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phenotype for maximal T cell migration speeds 

SUPPLEMENTAL INFORMATION 

Model description 

We aim to investigate the cell migration capabilities of bleb-producing cells in an unbounded 

viscoelastic medium through the development of a two-dimensional biophysical mechanistic 

model. While the model would ideally be a three-dimensional model, we found that such a model 

is computationally too demanding for available supercomputing resources. Even so, the 

fundamental physics is captured, which has the potential to be recast into three dimensions in the 

future. The cell is composed of two distinct structures: a plasma membrane that defines the 

bounds of the cell and an actomyosin cortex that underlies the plasma membrane. Both are 

considered Lagrangian structures, and they are initially discretized as a linear chain of N! 

Lagrangian points. We follow their temporal trajectories through their vector positions 𝐗𝐦#s#, t' 

and 𝐗𝐜#s#, t', where the subscripts m and c denote membrane and cortex, respectively, and s# 

denotes the arc-length parameter associated to the j-th Lagrangian point. As the cell migrates 

through the environment, both membrane and cortex structures transmit forces on the 

surrounding medium, generating viscoelastic stresses. At the continuum level, conservation of 

mass and momentum on the viscoelastic fluid reads 

∇ ∙ 𝐯%(𝐱, t) = 0																																																																																										(S1)                                                                    

∇ ∙ 𝛔&'&(𝐱, t) + 𝓕&'&(𝐱, t) = 𝟎																																																															(S2)                                                      

𝓕&'&(𝐱, t) = 𝓕𝐦(𝐱, t) + 𝓕𝐜,𝐝𝐫𝐚𝐠(𝐱, t) + 𝓕𝐜,𝐞𝐜𝐦(𝐱, t)																							(S3)   

where 𝐯% is the fluid velocity, 𝛔𝐭𝐨𝐭 is the total stress, 𝓕𝐭𝐨𝐭 is the total force density (force per unit 

area) on the fluid, 𝓕𝐦 is the membrane force density, 𝓕𝐜,𝐞𝐜𝐦 is the cell-matrix adhesion force 

density, and 𝓕𝐜,𝐝𝐫𝐚𝐠 is the cortical force density generated in the intracellular medium. Notice that 

the cell-matrix adhesion force has only been included in the model to generate hybrid bleb-based 



adhesion-based cell migration results shown in Fig. 6. The whole domain Ω is discretized with a 

spatially uniform rectangular grid with N nodes in both x and y directions. The variables 𝐯%, 𝛔&'& 

and 𝓕&'& are defined in this Eulerian grid over the whole domain. Notice that inertial effects for the 

immersed elastic structures and viscoelastic fluid are negligible. The lack of inertia together with 

Newton’s laws of motion implies that the sum of all the forces that the cell exerts on the 

surrounding medium always vanish: ∫ 𝓕&'&(𝐱, t)d𝐱0 = 𝟎, consistent with Eq. (S2). By construction, 

this condition is always satisfied, ensuring that the model obeys conservation of momentum at all 

times. The total stress 𝛔𝐭𝐨𝐭 = 𝛔𝐟 + 𝛔𝐩 is the sum of two contributions: a purely viscous stress 𝛔𝐟 

and an extra polymeric viscoelastic stress 𝛔𝐩: 

𝛔𝐟 = −𝛁p + η%#𝛁𝐯𝐟 + 𝛁𝐯𝐟𝐓'																																										(S4) 

𝛔𝐩 =
η4(𝐱, t)
λ4(𝐱, t)

FG
𝛋𝐩

1 − tr#𝛋𝐩' L45K
L − 𝐈N																										(S5) 

where we have chosen the FENE-P constitutive relation for the stress to model the viscoelastic 

nature of the intracellular and extracellular spaces (1). The original FENE-P model was developed 

by Bird and coworkers (2), and a few variations of their model have been used since then (3). In 

our current study, we have used the FENE-P constitutive equation of Housiadas & Beris (1) to 

model the cellular cytoplasm and cell surroundings. In Eqs. (S4) and (S5), p is the hydrostatic 

pressure, η% and η4 are, respectively, the fluid viscosity and polymer viscosity, λ4 is the polymer 

stress relaxation time, 𝛋𝐩 is the conformation stress tensor and L4 is the polymer extensibility 

parameter, a measure of the maximum polymeric deformation. The intracellular and extracellular 

spaces are considered viscoelastic fluids with different rheological properties. We denote the 

intracellular and extracellular polymer viscosities as η467 and η4'8&, and the intracellular and 

extracellular stress relaxation times as λ467 and λ4'8&, respectively. As a guidance, the FENE-P 

viscoelastic model approximates the cellular environment as a suspension of entropic dumbbells 

with density n98:. Each dumbbell can be thought of as two spheres linked by an elastic spring 



with stiffness κ98:. As the spheres that comprise each dumbbell move through the medium, they 

are subjected to drag forces, with drag coefficient µ98:. The FENE-P macroscopic properties 

polymer viscosity η4 and polymer stress relaxation time λ4 can then be related to the dumbbell 

microscopic properties and scale as η4 ∝ n98:µ98: and  λ4 ∝ µ98:/κ98:, respectively. In order 

to solve the problem numerically, we define a continuous polymer viscosity and stress relaxation 

time in the whole domain following a similar procedure to that used in a prior numerical study (4): 

η4(𝐱, t) = η467 + #η4'8& − η467'H#d(𝐱)',											λ4(𝐱, t) = λ467 + #λ4'8& − λ467'H#d(𝐱)'																						(S6 − S7) 

where H(d) is the discrete Heaviside function: 

H(d) = X
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																																											(S8) 

d(𝐱) is the shortest distance to the cell membrane from the point 𝐱, and h is the grid size of the 

Eulerian grid. The time evolution of the conformation stress tensor 𝛋𝐩 reads 

∂𝛋𝐩
∂t

=
1
λ4
G𝐈 −

𝛋𝐩
1 − tr#𝛋𝐩' L45K

L − 𝐯𝐟 ∙ 𝛁𝛋𝐩 + 𝛁𝐯𝐟𝐓 ∙ 𝛋𝐩 + 𝛋𝐩 ∙ 𝛁𝐯𝐟											(S9) 

The first term on the right-hand side (RHS) of Eq. (S9) captures polymer stress relaxation kinetics, 

the second term captures polymer advection, and the last two terms capture rotation and 

deformation of the polymeric material. 

