
 Supplementary Materials for 

 Local genetic adaptation to habitat in wild chimpanzees 
 Harrison J. Ostridge*, Claudia Fontsere, Esther Lizano, Daniela C. Soto, Joshua M. Schmidt, 

 Vrishti Saxena, Marina Alvarez-Estape, Christopher D. Barratt, Paolo Gratton, Gaëlle 
 Bocksberger, Jack D. Lester, Paula Dieguez, Anthony Agbor, Samuel Angedakin, Alfred 

 Kwabena Assumang, Emma Bailey, Donatienne Barubiyo, Mattia Bessone, Gregory Brazzola, 
 Rebecca Chancellor, Heather Cohen, Charlotte Coupland, Emmanuel Danquah, Tobias Deschner, 

 Laia Dotras, Jef Dupain, Villard Ebot Egbe, Anne-Céline Granjon, Josephine Head, Daniela 
 Hedwig, Veerle Hermans, R. Adriana Hernandez-Aguilar, Kathryn J. Jeffery, Sorrel Jones, 
 Jessica Junker, Parag Kadam, Michael Kaiser, Ammie K. Kalan, Mbangi Kambere, Ivonne 
 Kienast, Deo Kujirakwinja, Kevin E. Langergraber, Juan Lapuente, Bradley Larson, Anne 

 Laudisoit, Kevin C. Lee, Manuel Llana, Giovanna Maretti, Rumen Martín, Amelia Meier, David 
 Morgan, Emily Neil, Sonia Nicholl, Stuart Nixon, Emmanuelle Normand, Christopher Orbell, 

 Lucy Jayne Ormsby, Robinson Orume, Liliana Pacheco, Jodie Preece, Sebastien Regnaut, 
 Martha M. Robbins, Aaron Rundus, Crickette Sanz, Lilah Sciaky, Volker Sommer, Fiona A. 
 Stewart, Nikki Tagg, Luc Roscelin Tédonzong, Joost van Schijndel, Elleni Vendras, Erin G. 

 Wessling, Jacob Willie, Roman M. Wittig, Yisa Ginath Yuh, Kyle Yurkiw, Linda Vigilant, Alex 
 Piel, Christophe Boesch, Hjalmar S. Kühl, Megan Y. Dennis, Tomas Marques-Bonet, Mimi 

 Arandjelovic and Aida M. Andrés* 

 Corresponding authors:  harrison.ostridge.19@ucl.ac.uk  and  a.andres@ucl.ac.uk 

 The PDF file includes: 

 Materials and Methods 
 Supplementary Text 
 Figs. S1 to S56 
 Tables S1 to S4 
 References 

 Other Supplementary Materials for this manuscript include the following: 
 N/A 

 1 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

mailto:harrison.ostridge.19@ucl.ac.uk
mailto:a.andres@ucl.ac.uk


 Materials and Methods 

 Sampling, DNA extraction and sequencing 

 Sampling,  DNA  extraction  and  identification  of  unique  individuals  from  samples  were 
 performed  as  described  in  (  81  )  .  These  steps  plus  library  preparation  and  pooling  were  performed 
 as  described  in  (  3  )  since  both  studies  include  the  exact  same  samples  (an  in-depth  description  of 
 the  methods  used  can  be  found  in  supplemental  information  from  (  3  )  ).  Briefly,  faecal  DNA  was 
 extracted  from  5,397  PanAf  samples  and  screened  with  microsatellite  genotyping  (  81  )  to  select 
 samples  with  good-quality  DNA  while  discarding  repeated  individuals  and  first-order  relatives. 
 828  samples  across  all  four  subspecies  were  then  sequenced,  representing  147  central,  209 
 eastern,  86  Nigeria-Cameroon  and  386  western  chimpanzees,  with  a  minimum  of  20  individuals 
 per  sample  site  when  possible,  over  52  sample  sites.  Library  preparation  was  performed  on 
 different  days  for  random  batches  of  24–48  samples,  with  a  unique  double-inline  barcoded 
 library  per  sample  following  the  BEST  protocol  with  minor  modifications  (  77  ,  141  )  .  Pooling  for 
 capture  was  devised  by  host  DNA  content  (fraction  of  chimpanzee  DNA,  relative  to  gut 
 microbial  and  exogenous  DNA),  with  30  samples/pool  (  3  )  .  Each  capture  pool  was  divided  into 
 two  main  aliquots  (one  for  chr21  (  3  )  and  one  for  the  exome)  and  subsequently  into  several 
 aliquots  for  hybridisations  as  in  (  3  )  .  Target  hybridisation  capture  was  performed  separately  to 
 retrieve  the  non-repetitive  regions  of  chr21  (  3  )  and  the  exome  (this  study)  using  the  SureSelect 
 Human  All  Exon  V6  RNA  library  baits  from  Agilent  Technologies.  Sequencing  was  done  on  27 
 lanes of a HiSeq X, 2x150. 

 Data processing and read filtering 

 Demultiplexing,  filtering  and  read  mapping  were  done  as  in  (  3  )  (detailed  information  in  (  3  ) 
 supplemental  information)  and  is  briefly  described  in  Supplemental  Note  1.1.  Reads  were 
 mapped  to  the  human  genome  hg19   (GRCh37,  Feb.2009  (GCA_000001405.1))  because  the  high 
 quality  of  hg19  and  its  extensive  annotation  make  this  a  better  option  than  mapping  to  the 
 chimpanzee  reference  genome.  Mapping  to  the  human  genome  also  avoids  the  potential  risk  of 
 subspecies-specific  reference  biases,  since  the  chimpanzee  reference  genome  was  generated  from 
 a  single  western  individual.  The  resulting  BAM  files  contained  only  reliable  on-target  reads 
 which were used for all downstream analyses. 

 Sample filtering 

 Filtering  followed  (  3  )  ,  which  is  briefly  described  here  and  in  detail  in  Supplemental  Note  3.  We 
 identified  genetic  outliers  to  find  problematic  samples  using  PCAngsd  v3  (  142  )  with  genotype 
 likelihoods  estimated  in  ANGSD  v0.933  (  143  )  ;  PC1  outliers  were  manually  removed  (n=107). 
 We  excluded  samples  with  >1%  human  contamination  as  estimated  by  HuConTest  (  144  )  ) 
 (n=188)  and  then  those  with  mean  per-base  read  depth  <0.5x  (n=66).  Identical  samples  and 
 first-degree  relatives  were  removed  using  NgsRelate  (  145  )  (n=47).  PCAngsd  was  run  once  more 
 to  remove  samples  that  failed  to  cluster  with  their  respective  sample  sites  (n=5).  The  filtered 
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 exome  dataset  contains  415  samples  from  44  sample  sites  across  all  four  subspecies.  To  have  a 
 comparable  dataset,  we  generated  a  chr21  dataset  with  all  these  samples  except  those  with  high 
 contamination  or  erroneous  PCA  clustering  using  the  chr21  dataset  (n=3).  The  filtered  chr21 
 dataset contains 412 samples from 44 sample sites across all four subspecies. 

 Estimating derived allele counts 

 We  investigated  population  structure  in  the  exome  data  using  PCAngsd  and  NGSadmix  (  146  ) 
 (Supplemental  Note  4).  Following  (  3  ,  81  )  ,  we  combined  sample  sites  less  than  15  km  apart 
 because  the  frequent  movement  of  females  between  nearby  communities  (i.e.  social  groups)  over 
 these  distances  means  that  they  cannot  be  considered  genetically  distinct.  Population  structure 
 analyses  confirm  these  sample  sites  as  very  closely  related  (  3  )  (Figs.  S12-16).  We,  therefore, 
 combined  the  five  Comoé  sample  sites,  the  two  Taï  sample  sites,  and  Bakoun  with  Sobory,  all  of 
 which  belong  to  the  western  subspecies.  In  addition,  we  combined  two  Nigeria-Cameroon 
 sample  sites,  Korup  and  Mt.  Cameroon,  because  PCAangsd  and  NGSadmix  showed  that  the  Mt. 
 Cameroon  samples  lay  within  the  variation  of  Korup  (Figs.  S12-16),  and  because  chr21  analysis 
 of  identical  by  descent  segments  indicated  very  high  connectivity  until  only  ~600  years  ago  (  3  )  . 
 We  note  that  combining  populations  may  limit  the  power  to  identify  putative  differential 
 adaptations  but  never  create  false  positives.  The  resulting  dataset  contains  37  genetic  units  that 
 we  refer  to  as  ‘populations’.  Populations  with  sample  sizes  lower  than  8  (n=7)  were  then 
 excluded,  resulting  in  a  final  filtered  dataset  of  388  samples  (385  for  chr21)  from  30  populations 
 (5 central, 9 eastern, 2 Nigeria-Cameroon and 14 western) (Fig. 3, Fig. S20). 

 We  estimated  the  population  minor  allele  frequency  (MAFs)  of  each  autosomal  SNP  in  each 
 population  from  genotype  likelihoods  using  ANGSD  (  143  )  (Supplemental  Note  5).  MAFs  were 
 estimated  only  for  genomic  sites  with  at  least  one  read  in  at  least  six  samples  or  half  the  samples 
 from  that  population,  whichever  was  larger  (i.e.,  more  conservative).  Sites  with  a  MAF  lower 
 than  1/2N  (N=number  of  individuals  with  at  least  one  read  at  a  given  genomic  site)  or  a  p-value 
 of  a  site  being  monomorphic  within  a  population  greater  than  10  -6  were  considered  monomorphic 
 within  that  population.  Minor  allele  counts  (MACs)  were  obtained  by  multiplying  the  estimated 
 allele  frequencies  by  2N.  Alleles  were  polarised  according  to  the  ancestral  state  from  the  EPO 
 alignment  of  six  primate  species 
 (ftp://  ftp.ensembl.org/pub/release-75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e 
 71.tar.bz2  ),  sites  with  missing  ancestral  state  data  were  excluded.  This  information  was  used  to 
 generate estimated derived allele counts (DACs) for each population. 

