436 

One sequence formed the same clade with virulent strains reported in Brazil, whereas the others 437 

exhibited high similarity to strains reported in different countries. Furthermore, the possibility 438 

that the remaining sequences are pathogenic cannot be ignored. The disadvantage of IS1111 439 
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gene is that it does not provide exact information, such as pathogenicity and species specificity 440 

(Fig 5); hence, currently, we cannot draw any conclusions on what separate groupings within 441 

C. burnetii sequences might represent. Further research is necessary to determine the 442 

pathogenicity of C. burnetii circulating in the ROK. The results obtained in the present study 443 

suggest that A. agrarius plays an important role in the transmission of C. burnetii in humans 444 

and animals. 445 

 Leptospira interrogans is a representative rodent-borne pathogen and accordingly, it 446 

was the third most frequently detected (15.4%) in this study. Our results demonstrated a 447 

relatively high prevalence compared with that of previous studies [87, 112]; this difference is 448 

due to the regions examined. This is the first time that Leptospira has been investigated in 449 

rodents through sampling of extensive regions in the ROK. Compared with those reported in 450 

other countries, the infection rates ranged from 1.3% to 35.2%, which differed in countries 451 

[113-117]. R. norvegicus is also an important reservoir of this pathogen [72]; however, L. 452 

interrogans was detected in only one R. norvegicus and mostly detected in A. agrarius, which 453 

can be due to the limited sample number. Considering that R. norvegicus is easily found around 454 

barns and farmhouses, it also plays a critical role in the transmission of leptospirosis in 455 

domestic animals and humans. To date, L. interrogans has been divided into 23 serogroups 456 

based on serological methods, with subdivision into more than 300 serovars [72]. The serovars 457 

circulating in each country are different, but the most frequently reported serovar worldwide is 458 

Icterohaemorrhagiae [72]. In the ROK, only a few studies have been conducted on serovar lai 459 

[87, 118]. Of the three sequences from rodents, two were classified as serovar lai and one as 460 

serovar manila, consistent with a previous study [87]. Consequently, lai and manilae are 461 

considered epidemic serovars in the ROK. However, the biggest limitation of the present study 462 

is that a serological analysis such as microscopic agglutination test was not performed, and the 463 
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PCR target gene used was also different from that used in other studies. Nonetheless, our results 464 

suggest that rpoB gene used in this study can be applicable for detection and serovar 465 

identification of L. interrogans. Furthermore, for an accurate identification of L. interrogans 466 

serovars, a serological test along with PCR method is absolutely necessary. Leptospirosis has 467 

a higher prevalence in tropical or warm-climate countries [72]. Due to global warming, Korea 468 

has recently shifted to a subtropical warm and wet climate, and the most representative 469 

characteristic is the frequent localized heavy rain, such as flooding. Although there is a lack of 470 

sufficient research on leptospirosis in the ROK, the higher incidence observed in the present 471 

study than that reported previously may be related to climate change. This provides the 472 

opportunity of contamination of rivers or soil and, consequently, the potential risk of 473 

leptospirosis. These data highlight the need for prevention and control of leptospirosis. 474 

 Since its first identification in China, SFTSV has been primarily detected in Asia [74-475 

78]. Due to its high mortality rate, there is significant interest in SFTSV [74, 83, 84]. In the 476 

present study, the infection rate of SFTSV in A. agrarius was 5.7%, and this is the first report 477 

to describe SFTSV infection from A. agrarius in the ROK. Our results were significantly lower 478 

than those reported in China (32.3%) [119]. When the infection rates are compared with those 479 

in other animals reported in the ROK, the prevalence in rodents was similar to that in wild 480 

boars (5.2%) [120] and ticks (6.0%) [121], but higher than that in cats (4.0%) [122], dogs (2.9%) 481 

[123], pigs (1.7%) [124], black goats (2.4%) [125], and wild animals (3.3%) [126]. However, 482 

the prevalence of SFTSV was highest in feral cats (17.5%) in the ROK [127]. Recently, there 483 

is an increase in the populations of feral cats, and they are sharing habitats with wildlife, 484 

domestic animals, and humans. Several studies have demonstrated that SFTSV is transmitted 485 

to humans through direct contact with cats [128, 129], suggesting that feral cats are infected 486 

from rodents. It is believed that SFTSV circulates in a zoonotic cycle between ticks and 487 
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vertebrates [130]. Rodents are considered the representative reservoirs in maintaining tick-488 

borne pathogens and may play a vital role in the transmission of SFTSV. Interestingly, in this 489 

study, A. agrarius was primarily co-infected with Bartonella spp. rather than infected with 490 