The cell membrane is an elastic structure subjected to tension, bending, membrane-cortex 

adhesion and short-range repulsive forces. The total force per unit length on the cell membrane 

𝐅𝐦 is thus 

𝐅𝐦(s, t) = 𝐅𝐦,𝐭𝐞𝐧𝐬(s, t) + 𝐅𝐦,𝐛𝐞𝐧𝐝(s, t) + 𝐅𝐦,𝐚𝐝𝐡(s, t) + 𝐅𝐦,𝐫𝐞𝐩(s, t)																																										(S10) 

We assume a linear stress-strain relation for membrane tension (5); accordingly the membrane 

tension force per unit length on the membrane element j reads 

𝐅𝐦,𝐭𝐞𝐧𝐬#s#, 𝐭' = −F:!
&?7@𝐧𝐦𝐣 + κ: hid:# − ℓ:Bk 𝛕𝐦𝐣 − id:#CD − ℓ:Bk 𝛕𝐦𝐣C𝟏m																					(S11) 



where F:!
&?7@ is the resting membrane tension force, assumed to be spatially uniform, 𝐧𝐦𝐣 is the 

membrane outwards unit normal, κ: is the plasma membrane spring stiffness parameter, d:# =

n𝐗𝐦𝐣F𝟏 − 𝐗𝐦𝐣n is the distance between membrane neighbor elements, 𝛕𝐦𝐣 = i𝐗𝐦𝐣F𝟏 − 𝐗𝐦𝐣k /

n𝐗𝐦𝐣F𝟏 − 𝐗𝐦𝐣n is the membrane tangent unit vector, and ℓ:B is the membrane spring resting 

length, which corresponds with the initial separation distance between neighbor membrane 

element points. We consider a simple quadratic dependence of the elastic bending energy on 

membrane curvature, thus the membrane bending force per unit length reads (6)  

𝐅𝐦,𝐛𝐞𝐧𝐝(s, t) = β:
∂G𝐗𝐦
∂sG

,																																																																																			(S12) 

where β: is the membrane bending stiffness. The membrane-cortex adhesion energy is assumed 

to be quadratic with respect to the membrane-cortex linker deformation; the membrane-cortex 

adhesion force per unit length on the membrane is thus given by 

𝐅𝐦,𝐚𝐝𝐡#s#, t' = −ρH9I#s#, t'κH9I idH9I# − ℓH9IBk 𝛕𝐚𝐝𝐡𝐣																												(S13) 

where we have modeled membrane-cortex elastic linkers as linear elastic springs. Here, ρH9I is 

the local density of membrane-cortex linkers engaged on each membrane-cortex connection, κH9I 

is the elastic stiffness of each membrane-cortex linker, dH9I = n𝐗𝐦𝐣 − 𝐗𝐜𝐣n and ℓH9IB are the 

stretching and resting length of linkers, respectively, and  𝛕𝐚𝐝𝐡𝐣 = i𝐗𝐦𝐣 − 𝐗𝐜𝐣k / n𝐗𝐦𝐣 − 𝐗𝐜𝐣n is a 

unit vector whose direction is set by the relative position of mechanically linked membrane-cortex 

elements. The stability of membrane-cortex linkers strongly depends on active forces and 

membrane-cortex adhesion properties. We follow two distinct approaches to capture the kinetics 

of membrane-cortex linkers: a deterministic approach and a stochastic approach. 

 

Deterministic model: To elucidate cell migration dynamics during a single bleb migration cycle we 

initially break membrane-cortex adhesion linkers by hand on a local cellular region, whose size is 



given by ϕ!, the fraction of the plasma membrane perimeter (neck bleb size) that loses 

mechanical connection with the underlying cortex. Membrane-cortex adhesion loss is followed by 

recruitment of new cortex. Mass conservation of membrane-cortex linkers follows simple 

association and dissociation kinetics: 

∂nH9I#s#, t'
∂t

= kH9I
'7 ρH9I

%J?? − kH9I
'%% 	nH9I#s#, t',																						(S14) 

where nH9I = ∫ ρH9I
@"#$/&
@"'$/&

ds is the effective number of membrane-cortex linkers at position s# at 

time t, kH9I'7  is the force-independent linker association rate constant and kH9I'%%  is the force-

dependent linker dissociation rate constant. The concentration of free linkers in the cytoplasm has 

been denoted by ρH9I%J?? = #NH9I
&'& −∑ nH9I(sK, t)

L(
KMD ' AN?OOhN?OOK , where NH9I&'&  is the total number of 

linkers available in the cell and hN?OO is the cell thickness in the z-direction. 

 

Stochastic model: To account for changes in the dynamics of cortex component amounts we 

introduce the stochastic cell migration model counterpart. In this stochastic version, we model 

membrane-cortex linker kinetics as jump processes of unit size that follow Poisson statistics. 

Membrane-cortex linkers are not broken by hand. Instead, the stability of membrane-cortex linkers 

strongly depends on active forces and membrane-cortex adhesion properties. Membrane-cortex 

linkers stochastically associate at a force-independent rate kH9I'7 ρH9I
%J?? and unbind by force with an 

effective dissociation rate that increases exponentially with force according to Bell’s law (7): 

kH9I
'%% eK)*+PQ9)*+"Cℓ)*+!Q S)*+

,-./T U, where the linker unloaded dissociation rate and the characteristic 

linker rupture force have been denoted as kH9I'%%  and FH9I
J84&, respectively. The probability that a 

membrane-cortex linker associates on a given membrane/cortical element in an interval of time 

∆t is pH9I'7 = 1 − eCK)*+
01 V)*+

2,33∆&. For a small enough timestep (pH9I'7 ≪ 1), pH9I'7 ≈ kH9I
'7 ρH9I

%J??∆t. 

Similarly, the probability that a membrane-cortex linker dissociates from a given 

membrane/cortical element in an interval of time ∆t is pH9I'%% ≈ kH9I
'%% eK)*+PQ9)*+"Cℓ)*+!Q S)*+

,-./T U∆t. At 



each time step, number of linkers associated to each cortical element is updated by generating a 

uniformly-distributed random number between 0 and 1, and comparing the generated random 

number to the probability of the process under consideration. If the random number is less than 

the probability, then it is assumed that the event occurred, and the system variables are updated 

accordingly. 