 We  created  four  ‘subspecies-datasets’;  All  ,  Central-Eastern  ,  Nigeria-Cameroon  and  Western  . 
 Sites  with  MAC  lower  than  2  in  a  subspecies-dataset  were  removed  to  discard  sequencing  errors 
 and,  in  any  case,  we  cannot  identify  signatures  of  positive  selection  in  exceedingly  rare  variants. 
 In  fact,  this  filter  greatly  improves  the  shape  of  the  X  t  X*  distribution  to  the  expectation,  likely 
 because  it  removes  sequencing  errors.  In  each  subspecies-dataset,  sites  with  allele  count  data  in 
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 less  than  70%  of  populations  were  also  removed.  The  same  process  was  applied  to  the  chr21 
 data.  This  chromosome  was  then  filtered  to  obtain  a  ‘non-genic-chr21’  dataset  containing  only 
 regions  >1kb  from  a  gene  using  BEDTools  intersect  v2.29.2  (  147  )  and  the  hg19  annotation  file 
 downloaded  from  Ensembl 
 (http://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.chr.gtf. 
 gz).  The  number  of  populations  and  SNPs  per  subspecies-dataset  for  the  exome  and 
 non-genic-chr21 data is shown in Table S1 and Figs. S19-20. 

 Environmental data 

 Large-scale  biogeographic  analysis  of  Africa  identifies  forest,  savannah  and  intermediate  bistable 
 biomes  within  the  chimpanzee  range  (  87  )  .  Forest  and  savannah  are  at  the  extreme  ends  of  the 
 chimpanzee  habitat  gradient  and  have  very  different  tree  species  compositions  (  87  )  .  The 
 percentage  of  trees  identified  as  forest  specialists  was  thus  used  to  reflect  habitat. 
 Forest-tree-percentage  was  calculated  as  the  number  of  forest  tree  specialists  divided  by  the  total 
 number  of  forest  specialist,  generalist  and  savannah  specialist  trees  as  classified  in  (  87  )  .  The 
 proportion  of  trees  that  could  not  be  assigned  to  one  of  these  categories  varies  greatly  between 
 populations  so  unclassified  trees  were  excluded  to  avoid  introducing  noise  or  biases  in  the  habitat 
 statistic  (Supplementary  Note  2).  While  a  single  variable  cannot  fully  describe  the  nuances  of 
 chimpanzee  habitats,  forest-tree-percentage  is  a  good  proxy  for  many  potential  selection 
 pressures  and  better  represents  the  habitat  gradient  than  the  discrete  categories  used  in  previous 
 studies  (  12  )  .  When  sample  sites  were  combined  to  form  populations,  we  used  the  mean  values. 
 The  variable  was  imputed  in  one  missing  eastern  population  (Chinko)  using  missForest  (  148  ) 
 using  all  PanAf  environmental  data  and  publicly  available  environmental  data  (Supplemental 
 Note  2).  The  imputed  value  for  Chinko  (75.36%)  is  consistent  with  its  classification  as  a  bistable 
 forest  (  87  )  . 

 BayPass 

 We  identified  signatures  of  natural  selection  using  BayPass  v2.2  (  83  )  (Supplemental  Note  6).  The 
 covariance  matrices  for  each  subspecies-dataset  were  first  estimated  under  the  core  model  with 
 default  parameters.  Because  this  step  requires  no  missing  data,  we  used  only  SNPs  with  no 
 missing  allele  count  data  in  any  population.  This  left  ample  SNPs  to  estimate  the  covariance 
 matrix (Table S1). 

 To  account  for  run-to-run  variation,  BayPass  was  run  three  times  with  different  seeds  using  the 
 -seed  option.  Estimated  model  hyperparameters  were  consistent  across  independent  runs. 
 Correlation  matrices,  hierarchical  clustering  trees  and  PCAs  were  calculated  from  the  covariance 
 matrices and PCAs run for visualisation (Supplementary Note 6.1). 

 To  perform  the  genetics-only  test,  BayPass  was  run  on  each  subspecies-dataset  under  the  core 
 model  using  the  corresponding  allele  count  dataset  and  estimated  covariance  matrix.  This  stage  is 
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 robust  to  missing  data  (  83  ,  85  )  ,  so  we  retained  sites  with  missing  data.  BayPass  was  run  three 
 times  with  different  seeds  using  the  three  covariance  matrices  previously  estimated  using  the 
 same  seed.  The  median  X  t  X*  value  of  each  SNP  across  these  runs  was  used  to  select  candidates. 

 X  t  X*  values  are  expected  to  follow  a  distribution  (  =number  of  populations)  under  the  core χ
 𝐽 
 2  𝐽 

 model;  however,  violations  of  the  assumption  of  normally  distributed  allele  frequencies  can  lead 
 to  a  poor  fit.  We,  therefore,  used  the  X  t  X*  distribution  from  the  non-genic-chr21  data  as  our  null 
 distribution  because  these  regions  are  expected  to  evolve  mostly  neutrally,  with  positive  selection 
 mainly  targeting  the  exomes  and  neighbouring  genomic  elements  (Supplementary  Note  6.2).  We 
 note  that  this  is  a  conservative  null  as  there  may  be  some  sites  evolving  under  positive  selection 
 in  non-genic  regions  of  chr21.  The  distribution  of  X  t  X*  values  from  non-genic-chr21  was  thus 
 used  to  define  X  t  X*  thresholds  according  to  estimated  false  positive  rates  (FPRs).  To  account  for 
 any  putative  effect  of  read  depth  on  signatures  of  selection,  SNPs  were  divided  into  five  depth 
 bins  and  the  FPR  was  calculated  for  each  of  these  bins.  Per-site  depth  was  calculated  as  the  total 
 sequencing  depth  across  all  samples  in  the  subspecies-dataset.  Candidates  were  selected  at  three 
 thresholds corresponding to estimated FPRs of 0.5%, 0.1% and 0.05%. 

 We  performed  a  GEA  by  running  BayPass  on  each  subspecies-dataset  under  the  AUX  model 
 using  the  corresponding  allele  count  dataset,  estimated  covariance  matrix  and  standardised 
 population  environmental  data  (using  the  -scalecov  option)  as  input.  As  with  the  genetics-only 
 test,  BayPass  was  run  three  times  with  different  seeds  and  median  values  across  three 
 independent  runs  were  calculated  and  used  to  select  candidates  using  the  same  method  only 
 using BF rather than X  t  X*. 

 To  verify  that  BayPass  correctly  accounts  for  population  structure,  we  investigated  the  allele 
 frequency  patterns  in  the  candidate  SNPs,  both  unstandardised  (closely  related  to  the  observed 
 allele  frequencies  with  missing  data  imputed  using  the  covariance  matrix)  and  standardised 
 (which  account  for  neutral  population  structure).  For  both  statistics,  we  calculated  correlation 
 matrices  among  populations  and  performed  hierarchical  clustering  and  k-medoids  clustering  in 
 R, using the allele frequencies from a single BayPass run under the core model. 

 Gene set enrichment 

 We  annotated  SNPs  using  BEDTools  intersect  v2.29.2  (  147  )  and  the  hg19  annotation  file.  SNPs 
 were  assigned  to  a  gene  if  they  lay  within  the  gene  coordinates  ±5kb.  Gowinda  (  149  )  was  run  to 
 test  for  enrichment  of  gene  categories  in  our  candidate  SNPs  while  accounting  for  gene  length 
 and  overlapping  genes  (method  details  in  Supplemental  Note  7),  in  ‘gene’  mode  to  also  account 
 for  linkage  disequilibrium.  We  used  the  same  Ensembl  hg19  annotation  file  as  above  and 
 restricted our analysis to only genes with 1-1 chimpanzee-human orthologs  (  65  )  . 

 Hypothesis-free  candidate  gene  enrichment  tests  were  run  using  Gene  Ontology  (GO)  categories 
 (  150  )  ,  KEGG  pathways  (  151  )  ,  Reactome  categories  (  152  )  ,  human  GWAS  traits  (  153  )  ,  Phenotype 
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 database  traits  (  154  )  and  tissue  expression  data  from  the  Human  Protein  Atlas  (  155  )  ,  where 
 genes  were  considered  associated  with  a  tissue  if  expression  level  was  ‘high’  and  reliability  was 
 ‘approved’.  We  hypothesised  that  pathogens  and  dehydration  stress  may  be  important  selection 
 pressures  so  we  tested  for  enrichment  of  immunity  genes  (  93  ,  94  )  ,  viral  interacting  proteins 
 (VIPs)  (  156  ,  157  )  ,  other  pathogen-related  genes  (SIV/HIV  (  158  –  160  )  ,  malaria  (  96  –  98  )  ,  influenza 
 (  161  )  ,  SARS-Cov-2  (  162  –  166  )  ,  HSV-1  (  167  )  ,  anthrax  (  168  )  and  ebola  (  169  )  ),  and  genes 
 involved  in  response  to  dehydration  (  89  ,  90  )  (details  in  Supplemental  Note  7).  Gowinda  accounts 
 for multiple testing within each run; no additional corrections were performed across runs. 

 GYPA structural variation analysis 

 The  human  reference  genome  and  panTro6  were  retrieved  from  the  UCSC  Genome  Browser  FTP 
 website.  AG18354  primary  and  alternate  assemblies  were  obtained  from  PRJNA916736  and 
 PRJNA916737  (  https://github.com/marbl/Primates  ).  PacBio  CLR  data  from  Clint/panTro6  were 
 obtained  from  PRJNA369439,  ONT  reads  from  AG18359  were  obtained  from  PRJEB36949,  and 
 PacBio  HiFi  reads  from  AG18359  were  downloaded  from  the  GenomeArk  of  the  Primates 
 Telomere-to-Telomere  Consortium  (  https://genomeark.github.io/t2t-all/Pan_troglodytes.html  ). 
 AG18359  assembly  was  generated  using  previously  published  ONT  data  by  re-calling  bases 
 using  guppy5.0.11  and  running  the  Shasta  assembler  with  default  parameters  (  170  )  .  Assemblies 
 were  mapped  to  hg38  using  minimap2  with  -x  asm5  parameter,  while  long  reads  were  mapped 
 using  minimap2  v2.26  with  settings  -x  map-pb,  -x  map-hifi,  -x  map-ont,  respectively,  and  default 
 parameters  otherwise.  Contigs  and  reads  mapped  to  hg38  were  visually  examined  using  the 
 Integrative  Genome  Browser.  Human  gene  annotations  were  obtained  from  Gencode  v43,  and 
 litfed  from  hg38  to  chimpanzee  assemblies  using  liftoff  (  171  )  ,  enabling  the  detection  of 
 additional gene copies with parameters: -copies -sc 0.9. 