SFTSV alone. As of now, we cannot provide any explanation for the pathogenesis of co-491 

infections. SFTSV can also be transmitted through mouth mucosa or conjunctiva to cause 492 

infection [128]. The sequences obtained from A. agrarius belonged to subgenotype B-2 and D 493 

genotype; the results revealed a similar distribution in both genotypes. Sequences belonging to 494 

subgenotype B-2 were the most prevalent and associated with the highest mortality rate (43.8%) 495 

in the ROK [131], whereas genotype D was primarily found in China. Four sequences 496 

belonging to genotype D were identical to those of a human patient reported in the ROK, 497 

suggesting that this genotype is pathogenic. Different genotypes of SFTSV are known to trigger 498 

different clinical manifestations in a ferret model [130]; however, although clinical 499 

manifestations have not been confirmed in rodents, they may be pathogenic to humans. To date, 500 

SFTSV has been detected in various animals, but no conclusions could be drawn on how the 501 

virus is transmitted to these animals. The results of the present study provide a clue for 502 

understanding the transmission route of SFTSV, thereby suggesting the need to establish a 503 

continuous monitoring and surveillance system to minimize a serious risk of SFTSV infection. 504 

 505 

Conclusions 506 

Urbanization and climate change affect not only on humans but also wildlife. The 507 

biggest concern caused by these changes is that the probability of disease transmission through 508 

ecosystem destruction has been significantly increasing compared with that in the past. This 509 

study investigated the prevalence of zoonotic pathogens in rodent populations through a 510 
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systematic epidemiological investigation. Although we did not screen all rodent-borne 511 

pathogens, the results indicated that, at least, rodents act as critical reservoirs for A. 512 

phagocytophilum, Bartonella spp., B. afzelli, C. burnetii, L. interrogans, and SFTSV in the 513 

ROK. Our findings also demonstrated that rodents harbor several pathogens, implying the 514 

possibility of simultaneous transmission to humans. Most importantly, except for SFTSV, the 515 

pathogens investigated in this study are misdiagnosed or underdiagnosed in the ROK, so their 516 

importance is being neglected. Therefore, our findings indicate that rodents pose a potential 517 

risk to public health. Overall, our study provides useful information on rodent-borne pathogens 518 

and underscore the urgent need for rapid diagnosis, prevention, and control strategies toward 519 

zoonotic diseases. 520 
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Figure legends 996 

Fig 1. Maps showing the regions where rodent-borne pathogens were detected in the Republic 997 

of Korea. Marks are differently indicated according to each pathogen. 998 

Fig 2. Phylogenetic tree inferred by maximum-likelihood analysis using the K2 + G model of 999 

16S rRNA gene sequence of Anaplasma phagocytophilum. The numbers at the nodes are 1000 

bootstrap values expressed as percentage of 1000 replicates. Scale bar indicates nucleotide 1001 

substitution per site. Samples sequenced from Apodemus agrarius are shown in filled circles.  1002 

Fig 3. Phylogenetic analysis based on ITS region of Bartonella spp. (maximum-likelihood 1003 

analysis using the Tamura 3-parameter + G + I model with of 1000 replicates). Scale bar 1004 

indicates nucleotide substitution per site. Sequences determined from Apodemus agrarius are 1005 

indicated in filled circles. 1006 

Fig 4. Maximum-likelihood phylogenetic tree using the Tamura-Nei model based on ospA gene 1007 

of Borrelia spp. Bootstrap values were calculated with 1000 replicates of the alignment. Scale 1008 

bar indicates nucleotide substitution per site. Sequences obtained from Apodemus agrarius are 1009 

symbolized in filled circles. 1010 

Fig 5. Maximum-likelihood phylogenetic tree from IS1111 gene of Coxiella burnetii. The 1011 

evolutionary analysis was inferred using the Kimura 2-parameter model. Bootstrap values 1012 

(1000 replicates) are indicated in each node. Scale bar implies nucleotide substitution per site. 1013 

Sequences determined from Apodemus agrarius are highlighted in filled circles. 1014 