To prevent unphysical membrane-cortex crossings, we introduce a short-range 

membrane-cortex repulsive force. The repulsive force on the j-th membrane node is given by: 

𝐅𝐦,𝐫𝐞𝐩#s#, t' = y
κJ?4zndH9I#6 − ℓJ?4n

X

𝛕𝐚𝐝𝐡𝐣𝐢

0	

			if				dH9I#6 < ℓJ?4
			if				dH9I#6 > ℓJ?4

																								(S15)		 

where dH9I#6 is the distance between the j-th membrane node and the i-th cortical node, 𝛕𝐚𝐝𝐡𝐣𝐢 =

i𝐗𝐦𝐣 − 𝐗𝐜𝐢k / n𝐗𝐦𝐣 − 𝐗𝐜𝐢n, and ℓJ?4 is the short-range repulsive cutoff distance. 

The cortex is considered a cross-linked actomyosin poroelastic structure that generates 

contractile forces creating tension in the cortical network. It is initially modeled as a linear chain 

of beads jointed by elastic Hookean springs, that are additionally adhered to the plasma 

membrane by the linear elastic linkers mentioned above. Notice that upon complete membrane-

cortex adhesion loss (ρH9I#s#, t' = 0), after a refractory time tJ?%J, a new cortical element appears 

underneath the cell membrane under stress-free conditions to initiate new cortex formation, and 

the old cortical element components are transferred into the cytoplasm. Force balance on each 

cortical element reads 

𝐟𝐜,𝐞𝐥𝐚𝐬𝐭(s, t) + 𝐟𝐜,𝐦𝐲𝐨(s, t) + 𝐟𝐜,𝐚𝐝𝐡(s, t) + 𝐟𝐜,𝐫𝐞𝐩(s, t) + 𝐟𝐜,𝐞𝐜𝐦(s, t) + 𝐟𝐜,𝐝𝐫𝐚𝐠(s, t) = 𝟎																	(S16) 

The elastic cortical force 𝐟𝐜,𝐞𝐥𝐚𝐬𝐭 is associated with the tensional state of the cortex and it is given 

by 

𝐟𝐜,𝐞𝐥𝐚𝐬𝐭#s#, t' =
1
2
iκN"#$

?%% + κN"
?%%k hidN# − ℓNBk 𝛕𝐜𝐣m −

1
2
iκN"

?%% + κN"'$
?%% k hidN#CD − ℓNBk 𝛕𝐜𝐣C𝟏m 									(S17) 



where κN"
?%% is the effective cortex spring stiffness at the cortical node j, dN# = n𝐗𝐜𝐣F𝟏 − 𝐗𝐜𝐣n is the 

distance between cortical neighbor elements, 𝛕𝐜𝐣 = i𝐗𝐜𝐣F𝟏 − 𝐗𝐜𝐣k / n𝐗𝐜𝐣F𝟏 − 𝐗𝐜𝐣n is the cortical 

tangent unit vector, and ℓNB is the cortex spring resting length, which corresponds with the initial 

separation distance between neighbor cortical element points. The effective cortex spring 

stiffness is assumed to depend proportionally to the amount of local actin density as κN?%%(s, t) =

κNnHN&(s, t), where κN is the cortex stiffness per unit of actin. The myosin-mediated cortical tension 

forces 𝐟𝐜,𝐦𝐲𝐨 obey a linear force-velocity relationship given by 

𝐟𝐜,𝐦𝐲𝐨#s#, t' =
1
2
iF@&,:\'?%%

#FD
+ F@&,:\'?%%

#
k ~𝛕𝐜𝐣 −

i𝐕𝐜𝐣 − 𝐕𝐜𝐣F𝟏k

vB
:\' ∙ 𝛕𝐜𝐣𝛕𝐜𝐣�

+
1
2
iF@&,:\'?%%

#
+ F@&,:\'?%%

#CD
k ~−𝛕𝐜𝐣C𝟏 −

i𝐕𝐜𝐣 − 𝐕𝐜𝐣C𝟏k

vB
:\' ∙ 𝛕𝐜𝐣C𝟏𝛕𝐜𝐣C𝟏�										(S18) 

where F@&,:\'?%%
#
 is the effective myosin stall force at cortical node j, 𝐕𝐜𝐣 is the cortex velocity vector 

of the j-th node, and vB
:\' is the load-free myosin velocity. Notice that the actomyosin force has 

been projected along the line joining the linked cortical nodes. The effective myosin stall force is 

assumed to depend proportionally to local myosin and actin amounts as F@&,:\'?%% (s, t) =

F@&S'@Nn:\'(s, t)nHN&(s, t), where F@& is the myosin stall force per unit of myosin and actin, and S'@N 

is a temporal oscillatory signal that mimics periods of high and low cortical tensions. Notice that 

F_st is the critical model parameter responsible for the generation of cortical tension in the model. 

Since cortical forces get transmitted to the plasma membrane through membrane-cortex linkers, 

they generate a buildup of intracellular hydrostatic pressure. Once the transmission of this 

squeezing actomyosin force to the plasma membrane is interrupted (due to mechanical 

disengagement between the membrane and cortex), the local intracellular hydrostatic pressure 

decreases. Essentially, the jump in hydrostatic pressure between intracellular and extracellular 

spaces results from in-plane forces on the plasma membrane.  We assume that S'@N is a two-level 



periodic square wave of period T:\', where S'@N = 1 during high cortical tension and S'@N = 0.1 

during low cortical tension. In Eqs. (S17) and (S18), the effective cortex spring stiffness and 

myosin stall force for each two-node cortical connection has been taken to be the average of the 

spring stiffness and stall force of the two nodes, respectively. This practice ensures that linear 

momentum is conserved in our model. The membrane-cortex adhesion force acting on the cortex 

is equal and opposite to the membrane-cortex adhesion force acting on the membrane. 

Considering that membrane forces are defined per unit length in Eq. (S10), and that cortical forces 

are net forces in Eq. (S13), membrane-cortex adhesion forces acting on the cortex read 

𝐟𝐜𝐚𝐝𝐡#s#, t' = −𝐅𝐦𝐚𝐝𝐡#s#, t' #s#FD − s#CD' 2⁄ .  