 High-coverage  short-read  data  from  60  chimpanzees  were  retrieved  from  ENA  BioProject 
 PRJEB15086  and  PRJNA189439.  Gene-family  copy-number  estimates  were  obtained  in  hg38 
 coordinates  across  1-kbp  windows  using  the  fastCN  pipeline  (  172  )  ,  which  utilizes  MrsFast  (  173  ) 
 to  perform  short-read  multimapping.  Copy-number  genotyping  was  obtained  using  a  custom 
 Python  script  that  uses  pybedtools  package  to  select  1-kbp  windows  intersecting  regions  of 
 interest  and  calculates  median  copy  number.  SNP  genotypes  were  called  using  the  high-coverage 
 short-read  data  aligned  to  hg19  with  Genome  Analysis  Toolkit  (GATK)  v4.2.5.0  (  174  )  following 
 GATK  best  practices  (  174  )  .  Variants  were  first  called  for  each  sample  separately  using  GATK 
 HaplotypeCaller  resulting  in  a  GVCF  per  sample.  GVCFs  were  consolidated  into  a  VCF  using 
 GATK  GenomicsDBImport  and  joint  genotype  calling  was  performed  using  GATK 
 GenotypeGVCFs.  Variants  were  filtered  only  for  genotype  quality  of  at  least  30.  wANNOVAR 
 (  175  ,  176  )  was used to predict the functional consequences  of the candidate SNPs. 

 Supplementary Text 
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 1. Genomic data 

 An  unavoidable  limitation  of  our  study  is  the  use  of  non-invasive  sampling  which  is  the  only 
 option  available  for  obtaining  genomic  data  from  wild  individuals  for  many  protected  species, 
 including  chimpanzees.  However,  our  carefully  designed  methodology  minimises  the  risk  of 
 false  positives.  There  is  also  no  reason  to  expect  sequencing  errors  to  result  in  allele  frequencies 
 correlating  with  habitat  type  or  to  occur  more  in  genes  with  particular  functions.  Despite  the 
 inherent  challenges  of  non-invasive  sampling,  we  demonstrate  that  genomics  can  provide 
 important  insights  into  patterns  of  local  adaptation  in  an  endangered  species  where  it  is 
 impossible to obtain invasive samples of wild individuals. 

 Coding  regions  are  more  likely  to  contain  functional  variants  and  so  exome  sequencing  is  an 
 economical  method  for  investigating  genetic  adaptation.  However,  exome  sequencing  does  not 
 cover  non-coding  regions,  such  as  introns,  enhancers  or  promoters  which  may  alter  gene 
 expression.  Nevertheless,  recent  selective  events  substantially  increase  linkage  disequilibrium 
 and thus the exome allows us to identify signatures of selection at neighbouring functional sites. 

 1.1. Demultiplexing, filtering and read mapping 

 We  demultiplexed  libraries  belonging  to  the  same  hybridization  pool  using  Sabre 
 (  https://github.com/najoshi/sabre  ).  Illumina  adaptors  and  bases  with  average  quality  scores  <20 
 were  removed  with   Trimmomatic  (version  0.36)  (  177  )  .  Reads  were  mapped  to  the  human 
 genome  hg19   (GRCh37,  Feb.2009  (GCA_000001405.1))  using  BWA   (version  0.7.12)  (  178  )  . 
 Duplicates  were  removed  using  PicardTools  (version  1.95) 
 (http://broadinstitute.github.io/picard/)  and  further  read  filtering  using  samtools  (version  1.5). 
  Off-target  reads  were  removed  using  BEDTools  intersect   v2.22.1  (  147  )  and  the  Agilent  Exome 
 V6 target space bed file. 

 2. Environmental data 

 To  investigate  potential  selection  pressures  driving  local  adaptation,  the  spatial  resolution  of 
 genetic  and  environmental  data  should  ideally  be  the  same.  For  every  sample  site  with  genetic 
 data,  we  also  have  dozens  of  environmental  variables  recorded  by  field  workers  or  remote 
 sensing.  This  dataset  is  unprecedented  in  its  scale,  increasing  our  power  to  detect  local  adaptation 
 in chimpanzees and aiding the identification of likely selection pressures. 

 We  decided  to  use  a  single  measure  of  habitat  type  for  the  genotype-environment  association 
 analysis  (below).  Using  such  a  composite  measure  summarises  a  range  of  environmental 
 variables  and  allows  us  to  contribute  to  literature  investigating  adaptations  to  habitat  types  in 
 chimpanzees  (  2  ,  48  –  51  )  .  Two  types  of  floristic  habitat  type  were  recorded  by  PanAf  field 
 workers  at  each  sample  site.  The  first  measures  the  percentage  of  tropical  forest,  mosaic-forest  or 
 savannah  habitat  along  a  transect;  this  data  was  missing  for  4  sample  sites  (Chinko,  Gishwati, 
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 Comoe2  and  ComoeCNPN).  The  second  measures  the  number  of  forest  specialist,  generalist  or 
 savannah  specialist  trees  as  defined  in  (  87  )  ,  this  data  was  missing  for  3  sample  sites  (Chinko, 
 Comoe2 and ComoeCNPN). 

 In  cases  where  sample  sites  were  combined  to  form  ‘populations’  (see  below),  the  mean  value 
 for  all  sample  sites  within  a  population  was  used.  Because  three  other  Comoé  sample  sites  had 
 habitat  data,  only  Chinko  and  Gishwati  remained  with  missing  habitat  data.  Missing  data  was 
 imputed  using  missForest  (  148  )  using  all  the  PanAf  environmental  data 
 (  http://panafrican.eva.mpg.de/english/approaches_and_methods.php  )  in  addition  to  published 
 and  publically  available  environmental  data  (elevation  (https://biogeo.ucdavis.edu/data/), 
 percentage  tree  cover  (Hansen  et  al.,  2013; 
 http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html  ),  human 
 footprint  (Global  Human  Footprint  Dataset  v.2;  https://doi.org/10.7927/H4M61H5F),  habitat 
 stability  measures  (  13  )  and  19  climatic  variables  at  a  resolution  of  2.5  minutes  from  WorldClim 
 (https://www.worldclim.org/)).  Imputed  values  were  consistent  with  the  biomes  classified  by 
 (  87  )  . 

 Tree  species  composition  is  highly  divergent  between  forest  and  savannahs  (  87  )  and  the 
 vegetation  data  is  more  complete  than  the  transect  data,  therefore,  we  decided  to  use  either  the 
 percentage  of  forest  or  savannah  specialist  trees  as  a  measure  of  habitat  type.  Unsurprisingly, 
 these  two  measures  are  highly  negatively  correlated  across  all  our  sites  (Pearson  r=-0.97, 
 p=2.200✕10  -16  ).  After  visual  inspection,  the  percentage  of  forest  tree  specialists  was  chosen  as  it 
 best  separates  sites  by  the  biomes  inferred  from  a  large-scale  biogeographic  analysis  (  87  )  and 
 every  population  bar  one  (Kayan)  had  some  forest  specialist  trees  (in  contrast,  six  sites  have  no 
 savannah specialist trees). 

 2.1. Unclassified trees 

 Only  trees  classified  as  being  forest  specialists,  savannah  specialists  or  generalist  species  in  (  87  ) 
 were  considered  in  the  calculation  of  forest-tree-percentage,  with  unclassified  trees  considered 
 discarded.  This  is  because  there  is  substantial  variation  in  the  number  of  unknown  trees  between 
 populations  (Fig.  S1),  with  some  populations  having  as  much  as  45%  of  trees  unclassified,  which 
 brings  noise  and  potential  biases  to  the  statistic.  Indeed,  running  the  BayPass  analysis  using  a 
 related  measure  of  forest-tree-percentage  that  includes  unknown  trees  (i.e. 
 forest/(forest+generalist+savannah+unclassified))  results  in  no  excess  of  sites  with  high  BFs  in 
 the  exome  compared  to  non-genic-chr21.  We  note  that  highly  noisy  or  erroneous  habitat 
 measures  would  be  expected  to  generate  a  false  negative  result  (with  noise  hiding  a  true 
 correlation)  but  not  a  false  positive  in  the  GEA.  This  indicates  that  unknown  trees  can  contribute 
 substantially  to  the  measure  in  this  dataset  and  that  including  unknown  trees  results  in  a  measure 
 that does not correspond closely with selection pressures. 
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 3. Sample filtering 

 Non-invasive  sampling  is  necessary  for  the  genetic  sampling  of  endangered,  elusive, 
 unhabituated  wild  populations.  However,  such  sampling  strategies  result  in  additional  challenges 
 which  may  compromise  the  quality  of  the  genetic  data.  Faecal  samples  contain  low  amounts  of 
 endogenous  DNA  often  resulting  in  low  coverage,  our  unfiltered  samples  have  a  median 
 coverage  of  1.51-fold  (0.00-  to  69.50-fold).  Samples  may  also  have  been  exposed  to  the  elements 
 for  hours  before  being  collected  and  the  hot  humid  conditions  of  the  tropics  facilitate  bacterial 
 growth  and  DNA  damage.  (  3  )  found  damage  patterns  (increased  T-to-C  and  A-to-G 
 substitutions)  similar  to  those  in  ancient  DNA,  but  the  error  rates  were  an  order  of  magnitude 
 lower.  Faecal  samples  are  also  susceptible  to  contamination  from  the  individual’s  diet. 
 Chimpanzees  often  prey  on  other  primates  so  DNA  from  an  individual’s  diet  may  be  captured, 
 sequenced  and  mapped  to  the  reference  genome  (Hg19).  There  is  also  potential  for  sample 
 misidentification  at  the  moment  of  collection,  resulting  in  the  sampling  of  different  species  (  3  )  . 
 These  challenges  mean  sample  filtering  is  particularly  important  to  remove  low-quality, 
 misidentified  and  contaminated  samples  which  could  add  noise  to  the  analysis.  We  used  the  same 
 filtering methodology as for chr21 data from the same samples  (  3  )  summarised in Fig. S7. 