Fig 6. Phylogenetic analysis based on rpoB gene of Leptospira interrogans. The tree was 1015 

inferred in MEGA X using maximum-likelihood and Kimura 2-parameter with 1000 replicates. 1016 

Scale bar implies nucleotide substitution per site. Sequences obtained from Apodemus agrarius 1017 

are shown in filled circles.  1018 

Fig 7. Phylogenetic tree of the severe fever with thrombocytopenia syndrome virus based on 1019 
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the analysis of partial sequences of small segments. Maximum-likelihood analysis was used to 1020 

construct by the Kimura 2-parameter model (1000 bootstrap replicates). Scale bar implies 1021 

nucleotide substitution per site. The sequences identified from Apodemus agrarius are 1022 

indicated in filled circles. 1023 

 1024 



Figure 1 Click here to access/download;Figure;Fig. 1.jpg

https://www.editorialmanager.com/pntd/download.aspx?id=1238511&guid=4d9db986-e1dc-4aaa-af6b-1c27c0fa91fd&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1238511&guid=4d9db986-e1dc-4aaa-af6b-1c27c0fa91fd&scheme=1


A. phagocytophilum

A. bovis

A.centrale

A. marginale

A.ovis

 OR287087

 OR287088

 OR287084

 OR287085

 OR287089

 OR287091

GQ412337 China Apodemus agrarius

 OR287080

KR611719 South Korea Apodemus agrarius

HM366584 Russia Ixodes persulcatus

 OR287081

KY458570 South Korea Raccoon dog

KP306520 South Korea Human

 OR287079

KU513793 South Korea Dog

KR021166 South Korea Cat

KF805344 South Korea Human

 OR287082

 OR287086

 OR287078

 OR287083

 OR287077

 OR287090

AY969013 Japan Ixodes ovatus

GU064899 South Korea Haemaphysalis longicornis

KY114936 Croatia Dog

JX173652 Austria Dog

MK814404 South Africa Dog

KY458571 South Korea Raccoon dog

AY527213 Sweden Horse

GU556624 South Korea Water deer

KP745629 Turkey Cattle

AF093788 USA Homo sapiens

HM366582 Russia Ixodes persulcatus

AY082656 UKClethrionomys glareolus

KP276588 USA Ixodes pacificus

AF470701 South Korea Ixodes persulcatus

AF172166 USA Horse

AY570540 South Africa Dog

AB196721 Japan Deer

KC422267 North Korea Haemaphysalis longicornis

AF470699 South Korea Haemaphysalis longicornis

KC916732 China Deer

JX914659 China Tick

GU064900 South Korea Haemaphysalis longicornis

AF469005 USA Reindeer

JN558829 China Goat

U03775 South Africa Bovine

GU064901 South Korea Haemaphysalis longicornis

AB196475 Japan Deer

EF520690 Italy Cattle

JQ839010 Philippines Tick

EF520687 Italy Cattle

HM439433 China Cattle

DQ341369 China Buffalo

LC007100 Philippines Bos taurus

AF414870 South Africa Wildebeest

JQ917886 China Tick

EF587237 China Sheep

U11021 Rickettsia rickettsii Tick
88
86

94

96
94

97

82

73

0.05

Clade 2

Clade 1

Figure 2 Click here to access/download;Figure;Fig. 2.pptx

https://www.editorialmanager.com/pntd/download.aspx?id=1238512&guid=fbbe6ede-e30f-48af-b327-79c6f7f554ec&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1238512&guid=fbbe6ede-e30f-48af-b327-79c6f7f554ec&scheme=1