Adherent blebby cells can use a hybrid adhesion-based bleb-based mode of migration to move 

through tissues. To study migration capabilities of adherent blebby cells, we use the deterministic 

model to investigate the effect of focal adhesion formation on cell displacements during an 

isolated bleb cycle (Fig. 6). We assume that, following bleb expansion, the cell forms a focal 

adhesion at the cell front with the extracellular matrix, a highly crosslinked fibrous network 

embedded in a fluid. Localized cellular adhesion forces on the matrix will get transmitted to the 

entire fibrous network. However, for simplicity, we assume that the effective force on the matrix 

is represented as a point force, whose point of application is denoted by the matrix node vector 

position 𝐗𝐞𝐜𝐦. The cortex therefore is subject to an adhesion force during bleb retraction given by 

𝐟𝐜,𝐞𝐜𝐦(s:, t) = −κN?OOC?N: hidN,?N: − ℓN,?N:Bk 𝛕𝐜,𝐞𝐜𝐦m, where κN?OOC?N: is the effective stiffness of the 

cell adhesion protein complex-extracellular matrix tandem, dN,?N: = �𝐗𝐜𝐞𝐜𝐦 − 𝐗𝐞𝐜𝐦� is the distance 

between the m-th cortical node, involved in the mechanical interaction with the matrix and 

represented by the vector position 𝐗𝐜𝐞𝐜𝐦,	and the position of the matrix node, ℓN,?N:B is the spring 

resting length, and 𝛕𝐜,𝐞𝐜𝐦 is the unit vector joining the cortical node and matrix node. We assume 

that the matrix is not compliant, i.e., the matrix node is stationary. Notice that we have only 

explored the hybrid bleb-adhesion-based cell migration mode during a single bleb cycle. The 



mechanism by which cells coordinate the spatial and temporal assembly and disassembly of focal 

adhesions, actin polymerization and traction forces in conjunction with blebbing are still to be 

elucidated. 

  The actin cortex also experiences drag forces as cytoplasmic material flows through the 

porous actomyosin network when membrane-cortex adhesion is lost; they are given by 

𝐟𝐜,𝐝𝐫𝐚𝐠#s#, t' = −γN [𝐕𝐜𝐣 − 𝐯% i𝐗𝐜𝐣, tk^																(S19) 

where γN is the cortex-cytoplasm drag coefficient. The short-range membrane-cortex repulsive 

force on the cortex 𝐟𝐜,𝐫𝐞𝐩(s, t) is equal and opposite to the repulsive force on the membrane (see 

Eq. (S15)). 

Following a similar treatment to that of membrane-cortex linkers, we follow two distinct 

approaches to enforce mass conservation of actin and myosin: a deterministic approach and a 

stochastic approach. 

Deterministic model: Conservation of cortical actin and myosin reads  

∂nHN&#s#, t'
∂t

= kHN&'7 ρHN&%J??nH9I#s#, t' − kHN&'%% 	nHN&#s#, t'																																			(S20) 

∂n:\'#s#, t'
∂t

= k:\''7 ρ:\'%J?? nHN&#s#, t' − k:\''%% 	n:\'#s#, t'																											(S21) 

where kHN&'7  and kHN&'%%  are the actin association and dissociation constants and k:\''7  and k:\''%%  are 

the myosin association and dissociation constants. The concentration of G-actin units in the 

cytoplasm has been denoted by  ρHN&%J?? = #NHN&&'& − ∑ nHN&(sK, t)
L(
KMD ' AN?OOhN?OOK , where NHN&&'& is the total 

number of actin units available in the cell. Similarly, the concentration of myosin units in the 

cytoplasm has been denoted by  ρ:\'%J?? = #N:\'&'& −∑ n:\'(sK, t)
L(
KMD ' AN?OOhN?OOK , where N:\'&'&  is the 

total number of myosin units available in the cell. In Eqs. (S20) and (S21) we have assumed that 

recruitment of actin and myosin obeys first-order binding kinetics to linkers and actin, respectively. 

Upon a local membrane-cortex adhesion loss, the old cortical nodes are retained, we assume 



that actin and myosin do not associate to the local detached cortex; consequently, we set the 

association rate constants kHN&'7  and k:\''7  associated to the detached cortical node to 0 and actin 

and myosin eventually disappear at the old cortex element with rate constants kHN&'%%  and k:\''%% , 

respectively. When a new cortical node is added underneath of the cell membrane, actin and 

myosin are recruited at the node, allowing again the transmission of cortical forces to the cell 

membrane. We have assumed that the kinetics of cortex component amounts are governed by 

rapid association and dissociation kinetics, and transport of cortical components driven by cortical 

flows have been neglected.  

Stochastic model: we model cortical kinetics as jump processes of unit size that follow Poisson 

statistics. The probabilities of an actin unit and myosin unit associating on a membrane/cortical 

element in an interval of time ∆t are pHN&'7 ≈ kHN&'7 ρHN&%J??nH9I∆t and p:\''7 ≈ k:\''7 ρ:\'%J?? nHN&∆t, 

respectively, and the probabilities of an actin unit and myosin unit dissociating from a 

membrane/cortical element in an interval of time ∆t are, respectively, pHN&'%% ≈ kHN&'%% 	nHN&∆t and p:\''%% ≈

k:\''%% 	n:\'∆t. Actin and myosin at each cortical element are updated at each time step via random 

number generation, as described above. Old cortical nodes are only transiently retained in the 

spontaneous/stochastic blebbing model. Following a loss of adhesion between the membrane 

and the cortex, we assume that actin and myosin do not associate to the local detached cortex, 

and actin and myosin eventually disappear at the old cortex element after an imposed refractory 

time tJ?%J.  

