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1. Multi-wavelength sensitivity

1.1. Light superposition
Here we describe how we model dynamics for light of two different wavelengths, given photon flux ϕλ1

and ϕλ2 . Bansal et al. [1] use a weighted sum of activation functions

G(ϕ) = G(ϕλ1) + εG(ϕλ2).

However, these are sublinear functions, so adding them results in exaggerated activation. In the extreme
case, imagine two light sources that are just 1 nm apart in wavelength, with ε = 1. Thus:

ϕλ1 = ϕλ2 = ϕtot/2
G(ϕtot) ≈ G(ϕλ1) + G(ϕλ2) = 2G(ϕtot/2),

which contradicts what we expect for sublinear G:

G(ϕ) < 2G(ϕ/2)

A more accurate approach instead assumes the following

G(φλ2) = εG(ϕλ2),

where φλ2 is the standard-wavelength equivalent ("effective flux") of ϕλ2 .
Demonstrating with Ga1 of the four-state model [2], we solve for φ in terms of ϕ and ε:

Ga1(φ) = εGa1(ϕ)
φp

φp + ϕp
m

= ε
ϕp

ϕp + ϕp
m

φpϕp + φpϕp
m = ε(φp + ϕp

m)ϕp
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εϕpϕp
m

(1 − ε)ϕp + ϕp
m

)1/p

.

We then compute our activation functions as

G(ϕλ1 , ϕλ2) = G(ϕλ1 + φλ2).
Unfortunately, this doesn’t yield a simple constant conversion factor. However, if we approximate G as

linear, we can use a weighted sum of fluxes:

G(ϕ) = G(ϕλ1 + εϕλ2)
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Plotting G for multiple opsins shows this linear approximation does yield a lower activation curve than the
Bansal et al. approach and is qualitatively close to the true φ derived above. See Extended Data Fig. ?? for
a comparison of the three methods.

1.2. Action spectrum normalization
Some action spectra are measured with equal power density/pulse width across wavelengths, while others

are reported with equal photon flux. We store ours as equal power density spectra since they seem to be
more common and allow for the opsin model to use both accurate power density and photon flux values. We
use ε to represent sensitivity relative to the peak-sensitivity wavelength, εϕ and εP representing the equal
photon flux and power density versions, respectively.

For a given wavelength λ,
ε(λ) = G(φλ)

G(ϕ) = Gλ

G(ϕ) .

We let Gλ represent the response at wavelength λ, while G(ϕ) represents the response at the peak wavelength
for the same flux ϕ. We will assume G is a linear function, as above, using C to represent a constant:

εϕ(λ) = Gλ

G(ϕ) εP (λ) = Gλ

G(ϕ)

εϕ(λ) = Gλ

Cϕ
εP (λ) = Gλ

Cϕ

Then we make either photon flux or irradiance (power density) constant:

εϕ(λ) = Gλ

Cϕconst
εP (λ) = Gλ

CIconst/ephoton

εP (λ) = Gλ

CIconstλ

εϕ(λ) = Gλ

C
εP (λ) = Gλ

Cλ
.

Cεϕ(λ) = CλεP (λ) = Gλ

εP (λ) = C
εϕ(λ)

λ

Thus, we can convert from εϕ(λ) to εP (λ) by dividing by λ and normalizing.

2. GECI convolution simulation as an ODE

Song et al. convolve the intracellular calcium trace
[
Ca2+]

with a double exponential kernel to capture
variable rise and decay times in the fluorescence signal. To simplify simulation (to not have to keep a buffer
of past calcium values), we can represent this convolution as an ODE. Let c(t) and b(t) be the free and
bound calcium concentrations and h(t) be the kernel function

h(t) = u(t)A
(

1 − e−t/τon
)

e−t/τoff

b(t) = c(t) ∗ h(t),
where u(t) is the unit step function, included to ensure the kernel is causal.

We can represent the convolution as multiplication in the Laplace domain:

B(s) = C(s)H(s).
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By expanding out h(t), we get functions that can easily be transformed into the Laplace domain. Let
κ = τ−1

off , λ = τ−1
off + τ−1

on to simplify notation.

h(t) = Au(t)
(
1 − e−Tont

)
e−Tofft

= A(u(t)e−κt − u(t)e−λt)

H(s) = A

(
1

s + κ
− 1

s + λ

)
B(s) = A

(
1

s + κ
− 1

s + λ

)
C(s).

Now we get a common denominator and rearrange:

B(s) = A

(
λ − κ

(s + κ)(s + λ)

)
C(s)

B(s) = A

(
λ − κ

s2 + (κ + λ)s + κλ

)
C(s)(

s2 + (κ + λ)s + κλ
)

B(s) = A (λ − κ) C(s)

Now we use the s2 and s terms to convert to a second-order ODE, using the fact that the Laplace
transform of b′′(t) and b′(t) are s2B(s) − sb(0−) − b(0−) and sB(s) − b(0−), respectively. Also, we assume
that b(0) = b′(0) = 0 to avoid undefined δ(t) and δ′(t) terms after the inverse Laplace transform; this appears
to have only a minor effect.

b′′(t) + (κ + λ)b′(t) + κλb(t) = A(λ − κ)c(t).

Rearranging to a first-order ODE system by introducing β(t) = b′(t), we get

b′(t) = β(t)
b′′(t) = β′(t) = A(λ − κ)c(t) − (κ + λ)β(t) − κλb(t).

Special thanks to DinosaurEgg on Math Stack Exchange for helping solve this problem.

3. Hippocampal epilepsy model validation

Theta band power was computed using SciPy’s spectrogram function with a Tukey window of width
3.906 sec, α = 0.25, and overlap width of 3.809 sec.

4. Prospective experiment 3

The reference signal was generated by delivering a 1 nA square wave input from 100 to 300 ms to entorhinal
cortex using the original model’s Iext term, without noise added. Training data was generated by running
the system for 13 seconds with alternating on and off periods of length T ∼ N (200, 50) µs. During “on”
intervals, Iext ∼ |N (0, Irrmax/3) |. Irrmax was 75 mW/mm2, which is described as an upper safety limit for
473 nm light delivery to the brain [3]. Gaussian process noise was generated with mean µ = 0.167 nA and
using the exponentiated quadratic kernel

k (t1, t2) = σ2e
−(t2−t1)2

2l2 (1)

with σ = 0.083 nA, l = 30 ms and was added to input current Iext in each control scenario. The parameters
of light delivery were altered from the 473 nm optic fiber defaults to allow for greater propagation—K and
S were both divided by 10. The training data was fit using the ldsCtrlEst library’s SSID and EM fitting
methods with latent dimensionality nx = 4 [4]. ldsCtrlEst’s Gaussian linear quadratic regulator (LQR)

3

https://math.stackexchange.com/users/535606/dinosauregg
https://math.stackexchange.com/questions/4758246/stuck-on-inverse-laplace-transform-trying-to-convert-convolution-to-ode


controller was used with a gain computed from Q = CT C, R = 0.001 state and input penalties, with a
simulated 3 ms of latency.

Model-predictive control (MPC) was implemented with a control and prediction horizon of 6 and 36
control periods (each of which was 3 ms long) respectively. The standard, quadratic cost function utilized
constant error weights Q = CT C, R = 10−6, and was optimized using OSQP via the JuMP optimization
interface [5, 6]. MPC was simulated with 6 ms latency.
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