 3.1. PC1 outliers 

 First,  samples  showing  signatures  of  contamination  were  removed  by  excluding  those  which 
 were  outliers  in  a  PCA.  Because  all  endogenous  DNA  should  belong  to  chimpanzees  and 
 non-endogenous  to  other  species,  PC1  is  expected  to  discriminate  contaminated  samples  from 
 samples  with  very  low  levels  of  contamination.  BAM  files  containing  only  reliable  on-target 
 reads  were  input  into  ANGSD  v0.933  (  143  )  to  estimate  genotype  likelihoods.  The  following 
 parameters  were  used  every  time  ANGSD  was  run:  -uniqueOnly  1  -remove_bads  1  -minMapQ 
 30  -only_proper_pairs  1  -C  50  -baq  1  -skipTriallelic  1  -GL  2  -doMajorMinor  1.  These 
 parameters,  hereafter  ‘standard  parameters’,  include  only  reads  with  a  single  best  hit,  mapping 
 quality  information,  a  minimum  mapQ  quality  of  30  and  pairs  of  reads  with  both  mates  mapped 
 correctly.  mapQ  is  adjusted  for  excessive  mismatches,  per-Base  Alignment  Quality  is  calculated, 
 and  genotype  likelihoods  were  estimated  using  the  original  GATK  model  (-GL  2).  In  addition  to 
 the  standard  parameters,  the  following  parameters  were  used:  -minInd  15  -minMaf  0.01 
 -SNP_pval  1e-6  -doHWE  1  -minHWEpval  0.001  -doGlf  2.  These  ‘additional  parameters’ 
 retained  only  sites  that  were  present  in  ≥  15  individuals,  biallelic,  had  a  minor  allele  frequency 
 (MAF)  ≥  0.01,  a  probability  of  being  monomorphic  <  10  -6  and  a  probability  of  <  10  -3  of  deviating 
 from  Hardy-Weinberg  equilibrium  (HWE).  Genotype  likelihoods  were  outputted  as  beagle  files. 
 The  PCA  was  performed  using  the  resulting  genotype  likelihoods  and  PCAngsd  v3  (  142  )  with 
 default parameters. 

 PC1  explains  15.34%  of  the  genetic  variation  (Fig.  S2).  The  density  of  PC1  values  shows  two 
 clear  peaks,  one  corresponding  to  western  samples  and  another  corresponding  to  non-western 
 samples,  with  a  long  tail  of  samples  which  did  not  cluster  with  the  rest  of  the  chimpanzees  (Fig. 
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 S2).  This  density  distribution  was  used  to  define  the  threshold  of  -0.01  to  remove  samples  in  this 
 tail  of  the  distribution  which  are  likely  to  be  contaminated  resulting  in  721  samples  passing  this 
 filter.  Of  the  107  samples  removed  at  this  stage,  94  were  also  removed  at  this  stage  of  filtering  in 
 (  3  )  who  found  that  many  of  these  samples  were  contaminated  with  DNA  mapping  to  monkeys 
 (likely  due  to  diet),  gorillas  (due  to  sample  misidentification)  and  humans  (likely  due  to 
 contamination  during  handling  and  sample  misidentification  in  one  case).  PC2  explains  9.34%  of 
 the  genetic  variation  and  begins  to  separate  the  four  subspecies.  This  filtering  step  resulted  in  a 
 dataset of 721 samples. 

 3.2. Human contamination 

 We  also  removed  samples  with  over  1%  human  contamination  estimated  using  HuConTest  (  144  ) 
 as  in  (  3  )  .  Briefly,  human  contamination  was  estimated  by  investigating  genomic  positions  where 
 humans  and  chimpanzees  consistently  differ  based  on  diversity  data  from  high-coverage 
 chimpanzee  genomes  (  62  )  and  the  1000  genomes  project  (  179  )  .  The  proportion  of  chimpanzee 
 alleles  to  human  alleles  provides  a  reliable  estimate  of  the  percentage  of  human  contamination  in 
 the  sample.  We  retained  samples  with  <  1%  human  contamination  (Fig.  S3),  consistent  with  (  3  )  , 
 resulting in the exclusion of 188 samples. This step resulted in a dataset of 533 samples. 

 3.3. Coverage 

 The  remaining  533  samples  with  low  levels  of  contamination  were  filtered  for  coverage. 
 Although  we  use  genotype  likelihood  (GL)  based  methods  to  estimate  allele  frequencies, 
 ultra-low  coverage  samples  (<  0.5x)  were  filtered  out  because  they  would  only  increase  noise 
 (Fig.  S4).  Coverage  was  calculated  as  the  average  read  depth  per  site  in  the  on-target  region 
 (exome). This filter removed 66 individuals leaving 467 samples. 

 3.4. Relatedness 

 Samples  were  then  filtered  to  remove  those  which  were  a  first-order  relative  or  from  the  same 
 individual  as  another  sample  following  (  3  )  .  We  used  NgsRelate  v2  (  145  )  to  estimate  the 
 coefficient  of  kinship  (θ)  (  180  )  .  NgsRelate  was  run  on  each  sample  site  individually  to  avoid 
 confounding  effects  of  population  structure.  ANSGD  was  run  with  the  standard  parameters 
 (defined  above)  with  the  additional  parameters  -doMaf  1  -minMaf  0.05  -SNP_pval  1e-6  -doGlf  3 
 (consistent  with  (  3  )  )  to  only  include  sites  with  a  MAF  ≥  0.05  and  a  probability  of  being 
 monomorphic  <  10  -6  and  outputs  the  GLs  in  the  appropriate  format  for  NgsRelate.  Samples  from 
 the  same  individual  would  be  expected  to  result  in  θ=0.5,  first-order  relatives  would  be  expected 
 to  result  in  θ=0.25  and  so  on.  We  considered  any  pair  of  samples  with  θ>0.1875  as  first-order 
 relatives  to  account  for  variation  in  the  estimates  of  θ  (0.1875  is  the  midpoint  between  first-order 
 relatives  (θ=0.25)  and  second-order  relatives  (θ=0.125)).  Most  cases  were  simple  pairs  of  related 
 samples  with  five  groups  of  three  related  samples  (Fig.  S5).  For  every  group  of  related  samples, 
 only  the  highest  coverage  sample  was  kept.  This  resulted  in  the  exclusion  of  46  samples  leaving 
 421 samples. 
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 3.5. Samples and population structure 

 The  final  stage  of  filtering  consisted  of  running  population  structure  analyses  to  identify  samples 
 which  do  not  cluster  with  their  correct  subspecies  and  sample  sites.  A  sample  failing  to  cluster  as 
 expected  using  exome-wide  data  is  likely  a  sign  of  a  problem  (e.g.  borderline  low  coverage  or 
 mislabelling),  and  in  any  case,  they  cannot  be  considered  as  part  of  their  labelled  sample  site.  We 
 ran  ANGSD  on  the  filtered  samples  with  the  standard  parameters  and  additional  parameters 
 SNP_pval  1e-6  -minMaf  0.01  -doHWE  1  -minHWEpval  0.001  on  all  samples  and  for  each  of  the 
 four  subspecies  individually.  GLs  were  then  input  to  PCAngsd  to  perform  PCA  and  the  ANGSD 
 tool NGSadmix  (  146  )  to estimate individual admixture  proportions. 

 We  identified  one  western  sample  (Fjn2-62)  and  two  central  samples  (Con2-57  and  GB-14-05) 
 which  failed  to  cluster  with  their  respective  subspecies  and  so  they  were  removed  (Fig.  S6). 
 Within  westerns,  two  samples  (Fjn3-24  and  Gep2-41)  failed  to  cluster  with  any  sample  site  and 
 so  were  also  removed.  These  patterns  could  not  be  explained  by  recent  migration  between 
 sample  sites  as  samples  were  separated  from  the  most  likely  potential  sources  of  migration  by 
 large  geographic  distances  (Fig.  1).  These  samples  were  not  outliers  for  coverage  or  human 
 contamination  statistics  and  so  it  is  unclear  why  they  did  not  cluster  as  expected.  Two 
 mislabelled  samples  were  identified;  the  sample  reportedly  from  Campo  Ma’an  (CMNP1-24) 
 clustered  with  the  southern  sample  sites  Conkouati  and  Loango  when  it  would  be  expected  to 
 cluster  with  other  northern  sample  sites;  and  a  western  sample  reportedly  from  Sangaredi 
 (Gco4-2)  clearly  clustered  with  samples  from  Mt  Sangbe.  CMNP1-24  likely  belongs  to 
 Conkouati  as  analysis  of  rare  alleles  on  the  full  chr21  found  this  to  be  the  most  likely  true  sample 
 site  for  this  sample;  however,  a  relatedness  analysis  on  Conkouati  identified  CMNP1-24  as  a 
 first-order  relative  of  another  Conkouati  sample  with  higher  coverage  and  CMNP1-24  was 
 filtered  out.  Gco4-2  was  reassigned  to  Mt  Sangbe  and  is  not  a  first-order  relative  of  any  other 
 sample  at  this  sample  site.  The  final  filtered  dataset  contained  415  samples  from  44  sample  sites 
 across  all  four  subspecies  (Fig.  S8)  with  a  median  coverage  per  sample  of  4.96-fold  (0.51-  to 
 69.50-fold) in the exome target space. 