The system of Eqs. (S1-S9) are computed in the Eulerian framework, whereas the forcing 

term that appear in Eq. (S3) come from the computation of membrane and cortex Lagrangian 

forces using Eqs. (S10) and (S16), respectively. To solve Eqs. (S1-S9), we thus make the 

following Lagrangian-Eulerian transformation 



𝓕&'&(𝐱, t) = � 𝐅𝐦(ξ, t)δ(𝐗𝐦(ξ, t) − 𝐱)
]4

dξ +zδ#𝐗𝐜#s#, t' − 𝐱'𝓕𝐜
𝐝𝐫𝐚𝐠(𝐱, t)

L(

#MD

− 𝐟𝐜,𝐞𝐜𝐦δ(𝐗𝐞𝐜𝐦 − 𝐱)																																																													(S22) 

where Γ: represents the membrane boundary. The transformation requires the discretization of 

the delta function in Eq. (S22). We use the well-behaved discretized delta function δ^ derived by 

Peskin (8) 

δI(𝐱) =
1
h5
ϕi

xD
h
kϕi

x5
h
k																																																																						(S23) 

ϕ(r) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

																		0																																																															r ≤ −2
1
8
i5 + 2r − �−7 − 12r − 4r5k																										− 2 ≤ r ≤ −1

					
1
8 i3 + 2r +

�1 − 4r − 4r5k																															− 1 ≤ r ≤ 0						
1
8 i3 − 2r +

�1 + 4r − 4r5k 																																			0 ≤ r ≤ 1
1
8
i5 − 2r − �−7 + 12r − 4r5k 																														1 ≤ r ≤ 2

															0																																																																		r ≤ 2

										(S24) 

Superposition of no-slip between the cell membrane and fluid and osmotic effects allows us to 

compute the membrane velocity 𝐕: as follows 

𝐕:(s, t) = �𝐯%(𝐱, t)
0	

δ#𝐱 − 𝐗𝐦(s, t)'d𝐱 + ζ4[(∆Π) − (Δp)]𝐧𝐦																				(S25) 

where ζ4 is the membrane permeability coefficient, and ∆Π = hcellRT(c67 − c'8&) and Δp = p67 −

p'8& are, respectively, the osmotic and hydrostatic pressure difference between the intracellular 

and extracellular domains. h$%&& is the cell thickness in the z-direction, R is the molar gas constant 

(R = N`ka, where N` is the Avogadro constant and ka is the Boltzmann constant), and T is the 



absolute temperature, and we use the discretized delta function introduced in Eqs. (S23) and 

(S24) in Eq. (S25).  

The intracellular and extracellular osmolyte concentrations, c67 and c'8&, obey the 

unsteady diffusion equation: 

∂c67
∂t

= ∇ ∙ (D67∇c67)				in			Ω67 ,																		
∂c'8&
∂t

= ∇ ∙ (D'8&∇c'8&)				in			Ω'8&																(S26 − S27) 

where D67 and D'8& are the intracellular and extracellular osmolyte diffusion coefficients, 

respectively. Although osmolyte advection can become important during bleb expansion, 

osmolyte transport is mainly driven throughout the whole bleb cycle dynamics by diffusion, thus 

we have neglected osmolyte advective transport in our model. Osmolyte transmembrane flux is 

facilitated by passive channels and active pumps. The flux continuity boundary conditions at the 

membrane reads: 

D67∇c67 ∙ 𝐧𝐦 = j48:4 + j4H@@6b?				on			Γ67																								(S28) 

−D'8&∇c'8& ∙ 𝐧𝐦 = j48:4 + j4H@@6b?				on			Γ'8&														(S29) 

where Γ67 and Γ'8& indicate that the boundary conditions are evaluated on the intracellular and 

extracellular sides on the membrane boundary, respectively. We assume that active pumps 

operate far from saturation conditions. Hence, the osmolyte flux from active pumping j48:4 is a 

space- and time-dependent scalar α48:4, such that j48:4 = α48:4(s, t). The osmolyte flux through 

passive channels is assumed to be of the form  j4H@@6b? = α4H@@6b?Δc where we have neglected 

mechanosensitive effects. In most of our model results, we have taken the limit of infinitely rapid 

osmolyte diffusion (D67 → ∞, D'8& → ∞), thus intracellular and extracellular osmolyte 

concentrations are spatially uniform. In this limiting case, cell area changes induced by variations 

in hydrostatic pressure modify the intracellular osmolyte concentration such that c67(t) =

c67(0)AN?OO(0)/AN?OO(t), where AN?OO(t) is the cell area at time t. To solve the finite osmolyte diffusion 

coefficient problem, we use explicit Euler as the time integration scheme and the finite volume 

method (9) to represent and evaluate the partial differential equation as an algebraic equation in 



two dimensions. This is numerically convenient, since the boundary conditions (S28) and (S29) 

are relatively easy to implement. For simplicity, we proceed to explain the numerical integration 

of Eq. (S26). A similar procedure has been used to integrate Eq. (S27).  We divide the entire 

domain in equal-size square finite surfaces/cells and integrate Eq. (S26) over each cell S(i, j): 

�
∂c67
∂t

dS
c(6,#)

= � ∇ ∙ (D67∇c67)	dS
c(6,#)

				in			Ω67,																									(S30) 

where i and j indicate, respectively, the horizontal and vertical indices of the cell. We apply the 

divergence theorem on the right-hand-side, approximate integrals using the midpoint rule, and 

approximate the diffusive flux on each cell edge by using the second-order centered difference 

approximation provided that the all the neighbor cell centers lie in the intracellular space. Special 

treatment must be taken in cases where neighbor cell centers lie in the extracellular space. In 

these situations, one-sided centered difference approximations are utilized to approximate the 

diffusive flux across the cell edge. To enforce continuity of osmolyte flux across the cell boundary, 

we must estimate the osmolyte intracellular and extracellular concentration in points on the cell 

boundary. We estimate the osmolyte concentration on the cell boundary by applying bilinear 

interpolation making use of the osmolyte concentration of the nearest three cell centers. 

The numerical solution at each time step is performed in six steps: (I) membrane and cortical 

Lagrangian forces are computed from the membrane-cortex configurations using Eqs. (S10−S13) 

and (S15−S19), (II) total force on the viscoelastic fluid due to membrane and cortex is computed 

in the Eulerian framework using Eq. (S22), and fluid velocity and hydrostatic pressure are solved 

by applying the Fourier transform method to Eqs. (S1−S3), (III) fluid velocity at membrane and 

cortex Lagrangian nodes is computed, and membrane and cortex positions are updated using 

Eqs. (S25) and (S16) respectively, (IV) polymer stress is updated by applying the Fourier 

transform to Eq. (S5) followed by the temporal integration of Eq. (S9), (V) number of membrane-

cortex linkers engaged, cortical actin amounts, and cortical myosin amounts are updated by either 

integrating in time Eqs. (S14) and (S20−S21) when using the deterministic approach, or by using 



the stochastic model counterpart. In steps (IV) and (V), explicit Euler has been used as the time 

integration scheme, (VI) osmolyte density is computed by solving the unsteady diffusion equations 

(S26 − S29), or by a simple calculation in the limit of infinitely fast osmolyte diffusion. The 

forced/deterministic decohesion model was coded in MATLAB. Each simulated second required 

approximately four days to complete. Conversely, the spontaneous/stochastic blebbing model 

was coded in Fortran 90. We used resources from the Minnesota Supercomputing Institute 

(https://msi.umn.edu). Each spontaneous/stochastic simulation required approximately three 

days to complete.  