 OR288176

 OR288184

 OR288185

 OR288177

KX270012 South Korea Leeches

JN810851 South Korea Apodemus agrarius

OR288179

 OR288178

 OR288186

 OR288187

 OR288181

 OR288188

OR288189

 OR288180

 OR288190

 OR288182

OR288183

MH547345 Lithuania Microtus oeconomus

MH547349 Lithuania Apodemus agrarius

MH547346 Lithuania Micromys minutus

MH547348 Lithuania Apodemus flavicollis

KC422266 North Korea Tick

KX270013 South Korea Leeches

JX219477 South Korea Tick

JN810845 South Korea Water Deer

MH687377 Lithuania Apodemus agrarius

MH547347 Lithuania Microtus arvalis

JN810855 South Korea Apodemus agrarius

LR746174 France Nosopsyllus fasciatus

LR746175 France Stenoponia tripectinata

JN810856 South Korea Apodemus agrarius

MH687379 Lithuania Apodemus agrarius

MT840519 Slovakia Polyplax serrata

 OR288192

 OR288193

JN810861 South Korea Apodemus agrarius

JN810860 South Korea Apodemus agrarius

 OR288191

LR746186 Spain Ctenophthalmus baeticus boisseauorum

MH547336 Lithuania Microtus oeconomus

MH547344 Lithuania Microtus agrestis

KX169194 Mexico Mephitis mephitis

DQ676491 USA Dog

DQ683199 Peru Homo sapiens

JN810831 South Korea Water Deer

JN810828 South Korea Water Deer

JQ009430 China Dog

KC422265 North Korea Tick

KY464064 South Korea Raccoon dog

AJ457177 B. henselae Australia Homo sapiens

AJ441256 B. henselae Australia Feline

JQ638927 Korea Human

X95890 Brucella melitensis

99

99

100

100

91

79

87

96

66

90

93

90

99

99

97

79

83

99

98

85

0.000.501.001.50

B. grahamii

B. elizabethae

B. tribocorum

B. taylorii

B. rochalimae

B. doshiae

B. henselae

B. schoenbuchensis

Figure 3 Click here to access/download;Figure;Fig. 3.pptx

https://www.editorialmanager.com/pntd/download.aspx?id=1238513&guid=7d558b6f-0ef8-4789-863b-d7447a29ddfa&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1238513&guid=7d558b6f-0ef8-4789-863b-d7447a29ddfa&scheme=1


KM069302 Austria Human

U78301 China Ixodes persulcatus

AY502599 Russia I. persulcatus

DQ479296 Mongolia I. persulcatus

FJ750339 Sweden Rodents

GU826938 Luxembourg I. ricinus

U20356 Austria Hamster

X85439 Germany Human

 OR284311

DQ111055 Sweden Human

EU056574 Korea Human

MF948167 South-Korea A. agrarius

 OR284310

EF364113 Czech Republic Human

MF948159 South Korea A. agrarius

AB016975 Japan I.turdus

AB016976 Japan I. columnae

AB016979 Korea I. nipponensis

AF095945 Netherlands I. ricinus

Y10892 Belgium I. ricinus

DQ479282 Mongolia I. persulcatus

HM007278 China Dermacentor tick

X85442 USA Human

AY030279 USA I. scapularis

X80182 Germany Human

Y10837 Portugal I. ricinus

99

66

99

99

99

7139

31

36

99

23

51

27

28

11

0.050

B. afzelii

B. burgdorferi

B. garinii

B. valaisiana

B. turdi

B. lusitaniae

B. japonica

Figure 4 Click here to access/download;Figure;Fig. 4.pptx

https://www.editorialmanager.com/pntd/download.aspx?id=1238514&guid=6e9d0f18-8ced-411d-86eb-c75f68470e67&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1238514&guid=6e9d0f18-8ced-411d-86eb-c75f68470e67&scheme=1


MN025541 Colombia Cattle

JF968204 Brazil Goat

MK994502 Iraq Sheep

MT268529 Algeria Hyalomma dromedarii

KX589251 Turkey Sheep

KT965031 Brazil Rodent

KT391020 France Cattle

KP645188 Brazil Human

KF146935 Iran Cattle

JF970260 Brazil Human

CP014565 USA Human

MN917207 Turkey Sheep

 OR284314

MN094854 Tunisia Hyalomma dromedarii

 OR284312

 OR284315

 OR284316

 OR284317

 OR284318

 OR284319

 OR284320

 OR284321

MG385668 Germany Goat

MH598511 India Cattle

 OR284313

MG385665 Germany Human

CP018150 Germany Goat

DQ379976 Egypt Argas persicus

EU000273 Taiwan Goat

KR697576 China Goat

JX275488 Spain Human

FJDC01000066 Legionella pneumophila

46 38

40

45

34

24

0.10

Figure 5 Click here to access/download;Figure;Fig. 5.pptx

https://www.editorialmanager.com/pntd/download.aspx?id=1238515&guid=8daa0296-1a0f-41b1-9636-34cdda2fcc53&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1238515&guid=8daa0296-1a0f-41b1-9636-34cdda2fcc53&scheme=1