 3.6. Chr21 

 In  order  to  have  a  comparable  chr21  dataset,  the  chr21  data  was  filtered  to  only  include  samples 
 which  passed  the  exome  filtering  steps.  In  addition,  we  identified  and  removed  three  chr21 
 samples  with  evidence  of  contamination  on  the  chr21,  one  sample  with  human  contamination  > 
 1%  (Fig.  S9)  on  the  chr21  and  two  samples  which  did  not  cluster  with  their  sample  sites  (Fig. 
 S10)  based  on  chr21.  Four  of  the  remaining  samples  had  a  mean  coverage  <  0.5x  (Fig.  S11), 
 however,  these  were  not  removed  in  the  chr21  dataset  as  they  only  narrowly  missed  the  0.5x 
 threshold  (>0.3x)  and  chr21  data  is  only  used  to  generate  null  distributions  rather  than  to  identify 
 sites under selection. 
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 4. Population structure 

 When  running  analyses  to  identify  the  signatures  of  local  adaptation,  it  is  important  to 
 understand  population  structure  to  avoid  false  positives  and  define  genetic  populations  for 
 estimating  population  allele  frequencies.  We  also  aimed  to  ensure  that  the  population  structure  in 
 the  exomes  corresponds  closely  with  the  reported  genetic  substructure  in  chr21  from  the  same 
 samples  (  3  )  .  ANGSD,  PCAngsd  and  NGSadmix  were  run  as  described  above  (Supplemental 
 Note 3.5) using samples which passed all filtering stages. 

 4.1. Exomes 

 PCAs  from  the  exome  data  agree  closely  with  (  3  )  ,  including  a  similar  proportion  of  the  genetic 
 variance  being  explained  by  the  first  two  principal  components,  with  slight  differences  likely  due 
 to  small  differences  in  sample  filtering  (Fig.  S12).  The  PCA  including  all  samples  shows  clear 
 grouping  into  the  4  subspecies.  PCA  of  centrals  shows  the  northern  and  southern  clades 
 separated  by  the  Ogooué  river  described  by  (  3  )  along  PC1.  PC2  separates  Mts  de  Cristal  and 
 Goualougo  which  lie  at  the  far  west  and  east  of  the  northern  clade  distribution  respectively  but 
 explains  little  variation  in  the  southern  clade.  This  is  consistent  with  recent  population 
 connectivity  in  the  southern  clade  described  by  (  3  )  reducing  population  differentiation.  PC1  for 
 eastern  populations  shows  a  general  north-south  cline  with  Issa  Valley  being  particularly  distinct 
 as  Lake  Tanganyika  acts  as  a  barrier  to  gene  flow  (  3  )  .  Nigeria-Cameroon  PC1  separates  Gashaka 
 from  the  other  three  sample  sites.  The  three  Mt.  Cameroon  samples  lie  fully  with  the  diversity  of 
 Korup  consistent  with  patterns  of  recent  gene  flow  between  these  populations  identified  by  (  3  )  . 
 Western  PCA  shows  less  separation  between  sites  with  more  overlap  due  partly  to  the  higher 
 sampling  density  in  this  subspecies.  PC1  roughly  reflects  an  east-west  cline  with  Comoé  sample 
 sites as clear outliers. 

 Procrustes  transformation  of  the  first  two  principal  components  onto  a  map  shows  a  pattern 
 mostly  consistent  with  isolation-by-distance  within  subspecies  (Fig.  S13)  with  notable 
 exceptions  such  Korup  lying  within  the  variation  of  Mt.  Cameroon  despite  being  90  km  apart  and 
 more  isolated  populations  such  as  Issa  Valley  and  Mt.  Sangbe.  Sample  sites  in  the  southern 
 central  clade  do  not  show  isolation-by-distance  using  the  first  two  principal  components  because 
 PC1  separates  the  northern  and  southern  clades  while  PC2  separates  sample  sites  in  the  northern 
 clade which has higher differentiation between sample sites  (  3  )  . 

 4.2. Chr21 

 PCAs  using  chr21  agree  very  closely  with  results  using  the  exome  including  the  percentage  of 
 genetic variation explained by the first two principal components. 
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 4.3. Defining populations 

 Investigating  natural  selection  requires  information  about  allele  frequencies  in  the  form  of 
 population  allele  counts.  Informed  by  our  demographic  analyses  and  the  results  of  (  3  )  and  (  81  )  , 
 sample  sites  separated  by  small  genetic  and  geographic  distances  were  combined  to  better 
 represent  genetic  units,  which  we  refer  to  as  ‘populations’.  Combining  closely  related  sample 
 sites  increases  the  sample  size  per  population  leading  to  more  accurate  estimates  of  population 
 allele frequency at the cost of reducing the resolution of the analysis. 

 We  combined  the  five  Comoé  sample  sites,  the  two  Tai  sample  sites,  and  Bakoun  with  Sobory  as 
 done  by  (  3  )  and  (  81  )  .  These  sample  sites  are  <  15  km  apart  and  the  frequent  movement  of 
 females  between  nearby  communities  means  they  cannot  be  considered  genetically  distinct 
 populations.  These  sample  sites  were  also  shown  to  be  genetically  similar  in  the  population 
 structure  analysis  (Figs.  S12-16)  and  they  inhabit  almost  identical  habitats  and  so  are  likely 
 subject  to  very  similar  selection  pressures.  In  addition,  we  also  combined  the  Korup  and  Mt. 
 Cameroon  sample  sites  together.  Korup  and  Mt.  Cameroon  are  90  km  apart  and  analyses  of 
 identical  by  descent  genomic  segments  inferred  very  high  connectivity  between  them  until  very 
 recently  (~600  years  ago)  (  3  )  .  Exome  demographic  analyses  further  support  combining  them  as 
 the  PCA  and  admixture  analyses  suggest  that  Mt  Cameroon  samples  lay  within  the  variation  of 
 Korup  (Figs.  S12-16).  Using  the  WorldClim  database 
 (https://www.worldclim.org/data/index.html)  and  biomes  from  (  16  ,  87  )  we  also  confirmed  that 
 Korup  and  Mt.  Cameroon  have  very  similar  tropical  forest  habitats.  Any  small  differences  in  the 
 environmental  variables  between  these  sites  would  be  unlikely  to  have  led  to  differential  local 
 adaptation  due  to  the  recent  high  levels  of  connectivity.  The  combined  sample  size  of  Korup  and 
 Mt  Cameroon  is  10  (Fig.  3  and  S17)  resulting  in  the  presence  of  two  Nigeria-Cameroon 
 populations  in  the  dataset,  (our  filter  for  sample  size  per  population  is  eight  individuals, 
 Supplemental Note 5.1) allowing us to test for selection within this underrepresented subspecies. 

 5. Estimating derived allele counts 

 5.1. Estimating minor allele frequencies 

 BAM  files  were  inputted  into  ANGSD  to  estimate  genotype  likelihoods  and  minor  allele 
 frequencies  (MAF)  for  each  population.  ANGSD  was  run  population-by-population  with  the 
 same  parameters  as  used  for  the  demography  analyses  with  the  following  exceptions.  Sites  must 
 have  data  for  at  least  six  individuals  or  50%  of  the  total  sample  size  of  a  population,  whichever  is 
 larger.  A  minimum  of  six  was  chosen  as  previous  studies  on  simulated  and  empirical  datasets 
 suggest  that  this  sample  size  is  sufficient  for  GEA  (  181  )  .  We  excluded  populations  which  had 
 sample  sizes  <  8  because  population  sample  sizes  close  to  the  minimum  required  per  site  (6) 
 resulted  in  large  numbers  of  sites  with  missing  data.  388  samples  from  30  populations  remain 
 after  this  population  filter.  ANGSD  was  run  with  no  minimum  MAF  filter  and  no  filter  based  on 
 the  probability  of  a  site  being  monomorphic  (-SNP_pval  1)  to  retain  sites  which  are 
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 monomorphic  within  a  population  as  these  locally  monomorphic  sites  may  prove  to  be  globally 
 polymorphic  when  compared  with  other  populations.  MAFs  were  estimated  from  genotype 
 likelihoods  by  assuming  the  major  allele  is  known  (inferred  from  genotype  likelihoods)  and  the 
 minor  allele  is  unknown  (-doMaf  2).  When  the  minor  allele  is  very  rare  it  is  not  always  clear 
 which  base  is  the  true  minor  allele  and  so  we  do  not  assume  we  know  the  true  minor  allele.  The 
 likelihood  of  a  MAF  is  estimated  by  summing  over  the  three  possible  minor  alleles  weighted  by 
 their  probabilities  and  an  expectation  maximisation  (EM)  algorithm  finds  the  MAF  with  the 
 highest  likelihood.  Total  sequencing  depth  per  site  was  also  calculated  using  -doSnpStat  1.  An 
 ancestral  state  file  was  also  supplied  to  ANGSD  so  the  ancestral  allele  was  reported  in  the  output 
 and  could  be  used  to  polarise  the  allele  frequencies.  We  used  the  EPO  alignment  of  six  primate 
 species  aligned  to  Hg19  as  the  ancestral  state  file 
 (ftp://  ftp.ensembl.org/pub/release-75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e 
 71.tar.bz2  ). 

 We  conservatively  restricted  our  analysis  to  the  autosomes  because  our  GL-based  approach  and 
 the  uncertain  sex  of  the  sampled  individuals  made  it  impossible  to  confidently  estimate 
 population  allele  counts  for  sex  chromosomes.  Sex  chromosomes  are  commonly  under 
 particularly  strong  selection  (  182  )  ,  particularly  in  species  with  a  high  reproductive  skew  such  as 
 chimpanzees  (  63  ,  64  ,  183  )  and  so  analysis  of  sex  chromosomes  in  this  dataset  may  be  an 
 interesting avenue for future research. 

 5.2. Site frequency spectra (SFS) 

 The  unfolded  site  frequency  spectra  (SFS)  conforms  to  expectations  and  shows  no  abnormalities 
 which  would  indicate  biases  or  errors  in  the  allele  frequency  estimations  (Fig.  S18).  For 
 example,  the  Western  SFS  has  relatively  fewer  mid-frequency  alleles  compared  to  the  central 
 SFS  owing  to  western’s  lower  effective  population  size  (  5  )  .  The  exome  also  has  relatively  fewer 
 mid-frequency  alleles  than  non-genic-chr21  likely  due  to  the  stronger  effect  of  purifying 
 selection in the exome. 