We numerically solved for the fluid velocity 𝐯𝐟 and the hydrostatic pressure p by using the 

fast Fourier transform. Let ΨK$K& = Ψ(kDh𝐞𝟏 + k5h𝐞𝟐), where h = L N⁄  is the grid size in both x 

and y directions, and 𝐞𝟏 and 𝐞𝟐 are the cartesian unit vectors. We define the discrete Fourier 

transformation of an arbitrary Eulerian function Ψ as  

Ψ�K$K& =
1
N5

z e(5g6 L⁄ )(#$K$F#&K&)
LCD

#$,#&MB

Ψ(𝐱),				0 ≤ kD, k5 	≤ N − 1																						(S31a) 

where kD and k5 represent the indices of the discrete Fourier transform (DFT) output in frequency 

domain. We define the inverse discrete Fourier transformation of Ψ as 

Ψ#$#& = z eC(5g6 L⁄ )(#$K$F#&K&)
LCD

K$,K&MB

Ψ�K$K& = z eC(5g6 i⁄ )(j$K$Fj&K&)
LCD

K$,K&MB

Ψ�K$K& 																							(S31b) 

We first apply the DFT to Eqs. (S1) and (S2): 

−𝐃�p¡ + η%L¢𝐯¡𝐟 +𝐃� ∙ 𝛔£𝐩 +𝓕� &'& = 𝟎																																					(S32) 

𝐃� ∙ 𝐯¡𝐟 = 0																	(S33) 

where the gradient/divergence 𝐃�  and Laplacian L¢ operators read 

𝐃�K$K& = −
i
h
sin [

2πh
L
𝐤^ = [−

i
h
sin [

2πh
L
kD^ , −

i
h
sin [

2πh
L
k5^^ 

L¢K$K& = −
4
h5
sin i

π
N
𝐤k ∙ sin i

π
N
𝐤k 



Eliminating 𝐯¡𝐟 by applying the divergence operator to Eq. (S32) allows us to derive an algebraic 

expression for the Fourier transform of the hydrostatic pressure: 

p¡K$K& =
sin i2πN 𝐤k ∙ sin i2πN 𝐤k ∙ 𝛔£𝐩 + ih sin i

2π
N 𝐤k ∙ 𝓕� &'&

sin i2πN 𝐤k ∙ sin i2πN 𝐤k
																																									(S33) 

Combining Eqs. (S32) and (S33) allows us to derive an algebraic expression for the Fourier 

transform of the fluid velocity: 

v¡K$K& =
1

4η% sin i
π
N𝐤k ∙ sin i

π
N𝐤k

~−ih sin [
2π
N
𝐤^ ∙ 𝛔£𝐩 + h5𝓕� &'&

+ ih sin [
2π
N
𝐤^
sin i2πN 𝐤k ∙ sin i2πN 𝐤k ∙ 𝛔£𝐩 + ih sin i

2π
N 𝐤k ∙ 𝓕� &'&

sin i2πN 𝐤k ∙ sin i2πN 𝐤k
�												(S34) 

Following a similar procedure, we have used the forward and inverse discrete Fourier transforms 

to compute the spatial gradients in Eq. (S9).  

 

Computation of the bleb nucleation correlation angle 𝐩𝐛𝐥𝐞𝐛 

We describe the location of each bleb by the polar angle between the first cortical node that 

mechanically dissociates from its corresponding plasma membrane node and a reference node, 

chosen arbitrarily, under the assumption that the cell maintains an approximately circular shape. 

We then define the bleb nucleation correlation angle as the polar angle difference between the 

position of two consecutive bleb nucleation events. This provides a practical measure of the 

angular separation between successive blebs.” 

 

Estimation of model parameters 

We proceed to estimate the different model parameters shown in Table S1.  

Table S1. Model parameters 



Symbol Description Value Legend/ 
References 

F'!
(%)* Resting membrane tension 2.5	pN ∙ µm+, (10) 

κ' Membrane spring stiffness [80 − 200]	pN ∙ µm+, (11, 12) 

ℓ'- Membrane spring resting length 0.18	µm A 

β' Effective two-dimensional membrane 
bending stiffness 0.1	pN ∙ µm. (13) 

ℓ/01- Resting length of membrane-cortex linkers 0.5	µm B 

k/012)  Association rate constant of membrane-
cortex linkers 2K3	µM+, ∙ s+, (14) 

k/01244  Unloaded dissociation rate constant of 
membrane-cortex linkers 0.2K3	s+, (15) 

F/01
567( Membrane-cortex linker rupture force [0.4 − 5] pN (16) 

N/01(2(  Total number of membrane-cortex linkers in 
the cell [108 − 109] Adjusted, C 

κ/01 Effective stiffness of membrane-cortex 
linkers [0.5 − 5]	pN ∙ µm+, Adjusted 

κ$ Cortex spring stiffness per actin unit [0.1 − 0.6]	pN ∙ µm+, Adjusted, D 

ℓ$- Cortex spring resting length 0.15	µm A 

F*( 
Myosin stall force per unit of actin and 
myosin 1.9 × 10+8	pN E 

v-
':2 Effective cortical unloaded myosin velocity [2 − 10]		µm ∙ s+, (17, 18) 

k/$(2)  Actin association rate constant  10K3	µM+, ∙ s+, F 

k/$(244  Actin dissociation rate constant 0.3K3	s+, (15) 

k':22)  Myosin association rate constant per unit of 
actin 0.0025K3	µM+, ∙ s+, G 

k':2244  Myosin dissociation rate constant 0.07K3	s+, (15, 19) 

T':2 Half of the period of cortical oscillations [2 − 12]s Adjusted, H 

K3 Cortex turnover factor [1 − 200] I 

tJ?%J Cortex refractory time 50	ms - 

N/$((2( Total number of actin units in the cell 3.8 × 109 J 



N':2(2(  Total number of myosin units in the cell [8 × 10; − 2 × 108] Adjusted, K 