 OR284323

CP001221

 OR284322

NC 004342

AE010300 China

Korea 7-17 kidney Apodemus agrarius

Korea 7-18 kidney Apodemus agrarius

CP043893 Malaysia human

CP072853 Laos human

CP043884 Malaysia human

CP043891 Malaysia human

CP020414 Copenhageni Brazil Human

CP048830 Copenhageni Brazil Dog

CP006723

 OR284324

CP011934 Japan Mus musculus

CP011931 Japan Mus musculus

CP015044 USA Bos taurus

CP028370 Brazil bovine

99

51

100
88

90

51

76

0.010

Lai

Autumnalis

Canicola

Copenhageni

Icterohaemorrhagiae

Linhai

Manilae

Bataviae

L. borgpetersenii

L. santarosai

L. interrogans

Figure 6 Click here to access/download;Figure;Fig. 6.pptx

https://www.editorialmanager.com/pntd/download.aspx?id=1238516&guid=51a71ed7-d185-4420-a5c1-9e90d865b7ca&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1238516&guid=51a71ed7-d185-4420-a5c1-9e90d865b7ca&scheme=1


MN398158 KCD46 Dog 1 ROK

MW004853 IP417 Cat 3 ROK

H176 Horse ROK

MT502543 Wild boar ROK

GC21 Cattle ROK

MW004843 IP177 Dog

HG94 Chicken ROK

MK301482 CB6 Human ROK

MT502562 Wild boar ROK

MW004844 IP206 Feral cat ROK

AB985559 SPL129A Human Japan

KU507553 KADGH Human ROK

KY560448 Shlter Dog ROK

KU507557 KAJNH2 Human ROK

KF374683 Zhao Human China

MG922500 Pig ROK

KP994434 Feral Cat ROK

KP994430 Cat ROK

MZ171136 IP529 Dog 14 ROK

AB985526 SPL057A Human Japan

AB985544 SPL097A Human Japan

AB985545 SPL100A Human Japan

KR612079 Human Isolate ROK

 OR257723 Rodent ROK

KY968712 Military Dog ROK

MN580506 Cat H77 ROK

JJH25-Korea Horse2019

JJH1-Korea Horse2018

KU507556 KAGNH4 Human ROK

KU507555 KAGNH Human ROK

KP663742 KAGBH6 Human ROK

 OR257721 Rodent ROK

 OR257724 Rodent ROK

MW004854 IP418 Dog 12 ROK

 OR257726 Rodent ROK

KP663736 KAGWH3 Human ROK

KY273138 KAGWT Haemaphysalis longicornis ROK

AB817995 YG1 Human Japan

LC462229 Cat Japan

LC597186 Dog Japan

MW004851 IP400 Dog 11 ROK

KX672015 Black Goat ROK

MN580509 Cat S63 ROK

 OR257725 Rodent ROK

AB985541 SPL087A Human Japan

MG737282 16MS322 Human ROK

KR706565 QD7 Human China

MW004852 IP405 Cat 2 ROK

KC473542 JS2012-tick01 Haemaphysalis longicornis China

KF358693 Gangwon Korea 2012 Human ROK

KR017811 AH-YTY China 05 2012 Human China

HQ141606 JS4 Human China

KY36327 JS2013-31 Human China

MK513928 HB2015-35 Human China

KF791951 HL Nymph G2 Haemaphysalis longicornis China

KF791948 HL Injected Human China

OQ096066 Rodent China

KY789440 CB2 Human ROK

MG737197 KAJNH Human ROK

JQ733565 HB155 China 2011 Human China

NC018137 HB29 Human China

HM802205 SD24 Human China

JQ733562 HB154 China 2011 Human China

JQ670932 AHL China 2011 Human China

JQ693003 Dog China

MW004850 IP343 Dog 10 ROK

KP663733 KASJH Human ROK

MT502563 Wild boar ROK

 OR257718 Rodent ROK

 OR257719 Rodent ROK

 OR257720 Rodent ROK

 OR257722 Rodent ROK
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Table 1. Primer information used for PCR analysis. 