 Running  ANGSD  without  a  HWE  filter  resulted  in  an  excess  of  mid-frequency  alleles  likely  due 
 to  mapping  of  chimpanzee  paralogs  to  single  genes  in  the  human  genome.  These  sites  would  be 
 reported  as  having  an  excess  of  heterozygotes  and  therefore  deviate  strongly  from  HWE. 
 Removing  sites  which  deviate  from  HWE  with  a  p-value≤0.001  removed  the  excess  of 
 mid-frequency  alleles.  Using  the  reference  or  ancestral  allele  as  the  major  allele  (running 
 ANGSD  -doMajorMinor  4  or  5)  resulted  in  an  excess  of  high-frequency  derived  alleles  due  to 
 reference  bias.  Inferring  the  major  and  minor  alleles  from  the  GLs  (-doMajorMinor  1)  removed 
 the reference bias and excess of high-frequency derived alleles. 
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 6. BayPass 

 6.1. Estimating population covariance matrices 

 Visualising  the  covariance  matrices  as  correlation  matrices,  hierarchical  clustering  trees  and 
 PCAs  (Figs.  S21,  S22)  show  clear  separation  of  subspecies,  high  correlation  between  western 
 population  allele  frequencies  due  to  a  shared  population  bottleneck  (  3  ,  5  ,  62  )  ,  and  strong 
 differentiation between central populations separated by the Ogooué river  (  3  )  . 

 The  covariance  matrices  from  the  exome  and  non-genic-chr21  regions  correspond  closely  but 
 differ  likely  due  to  stronger  purifying  selection  and  lower  linkage  disequilibrium  in  the  exomes 
 compared  to  non-genic  regions  of  chr21.  Förstner  and  Moonen  distances  (FMD)  (  184  )  between 
 covariance  matrices  were  computed  using  fmd.dist(),  an  R  function  included  in  BayPass.  Mean 
 FMD  between  independent  runs  for  exome  and  non-genic-chr21  were  0.82  and  0.76  for  All  ,  0.09 
 and  0.10  for  Central-Eastern  ,  0.02  and  0.02  for  Nigeria-Cameroon  ,  and  0.03  and  0.05  for 
 Western  .  As  expected,  the  mean  FMD  between  exome  and  the  non-genic-chr21  covariance 
 matrices  are  larger:  2.51  for  All  ,  0.59  for  Central-Eastern  ,  1.43  for  Nigeria-Cameroon  and  2.19 
 for  Western  .  These  values  are  in  line  with  those  reported  in  published  BayPass  analyses  (  83  , 
 185  –  188  )  . 

 6.2. Generating an appropriate null distribution 

 In  our  analyses,  SNPs  with  the  highest  selection  statistics  (X  t  X*  or  Bayes  factor)  are  those  most 
 likely  to  be  under  positive  selection  (details  below).  Candidate  targets  of  selection  can  thus  be 
 chosen  simply  by  selecting  SNPs  in  the  top  tail  of  the  empirical  distribution.  However,  this 
 method  relies  on  the  assumption  that  there  are  SNPs  under  positive  selection  in  our  dataset  and 
 does  not  allow  the  estimation  of  false  positive  rates  (FPR).  Using  an  appropriate  null  distribution, 
 tail  thresholds  can  be  selected  based  on  estimated  FPRs,  and  are  not  reliant  on  the  assumption 
 that  the  dataset  contains  SNPs  under  selection.  An  excess  of  SNPs  in  the  top  tail  of  the  empirical 
 distribution  compared  to  the  null  expectation  would  also  provide  evidence  for  the  presence  of 
 positive selection on the genome-scale. 

 So  how  can  we  generate  an  appropriate  null  distribution?  Statistical  methods  can  in  principle  be 
 used  to  estimate  the  probability  that  a  site  is  under  selection,  however,  these  calculations  can  be 
 incorrect  if  improperly  calibrated  and  are  reliant  on  strong  assumptions.  For  example,  BayPass 
 assumes  that  allele  frequencies  are  normally  distributed  which  is  often  violated  in  practice, 
 particularly  when  sample  sizes  are  small.  A  second  option  is  to  simulate  a  null  dataset  under  a 
 neutral  model  and  use  statistics  estimated  from  this  simulated  dataset  as  a  null  distribution.  The 
 BayPass  function  simulate.baypass()  generates  pseudo-observed  data  sets  (PODs)  under  the  core 
 model  for  this  purpose.  However,  such  methods  are  also  reliant  on  the  assumptions  of  the  model 
 used to simulate the data such as normally distributed allele frequencies in the case of BayPass. 
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 An  alternative  approach  is  to  generate  an  empirical  null  distribution  by  calculating  summary 
 statistics  on  an  empirical  dataset  that  is  not  subject  to  natural  selection.  A  key  advantage  of  this 
 approach  is  that  it  does  not  rely  on  model  assumptions.  A  suitable  empirical  null  distribution  can 
 also  account  for  a  range  of  potential  confounding  factors.  This  is  difficult  to  do  using  the  exome, 
 but  it  can  be  generated  using  non-genic  regions,  which  contain  fewer  functional  sites  thus  their 
 evolution  is  primarily  driven  by  neutral  processes.  In  our  case,  we  have  access  to  previously 
 published  whole  chr21  data  from  the  same  samples  (  3  )  and  could  use  the  non-genic  regions  of 
 chr21  (non-genic-chr21)  to  generate  our  null  distributions.  Note  that  this  method  is  conservative 
 because  it  is  likely  that  the  non-genic  regions  of  chr21  do  contain  some  sites  under  natural 
 selection.  The  chr21  and  exome  data  are  identical  in  a  range  of  important  ways,  from  the 
 individuals  included  to  the  filtering  process.  Thus,  using  this  empirical  distribution  also  allows  us 
 to  account  for  a  range  of  potential  confounding  factors  due  to  demographic  history  or  study 
 design.  Data  processing  was  also  identical  with  the  same  site  filtering  criteria  and  near  identical 
 sample  filtering.  The  only  difference  between  these  datasets  is  the  efficiency  of  the  target  capture 
 step,  which  resulted  in  slight  differences  in  the  sequence  coverage  distribution  (with  chr21 
 capture  data  generally  having  slightly  higher  coverage)  (Fig.  S23).  The  difference  is  not 
 substantial  (median  coverage  per  filtered  sample  across  the  whole  target  space:  4.96✕  for  the 
 exome  capture  and  5.23✕  for  the  chr21  capture)  and  by  estimating  allele  frequencies  from 
 genotype-likelihoods  we  minimise  the  effect  of  this  coverage  discrepancy.  Indeed,  comparing  the 
 allele  frequency  estimates  for  chr21  exonic  SNPs  present  in  both  datasets  (the  filtered  exome 
 capture  and  filtered  chr21  capture  data)  shows  that  allele  frequency  estimates  are  highly 
 correlated  across  the  two  datasets,  with  no  evidence  for  biases  or  important  differences  among 
 them (Fig. S24 and S25). 

 In  addition,  we  note  that  in  our  analyses  we  account  for  coverage  when  selecting  candidates  by 
 binning  both  the  exome  and  non-genic-chr21  data  according  to  coverage  (details  below).  This 
 step  controls  for  differences  in  coverage  across  exonic  SNPs  and  for  potential  differences  in 
 coverage between the chr21 and exonic SNPs. 

 6.3. Genetics-only test 

 Classical  selection  analysis  based  on  allele  frequency  alone  relies  on  identifying  sites  with  high 
 allele  frequency  differentiation  between  populations  compared  to  a  neutral  model  (  189  )  .  High 
 genetic  differentiation  is  thus  considered  evidence  of  divergent  positive  selection  between 
 populations.  However,  false  positives  can  occur  as  different  populations  may  have  very  different 
 allele  frequencies  (and  therefore  high  divergence)  due  to  independent  drift  in  the  absence  of 
 panmixia. This can be accounted for by correcting for neutral genetic structure. 

 BayPass  (  83  )  is  a  selection  scan  method  which  accounts  for  neutral  population  structure  by 
 implementing  an  extension  of  the  method  of  Bayenv2  (  190  )  .  BayPass  takes  population  allele 
 counts  as  input.  The  conditional  distribution  of  population  allele  frequency  given  allele  counts  is 
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 binomial  assuming  Hardy-Weinberg  equilibrium.  For  the  core  model,  the  prior  distribution  of  the 

 vector  describing  population  allele  frequencies  for  site  across  populations  (  )  is  a  𝑖  𝐽 α
 𝑖 
∗

 multivariate  gaussian  (equation  1).  is  an  instrumental  variable  which  may  take  a  value  <0  or α
 𝑖𝑗 
∗

 >1  and  relates  to  an  allele  frequency  on  the  real  line  such  that  )).  Here α
 𝑖𝑗 

=  𝑚𝑖𝑛 ( 1 ,     𝑚𝑎𝑥 ( 0 ,    α
 𝑖𝑗 
∗

 we  refer  to  as  ‘unstandardised  allele  frequencies’.  The  ancestral  population  allele  frequency  ( α
 𝑖𝑗 
∗

 )  is  the  mean  reference  allele  frequency  weighted  by  a  prior  distribution  estimated  from  the π
 data.  The  precision  matrix  (Ʌ)  is  the  inverse  of  the  scaled  covariance  matrix  of  the  population 

 allele  frequencies  (Ω).  Parameters  ,  Ʌ  and  are  sampled  at  time  from  the  MCMC  at α
 𝑖 
∗ π

 𝑖 
 𝑡  𝑇 

 different times. 

 BayPass  calculates  ‘standardised  allele  frequencies’  (  )  which  account  for  population  structure 
 by  multiplying  unstandardised  allele  frequencies  by  the  inverse  of  the  Cholesky  decomposition 
 of  Ω  (  )  (equation  2).  The  posterior  means  of  the  standardised  allele  frequencies  (  )  are 
 rescaled  using  the  mean  (  )  and  variance  (  )  (equation  3)  and  these  values  are  used  to 
 calculate  X  t  X*  (equation  4)  (  84  )  .  X  t  X*  is  analogous  to  global  F  ST  (  191  )  .  Sites  with  exceptionally 
 high  X  t  X*  values  have  highly  differentiated  allele  frequencies  and  are  candidate  targets  of 
 positive selection. 