γ$ Cortex drag coefficient [0.003 − 0.01]	pN ∙ s
∙ µm+, Adjusted, L 

ξ$ Mesh size cortex [0.015 − 0.2] µm (20-22) 

r$ Effective actin filament radius 3.5	nm (23) 

η4 
Effective two-dimensional dynamic viscosity 
of fluid component [0.1 − 1.4]		pN ∙ s ∙ µm+, M 

η7<) Intracellular polymer viscosity [0.1 − 10]	pN ∙ s ∙ µm+, Adjusted, N 

η726( Extracellular polymer viscosity [0.1 − 10]	pN ∙ s ∙ µm+, Adjusted, N 

λ7<) Intracellular polymer relaxation time [10+. − 10.]	s Adjusted, N 

λ726( Extracellular polymer relaxation time [10+. − 10.]	s Adjusted, N 

L7 Polymer extensibility parameter 10 O 

ζ7 Membrane permeability coefficient 2.8 × 10+;	µm. ∙ pN+,
∙ s+, P 

c<)(0) Initial intracellular osmolyte concentration 339.5283	mM (24) 

c26((0) Initial extracellular osmolyte concentration 339.5	mM (24) 

D67 Intracellular osmolyte diffusion coefficient 27	µm. ∙ s+, (25) 

D'8& Extracellular osmolyte diffusion coefficient [30 − 2000] µm. ∙ s+, (26) 

κ$%&&+%$' Effective stiffness of the cell adhesion 
protein complex-extracellular matrix tandem [0 − 500] pN ∙ µm+, Adjusted, Q 

R$%&&(0) Initial cell radius 3	µm O 

h$%&& Cell thickness in z-direction 6	µm O 

N= Number of membrane and cortex 
discretization nodes  100 O 

N Number of Eulerian nodes used to discretize 
the whole domain Ω 256 - 

L Domain size in x and y directions 50 µm - 

ϕ= 
Fraction of the plasma membrane perimeter 
that loses mechanical connection with the 
underlying cortex in the deterministic model 

0.15 R 



∆t Time step in all simulations 10+9s - 

 

A. Computed at the onset of our simulations as the separation between neighbor membrane 

Lagrangian nodes ℓ:B = 2πRN?OO(0)/N! and neighbor cortical nodes ℓNB = 2π(RN?OO(0) − hN)/N!. 

B. The mean cortex thickness is ≈ 230	nm in a Jurkat cell line (27). We choose ℓH9IB = 0.5	µm, 

a larger membrane-cortex separation to reduce the required spatial resolution of the Eulerian grid 

and associated computational cost.  

C. We assume that the mean number of membrane-cortex linkers at each cortex node n¦H9I is 

approximately equal to the mean number of actin filaments n¦H9I = 36 (refer to F). We can then 

estimate the cytoplasmic density of membrane-cortex linkers from a kinetic balance of linkers in 

the cortex as ρH9I%J?? = #kH9I
'%% kH9I

'7K 'n¦H9I = 3.6µM. The total number of membrane-cortex linkers in 

the cell can then be obtained as NH9I&'& = ρH9I
%J??AN?OO(0)hN?OO + N!n¦H9I ≈ 3.8 × 10k.  

D. From the effective cortex stiffness coefficient previously reported EN ≈ 10G	pN ∙ µmCD (28), we 

can estimate the cortex spring stiffness per actin unit as: κN = EN n¦HN&⁄ ≈ 0.5	pN ∙ µmCD, where n¦HN& 

is the estimated mean number of actin units at each cortical node (refer to legend J). 

E. We estimate the myosin stall force per unit of actin and myosin from the reported values of 

cortical tension, which lie in the range TN ≈ [55 − 1600]	pN ∙ µmCD (28-30). Assuming a cortical 

tension of TN = 200	pN, then F@& = TN n¦:\'n¦HN&⁄ = 1.9 × 10Ck	pN. Here, n¦:\' is the mean number 

of myosin units at each cortical node. The chosen cortical tension is on the lower end of reported 

values. However, we study a wide range of cortical tensions by varying the total number of myosin 

molecules in the cell, such that the range of experimental values is encompassed by our 

simulations.  

F. The actin association rate constant for each actin filament barbed end is k!HJ!?9'7 ≈ 10	µMCD ∙

sCD (31, 32). Assuming that the mean number of actin filaments per unit length in our two-

dimensional cortex is approximately of the same order to the well characterized fission yeast 



cytokinetic ring ρ%6O ≈ 31.8	fil/µm (33), then the mean number of actin filaments at each cortical 

node is n¦%6O = 2πRN?OOhN?OOρ%6O/N! ≈ 36	fil. The actin association rate at each cortical node is then 

kHN&'7 = n¦%6Ok!HJ!?9
'7 n¦H9I⁄ = 10	µMCD ∙ sCD. 

G. We assume that the number of myosin molecules per unit length in our two-dimensional cortex 

is approximately that in the fission yeast cytokinetic ring ρ:\' ≈ 455	molecules/µm (33). Then, 

the mean number of myosin polypeptides at each cortical node is n¦:\' = 2πRN?OOhN?OOρ:\'/N! ≈

515. Assuming that the concentration of cytoplasmic myosin is ρ:\'%J?? = 0.7µM (refer to I), then we 

can estimate the myosin association rate constant per unit of actin from a kinetic balance of 

myosin in the cortex: k:\''7 = k:\''%% n¦:\' ρ:\'%J?? n¦HN&K ≈ 0.0025	µMCD ∙ sCD. 

H. The range of the period of oscillations has been chosen such that a few oscillatory cycles are 

simulated within the total simulation time (usually 18 seconds). 

I. We introduce a cortex turnover factor to accelerate the kinetics of membrane-cortex linkers, 

actin and myosin, allowing us to observe many bleb cycles in the total simulated time, thus 

increasing acquired data to achieve statistical significance. 