*SFTS: severe fever with thrombocytopenia syndrome virus

Pathogens 
Target 

genes 
Sequences (5′–3′) 

Sizes  

(bp) 

Annealing 

temp./Time 
References 

Anaplasma phagocytophilum 16S rRNA TCCTGGCTCAGAACGAACGCTGGCGGC 1433 50°C/30 s Han et al., 2019 

AGTCACTGACCCAACCTTAAATGGCTG 

GTCGAACGGATTATTTTTATAGCTTGC 926 56°C/30 s 

CCCTTCCGTTAAGAAGGATCTAATCTCC 

Bartonella spp. ITS TTCAGATGATGATCCCAAGC 639 55°C/30 s Ko S 2016 

AACATGTCTGAATATATCTTC 

CCGGAGGGCTTGTAGCTCAG 499 55°C/30 s 

CACAATTTCAATAGAAC 

Borrelia spp. ospA GGGAATAGGTCTAATATTAGCC 665 42°C/60 s Priem S 1998 

CACTAATTGTTAAAGTGGAAGT 

GCAAAATGTTAGCAGCCTTGAT 392 56°C/60 s 

CTGTGTATTCAAGTCTGGC 

Coxiella burnetii IS1111 TATGTATCCACCGTAGCCAGTC 687 54°C/30 s Parisi A 2006 

CCCAACAACAACCTCCTTATTC 

GAGCGAACCATTGGTATCG 203 54°C/30 s 

CTTTAACAGCGCTTGAACGT 

Leptospira interrogans rpoB GTTCCAACATGCAACGYCAR 1649 52°C/60 s Bang MS 2019 

GTTGAAGGATTCRGGRATAC 

TYATGCCKTGGGAAGGWTAC 1023 56°C/30 s 

GCATRTCRTCKGACTTGATG 

SFTSV S CATCATTGTCTTTGCCCTGA 461 52°C/40 s Yoshikawa T et al 

AGAAGACAGAGTTCACAGCA 2014 

AAYAAGATCGTCAAGGCATCA 346 55°C/40 s Oh SS 2015 

TAGTCTTGGTGAAGGCAT CTT  
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Table 2. Number of rodents captured by regions. 

Province/Species Apodemus agrarius Rattus norvegicus Unknown Total 

Gyeonggi 12  2 14 

Gangwon 18  5 23 

Chungbuk 19  3 22 

Chungnam 

/Daejeon 
4   4 

Jeonbuk 13   13 

Jeonnam 4   4 

Gyeongbuk 76 4 9 89 

Gyeongnam 5 1  6 

Total 151 5 19 175 

“”: none of rodents captured 



Table 3. Number of positive samples in which pathogens were identified from captured rodents. 

Variables A. phagocytophilum Bartonella spp. Borrelia spp. C. burnetii L. interrogans SFTSV 

Species        

 Apodemus agrarius (n = 151) 21 72 5 22 23 9 

 Rattus norvegicus (n = 5)  1  3 1  

Total (n = 156) 21 73 5 25 24 9 

Province       

 Gyeonggi (n = 12) 1 5   2 2 

 Gangwon (n = 18 4 12 1 5 6 1 

 Chungbuk (n = 19) 3 10 1 2 6 2 

 Chungnam/Daejeon (n = 4) 1      

 Jeonbuk (n = 13) 3 8  3   

 Jeonnam (n = 4) 1      

 Gyeongbuk (n = 80) 7 32 2 14 6 4 

 Gyeongnam (n = 6) 1 6 1 1 4  

Total (n = 156) 21 (13.5%) 73 (46.8%) 5 (3.2%) 25 (16.0%) 24 (15.4%) 9 (5.8%) 



Table 4. Co-infections of two or three pathogens detected from captured rodents. 

 

 

 

 

 

 

 

Pathogens No. of positive samples 

A. phagocytophilum + Bartonella spp. 7 

A. phagocytophilum + Borrelia spp. 1 

A. phagocytophilum + C. burnetii 1  

Bartonella spp. + Borrelia spp. 2 

Bartonella spp. + C. burnetii 7 

Bartonella spp. + L. interrogans 10 

Bartonella spp. + SFTSV 3 

C. burnetii + L. interrogans 2 

A. phagocytophilum + Bartonella spp.+ C. burnetii 1 

A. phagocytophilum + Bartonella spp.+ L. interrogans 3 

A. phagocytophilum + Bartonella spp.+ SFTSV 2 

A. phagocytophilum + C. burnetii + L. interrogans 1 

Bartonella spp. + Borrelia spp. + C. burnetii 1 

Bartonella spp. + C. burnetii + L. interrogans 1 

Bartonella spp. + L. interrogans + SFTSV 2 