 (1) 

 (2) 

 (3) 

 (4) 

 6.3.1. Standardised allele frequencies 

 If  BayPass  accounts  for  population  structure  in  our  data  effectively  then  we  should  be  unable  to 
 recover  neutral  population  structure  from  the  standardised  allele  frequencies.  To  test  this,  we 
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 performed  various  cluster  analyses  to  investigate  structure  in  the  allele  frequencies.  We  look  for 
 clusters  by  plotting  correlation  matrices,  making  hierarchical  clustering  trees  based  on  the 
 average  agglomeration  method  and  k-medoids  clustering.  k-medoids  aims  to  find  k  clusters 
 which  minimise  the  sum  of  dissimilarities  from  cluster  centres,  while  k-means  uses  the  average 
 of  all  the  points  in  a  cluster  as  the  centre,  k-medoids  uses  an  actual  data  point.  k-medoids 
 clustering  is  more  robust  to  outliers  than  k-means.  The  optimum  average  silhouette  width  can  be 
 used  to  select  the  best  value  for  k  and  a  Duda-Hart  test  can  be  used  to  estimate  if  clusters  are 
 significant.  This  is  all  implemented  in  the  pamk()  function  from  the  fpc  package  (  192  )  .  We  also 
 produced  biplots  in  order  to  reduce  dimensionality  and  visualise  clusters  in  the  first  two  principal 
 components and in the loading vectors using prcomp() from the stats package  (  193  )  . 

 Applying  these  methods  to  a  random  sample  of  5,000  SNPs  from  the  exome  data  does  not 
 recover  neutral  population  structure  such  as  separation  into  subspecies,  indicating  that  BayPass 
 effectively accounts for this potential confounding factor. 

 6.3.2. Selecting genetics-only candidates 

 Under  the  core  model  X  t  X*  values  would  be  expected  to  follow  a  χ  2  distribution  with  degrees  𝐽 

 of  freedom  (  ).  In  practice,  X  t  X*  values  may  not  fit  the  distribution  well  due  to  violation  of  χ 
 𝐽 
 2  χ 

 𝐽 
 2 

 the  assumption  of  normally  distributed  allele  frequencies.  We,  therefore,  opted  to  generate  an 
 empirical  null  distribution  using  results  from  the  non-genic  regions  of  chr21  (further  justification 
 for  using  this  null  is  found  in  Supplemental  Note  6.2).  Contrary  to  expectations  under  local 
 adaptation,  fewer  SNPs  in  the  exome  had  very  high  allele  frequency  differentiation  compared  to 
 the non-genic-chr21 null. 

 We  found  that  there  was  an  overrepresentation  of  SNPs  with  lower  coverage  in  the  tail  of  the 
 distribution.  There  is  no  reason  to  expect  that  low-coverage  sites  would  be  more  likely  to 
 underlie  local  adaptations,  instead,  this  is  likely  due  to  the  higher  uncertainty  in  population  allele 
 frequency  estimates  leading  to  greater  allele  frequency  variation.  We,  therefore,  performed  a  post 
 hoc  coverage  correction.  Coverage  was  calculated  as  the  total  number  of  reads  across  all  samples 
 and  populations  at  a  site.  This  was  calculated  using  the  -doSnpStat  1  flag  while  estimating  MAFs 
 per  population  in  ANGSD  which  reports  the  sequencing  depth  at  each  site  for  each  population.  A 
 custom  python  script  was  used  to  sum  sequencing  depth  over  all  populations  in  each 
 subspecies-dataset.  Sites  were  separated  into  five  coverage  bins,  the  bounds  of  the  lowest  and 
 highest  bins  were  selected  so  each  contains  10%  of  the  exonic  SNPs.  The  remaining  three  bins 
 were  selected  to  have  an  equal  width  (but  not  necessarily  contain  an  equal  number  of  SNPs)  to 
 give  five  bins  in  total.  False  positive  rates  (FPRs)  were  estimated  within  each  bin  using  only 
 non-genic-chr21  SNPs  within  the  same  coverage  bin  as  a  null,  we  are  able  to  do  this  because  the 
 coverage  distribution  of  the  exome  and  non-genic-chr21  data  is  similar  albeit  slightly  shifted 
 towards  higher  coverage  in  chr21-non-genic  (Fig.  S29).  This  results  in  more  stringent  thresholds 
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 in  lower  coverage  bins  (Fig.  S28)  meaning  that  the  candidate  SNPs  are  no  longer  biassed  towards 
 low coverage sites (Fig. S29). 

 6.3.3. Candidate distribution in the genome 

 We  find  that  candidate  SNPs  cluster  in  the  genome  resulting  in  peaks  which  can  be  seen  in 
 Manhattan  plots  (Fig.  S30)  and  a  higher  ratio  of  SNPs  to  genes  in  the  tails  compared  to  the 
 background  (Fig.  S31).  This  clustering  is  due  to  linkage  disequilibrium,  although  this  is  not 
 evidence  of  selection  in  itself,  it  demonstrates  that  our  results  do  not  represent  random  noise 
 caused  by  processes  such  as  sequencing  errors.  The  patchy  nature  of  exome  data  and  the  likely 
 prevalence  of  soft  sweeps  may  explain  why  there  is  a  relatively  small  amount  of  candidate 
 clustering in the genome. 

 6.3.4. Candidate gene overlap between subspecies-datasets 

 Focusing  on  the  genes  that  contain  these  candidate  SNPs  (candidate  genes),  there  is  more  overlap 
 between  candidate  genes  in  All  and  subspecies-specific  datasets  than  between  the 
 subspecies-specific  datasets  (Fig.  S32)  suggesting  within  subspecies  patterns  are  contributing  to 
 patterns  detected  across  subspecies.  Although  there  is  generally  a  greater  overlap  of  SNPs  in  All 
 and  subspecies-specific  datasets  than  between  subspecies-specific  datasets,  92%  of  genes  in  any 
 dataset  are  found  in  all  in  all  datasets  and  the  above  pattern  remains  when  restricting  to  only 
 SNPs present in all datasets (n=18,851). 

 6.3.5. Allele frequency patterns at genetics-only candidate SNPs 

 To  identify  populations  driving  candidate  SNPs  and  to  ensure  that  neutral  population  structure 
 was  not  driving  our  candidates,  we  tested  for  structure  in  the  standardised  population  allele 
 frequencies  by  plotting  correlation  matrices,  making  hierarchical  clustering  trees  and  performing 
 k-medoids  clustering  at  candidate  SNPs  (Fig.  S33)  as  described  above.  We  do  not  recover  neutral 
 population  structure  again  indicating  that  BayPass  effectively  accounts  for  this  potential 
 confounding  factor.  Although  we  find  a  small  amount  of  structure,  we  do  not  find  evidence  for 
 particular populations driving candidates more than others. 

 To  check  that  our  candidates  are  highly  differentiated,  we  calculated  the  pairwise  population 
 allele  frequency  differences  for  both  unstandardised  and  standardised  allele  frequencies  for  each 
 FPR  tail  and  a  random  sample  of  SNPs.  We  see  a  clear  shift  towards  larger  allele  frequencies  in 
 the  candidates  compared  to  the  background  which  is  more  pronounced  at  more  stringent  tails 
 (Fig.  S34).  This  pattern  becomes  even  clearer  when  focusing  only  on  the  maximum  allele 
 frequency  differences  per  SNP  with  a  large  proportion  of  candidates  having  fixed  or  nearly  fixed 
 differences  between  populations  (Fig.  S35).  These  distributions  suggest  that  our  candidates  have 
 exceptionally  large  allele  frequency  differences  between  populations  as  expected  under  local 
 adaptation. 
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 6.4. Genotype-environment association analysis 

 Genotype-environment  association  analyses  (GEA),  also  known  as  environmental  association 
 analyses  (EAA),  test  for  correlations  between  allele  frequencies  and  environmental  variables. 
 These  tests  are  based  on  the  expectation  that  the  frequency  of  an  allele  underlying  adaptation  to  a 
 particular  selection  pressure  should  correlate  with  the  selection  pressure.  GEAs  have  two  main 
 advantages  over  genetics-only  tests.  Firstly,  the  inclusion  of  predictors  increases  the  power  to 
 detect  selection  resulting  in  subtle  changes  in  allele  frequencies,  for  example,  due  to  polygenic 
 selection.  Polygenic  adaptation  is  likely  to  be  important  in  chimpanzees  as  it  is  known  to  be 
 important  in  the  evolution  of  humans  (  32  ,  117  ,  118  )  ,  the  Pan  clade’s  closest  living  relatives. 
 Secondly,  GEAs  help  to  link  potential  selective  pressures  to  genomic  loci  and  allow  specific 
 hypotheses to be tested. 

 BayPass  allows  the  integration  of  environmental  variables  to  perform  a  GEA  using  a  Bayesian 
 hierarchical  model  to  test  for  a  linear  relationship  between  standardised  allele  frequencies  and 
 environmental  variables.  BayPass  offers  two  choices  of  alternative  models:  the  standard  (STD) 
 and  the  auxiliary  (AUX)  models.  The  STD  model  (equation  5)  extends  the  core  model  (equation 
 1)  by  introducing  the  vector  of  environmental  variables  (Z)  of  length  J  (number  of  populations) 
 and  correlation  coefficient  (β  i  ).  The  Bayes  factor  can  then  be  computed  using  an  importance 
 sampling  algorithm  which  samples  MCMC  runs  under  the  core  model.  The  AUX  model 
 (equation  6)  also  introduces  the  binary  auxiliary  variable  (δ  i  )  which  can  equal  1  or  0  indicating 
 that  a  particular  environmental  variable  is  or  is  not  associated  with  SNP  i  respectively.  The 
 posterior  mean  of  δ  i  can  therefore  be  interpreted  as  the  posterior  probability  of  an  association 
 between  a  SNP  and  an  environmental  variable.  The  Bayes  factor  (BF  mc  )  can  be  computed  from 
 this  model  by  multiplying  the  estimated  posterior  odds  by  the  prior  odds  (b  p  /a  p  )  (equation  7).  We 
 decided  to  use  the  AUX  model  for  our  analyses  because  it  explicitly  accounts  for  multiple  testing 
 by  using  prior  odds  which  assume  only  a  small  proportion  of  the  genome  will  be  under  selection 
 (~1%). 