J. The amount of actin molecules per unit length in the fission yeast ring is ρHN&~1.8 × 10G 

molecules/µm (33). We want to estimate an upper limit for NHN&&'&. We then assume that our two-

dimensional cellular cortex contains a similar actin density to that of the fission yeast ring, then 

the number mean number of F-actin monomers at each cortical node in our model is n¦HN& =

2πRN?OOhN?OOρHN& N!⁄ ≈ 2.04 × 10G. Notice that we have scaled the number of actin units in each 

node by the cell thickness. Using the reported values of actin association and dissociation rate 

constants and the number of actin units at each cortical node, we can estimate the mean 

concentration of G-actin units in the cytoplasm from Eq. (12): ρHN&%J?? = n¦HN&kHN&'%% kHN&'7⁄ = 17µM, which 

is largely equal to half the intracellular G-actin concentration (30 − 37 µM) that have been reported 

in the literature (34). The total number of actin units in the cell is then: NHN&&'& = ρHN&%J??AN?OO(0)hN?OO +

N!n¦HN& ≈ 3.8 × 10l.  



K. The cytoplasmic concentration of the different nonmuscle myosin II isoforms (NMIIA, NMIIB, 

NMIIC) has been measured in HeLa cells and a few pancreatic cancer cell lines (35). According 

to these measurements, the total free myosin concentration is within the range ρ:\'%J??~[0.6 −

0.8]	µM. Then the total number of myosin II molecules in the cell can be estimated as N:\'&'& =

ρ:\'%J??AN?OO(0)hN?OO + N!n¦:\'. We find that N:\'&'& is then within the range [1.13 × 10k − 1.33 × 10k]. 

Notice that we have used the value of n¦:\' estimated in G. We therefore adjust N:\'&'&  within a 

reasonable range [8 × 10G − 2 × 10k]. 

L. We estimate the drag coefficient experienced by cytoplasmic material as it goes through the 

cortex by considering the transverse flow of a Newtonian fluid through an array of infinite parallel 

rods. Assuming a reasonable cortical mesh size ξN ≈ 0.015	µm (20), the volume fraction of actin 

filaments in the cortex is ϕN = πrN5 ξN5⁄ ≈ 0.1710. The drag coefficient γNm  per unit length can then 

be obtained by solving the following non-linear algebraic equation (36):  

4πη%
no

γNm
+ ln®

γNm

4πη%
no¯+ γ?8O − 0.47

γNm

4πη%
no + ln#�ϕN' = 0 

where η%no is the cytoplasmic viscosity, and γ?8O is the Euler-Mascheroni constant. Using a 

cytoplasmic viscosity of η%no = 0.005	pN ∙ s ∙ µmC5, we get γNm ≈ 0.016	pN ∙ s ∙ µmC5. The drag 

coefficient associated to each cortical node can then be obtained by multiplying γNm  by the 

characteristic distance between cortical nodes ℓNB. We get: γN ≈ 0.003	pN ∙ s ∙ µmCD. 

M. Typical values of cytoplasmic viscosity are [2 × 10Cn − 10]	pN ∙ s ∙ µmC5 (37-39). We estimate 

the effective two-dimensional cytoplasmic viscosity as η% = hN?OOη%
no ≈ [0.01 − 60]	pN ∙ s ∙ µmCD. 

We use a wider range of fluid viscosity values to study statistically significant differences in cell 

migratory behavior. 

N. We explore how different mechanical properties of the cytoplasm and extracellular space 

influence cell migration capabilities. To explore maximal theoretical migration speeds achieved 

by bleb-producing cells, we use the viscous fluid limit in most of our simulations. 



O. Arbitrarily chosen.  

P. The membrane permeability coefficient ζ4 used in Eq. (S25) can be written as ζ4 = υB/(kaTcp), 

where υB is the osmotic water permeability commonly estimated in experiments υB~[5 − 100]	µm ∙

sCD	 (40), and cpCD is the volume of a water molecule. Our model is two-dimensional; thus, we will 

use the corresponding cross-sectional area of a water molecule Ap instead. The effective radius 

of a water molecule can be estimated from cp ≈ 55.55	mol ∙ LCD	, we get Rp ≈ 1.9 × 10CG	µm, and  

Ap ≈ 1.16 × 10Cqµm5. We choose υB = 10	µm ∙ sCD, thus ζ4 = υBAp/(kaT) ≈ 2.8 × 10CG	µm5 ∙

pNCD ∙ sCD. 

Q. To study the migratory potential of adherent blebby cells (Fig. 6), we set κN?OOC?N: = 500	pN ∙

µmCD, a stiff enough cellular adhesion protein complex-extracellular matrix that effectively resists 

rearward cortical forces during bleb retraction. 

R. Prescribed fraction of the plasma membrane perimeter (neck bleb size) that loses mechanical 

connection with the underlying cortex used in Figs. 2, 6, S1A, S1B, S2 and S6. The number of 

membrane-cortex bonds broken is 15.   

Table S2. Parameter values used to produce the model results, unless otherwise specified 

Symbol Value 

F'!
(%)* 2.5	pN ∙ µm+, 

κ' 120	pN ∙ µm+, 

ℓ'- 0.18	µm 

β' 0		pN ∙ µm. 

ℓ/01- 0.5	µm 

k/012)  20K3	µM+, ∙ s+, 

k/01244  0.4K3	s+, 

F/01
567( 0.4pN 



N/01(2(  3.5 × 108 

κ/01 5pN ∙ µm+, 

κ$ 0.1	pN ∙ µm+, 

ℓ$- 0.15	µm 

F*( 1.9 × 10+8	pN 

v-
':2 10		µm ∙ s+, 

k/$(2)  10K3	µM+, ∙ s+, 

k/$(244  0.3K3	s+, 

k':22)  0.00125K3	µM+, ∙ s+, 

k':2244  0.035K3	s+, 

T':2 4s 

K3 1 

t5%45 50	ms 

N/$((2( 3.8 × 109 

N':2(2(  1.4 × 108 

γ$ 0.003	pN ∙ s ∙ µm+, 

ξ$ 0.015	µm 

r$ 3.5	nm 

η4 0.4	pN ∙ s ∙ µm+, 

η7<) 0	pN ∙ s ∙ µm+, 

η726( 0	pN ∙ s ∙ µm+, 

λ7<) ∞ 

λ726( ∞ 



L7 10 

ζ7 2.8 × 10+;	µm. ∙ pN+, ∙ s+, 

c<)(0) 339.5283	mM 

c26((0) 339.5	mM 

D<) ∞ 

D26( ∞ 

κN?OOC?N: 0 pN ∙ µm+, 

R$%&&(0) 3	µm 

h$%&& 6	µm 

N= 100 

ϕ= 0.15 
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