 (5) 

 (6) 

 (7) 
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 6.4.1. Selecting GEA candidates 

 Candidates  were  selected  using  the  same  method  as  for  the  genetics-only  test;  using  results  from 
 chr21  as  a  null  distribution  to  select  candidates  at  BF  thresholds  corresponding  to  FPRs  of  0.5%, 
 0.1% and 0.05% (justification for using this null is found above in Supplemental Note 6.2). 

 Similarly  to  the  genetics-only  analysis,  we  found  that  there  was  an  overrepresentation  of  SNPs 
 with  lower  coverage  in  the  tail  of  the  BF  distribution  likely  due  to  the  higher  uncertainty  in 
 population  allele  frequency  estimates  leading  to  greater  allele  frequency  variation.  We,  therefore, 
 performed  a  post  hoc  coverage  correction,  using  the  same  method  as  described  for  the 
 genetics-only  test  (above).  As  seen  in  the  genetics-only  analysis,  this  generally  results  in  more 
 stringent  thresholds  in  lower  coverage  bins  (Fig.  S38)  meaning  that  the  candidate  SNPs  are  no 
 longer  biassed  towards  low  coverage  sites,  instead,  the  candidate  coverage  distributions  resemble 
 the whole exome distribution (Fig. S39). 

 6.4.2. Candidate distribution in the genome 

 As  in  the  genetics-only  results,  we  find  that  GEA  candidate  SNPs  cluster  in  the  genome  resulting 
 in  peaks  which  can  be  seen  in  Manhattan  plots  (Fig.  S40)  and  a  higher  ratio  of  SNPs  to  genes  in 
 the  tails  compared  to  randomly  sampled  SNPs  (Fig.  S41)  in  All  and  Central-Eastern  but  not  in 
 Western  .  This  clustering  is  due  to  linkage  disequilibrium,  although  this  is  not  evidence  of 
 selection  in  itself,  it  demonstrates  that  our  results  do  not  represent  random  noise  caused  by 
 processes  such  as  sequencing  errors.  The  patchy  nature  of  exome  data  and  the  likely  prevalence 
 of  soft  sweeps  may  explain  why  there  is  a  relatively  small  amount  of  candidate  clustering  in  the 
 genome.  The  lack  of  evidence  of  selection  in  Western  on  the  genome-scale  may  explain  why  we 
 see little evidence of candidates clustering in the genome (Fig. S41). 

 6.4.3. Candidate gene overlap between subspecies-datasets 

 As  found  in  the  genetics-only  test,  there  is  more  overlap  between  candidate  genes  in  All  and 
 subspecies-specific  datasets  than  between  the  subspecies-specific  datasets  (Fig.  S43)  suggesting 
 within  subspecies  patterns  contribute  to  patterns  detected  across  subspecies.  This  pattern  remains 
 when  accounting  for  the  fact  that  there  is  generally  a  greater  overlap  of  SNPs  in  All  and 
 subspecies-specific datasets than between subspecies-specific datasets. 

 6.4.4. Allele frequency patterns at GEA candidate SNPs 

 As  for  the  genetics-only  analysis,  we  tested  for  structure  in  the  standardised  population  allele 
 frequencies  (calculated  under  the  core  model)  at  candidate  SNPs.  Unlike  the  genetics-only 
 candidates,  the  GEA  candidate  SNPs  show  clear  structure.  This  structure  does  not  correspond  to 
 neutral  population  structure  but  instead  to  the  habitat  covariable  (forest-tree-percentage) 
 demonstrating  that  BayPass  effectively  accounts  for  neutral  population  structure  and  identifies 
 SNPs associated with the habitat covariable (Fig. S44). 

 21 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 



 To  independently  verify  that  GEA  candidate  SNPs  correlate  with  the  habitat  covariable,  we 
 calculated  the  Pearson  correlation  coefficient  (r)  of  allele  frequency  (either  standardised  or 
 unstandardised  calculated  under  the  core  model)  against  forest-tree-percentage  for  savannah  and 
 forest  candidate  SNPs  separately.  When  all  candidates  are  analysed  together,  using  either 
 standardised  or  unstandardised  allele  frequencies,  correlations  are  highly  significant  (p<10  -62  ) 
 (mostly  due  to  the  large  number  of  SNPs),  r  always  has  the  correct  sign  and  the  absolute  value  of 
 r  increases  at  more  stringent  tails  (Fig.  S45).  When  correlations  are  tested  for  each  SNP 
 independently,  p-values  are  not  always  significant  due  to  the  small  number  of  sample  points, 
 however,  the  distribution  of  p-values  shifts  further  towards  0  at  more  stringent  tails  (Fig.  S46). 
 The  value  of  r  always  has  the  correct  sign,  with  the  exception  of  a  few  outliers  in  All  and  two 
 Central-Eastern  candidates,  and  the  distribution  of  r  values  shifts  further  from  0  at  more 
 stringent  tails  (Fig.  S46).  These  results  independently  confirm  that  BayPass  effectively  identifies 
 candidate SNPs which correlate with the habitat covariable. 

 Local  adaptation  is  likely  to  be  mostly  polygenic  and  driven  by  soft  sweeps  on  standing  genetic 
 variation,  resulting  in  moderate  allele  frequency  differences  among  populations,  as  observed  in 
 humans  (  32  ,  117  ,  118  )  .  Our  study  design  and  stringent  SNP  filtering  criteria  also  mean  that  many 
 selected  SNPs  may  not  be  included  in  the  final  dataset,  with  the  evidence  of  local  adaptation  on 
 these  SNPs  identified  through  signatures  at  linked  variants  that  are  more  likely  to  show  subtle 
 allele  frequency  changes.  Indeed,  the  GEA  candidate  SNPs  differ  consistently  in  allele  frequency 
 with  respect  to  habitat  type  but  do  not  necessarily  have  large  frequency  differences  between 
 populations (Fig. S45A). 

 6.4.5. Accounting for population structure 

 In  our  dataset,  a  general  pattern  of  isolation  by  distance  in  chimpanzees  (  3  )  and  environmental 
 spatial  autocorrelation  results  in  a  correlation  between  ancestry  and  habitat  within  subspecies, 
 such  population  structure  can  lead  to  spurious  signals  of  selection  if  not  properly  accounted  for. 
 BayPass  has  been  used  effectively  on  a  range  of  biological  systems  (e.g.  (  84  ,  188  ,  194  –  198  )  )  and 
 has  been  shown  to  account  for  population  structure  under  a  range  of  simulated  demographic 
 histories  (  83  )  .  In  our  analyses,  the  estimated  covariance  matrices  agree  with  previous  population 
 structure  analyses  (  3  )  and  the  standardised  allele  frequencies  showed  no  population  structure 
 overall  indicating  that  BayPass  does  indeed  correct  for  neutral  population  structure  in  our  data. 
 We  further  ensure  against  the  confounding  effect  of  population  structure  by  using 
 non-genic-chr21  (which  has  a  near  identical  demographic  history  to  the  exome)  to  generate 
 empirical null distributions. 

 6.4.6. Issa Valley 

 Issa  Valley  is  the  only  savannah-like  population  in  Central-Eastern  with  a  forest-tree-percentage 
 of  22.72%,  the  next  lowest  value  in  Central-Eastern  is  Chinko  with  75.36%  (Fig.  3).  This  makes 
 Issa  Valley  a  valuable  data  point  representing  a  savannah-like  habitat  in  the  central-eastern  clade. 
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 To  determine  to  what  extent  Issa  Valley  drives  the  Central-Eastern  candidate  SNPs,  we  ran 
 BayPass  with  Issa  Valley  removed.  Fig.  S47  plots  the  distribution  of  BFs  from  this  analysis 
 showing  the  distribution  for  all  SNPs  and  for  SNPs  identified  as  candidates  in  the  full 
 Central-Eastern  analysis  (i.e.  with  Issa  Valley  included).  The  candidate  distributions  are  clearly 
 shifted  to  lower  FPRs  and  higher  BF  values  in  the  analysis  excluding  Issa  Valley  also.  This  effect 
 becomes  more  pronounced  at  more  stringent  tails  indicating  that  Issa  Valley  alone  does  not  drive 
 the  Central-Eastern  GEA  candidates.  Unsurprisingly,  this  shift  is  far  less  pronounced  for 
 savannah  candidates  than  forest  candidates.  Thus,  signatures  of  selection  identified  in  the 
 Central-Eastern  GEA  candidates  are  generally  not  driven  by  Issa  Valley  alone,  however,  many 
 savannah  candidates  identified  in  Central-Eastern  may  represent  positive  selection  in  this  single 
 population. 

 7. Gene set enrichment 

 Genomic  analyses  of  chimpanzees  benefit  from  the  detailed  functional  annotation  of  the  human 
 genome  which  can  be  confidently  translated  to  chimpanzees  due  to  low  divergence  between  the 
 species.  The  functions  of  specific  genic  or  regulatory  candidate  SNPs  can  be  inferred  from  the 
 genome  annotation  and  gene  set  enrichment  analysis  can  be  applied  to  test  which  biological  traits 
 are  overrepresented  in  the  candidate  loci.  Gowinda  (  149  )  is  a  program  which  performs  gene  set 
 enrichment  while  accounting  for  potential  confounding  factors  such  as  gene  length  and 
 overlapping  genes.  Gowinda  works  by  randomly  sampling  SNPs  from  all  SNPs  in  the  analysis 
 and  records  the  overlapping  genes  according  to  a  user-provided  genome  annotation  file.  Gowinda 
 can  be  run  in  ‘gene’  mode  where  multiple  SNPs  in  the  same  gene  are  counted  once  (this  is  based 
 on  the  assumption  that  SNPs  within  genes  are  in  complete  linkage)  or  in  ‘SNP’  mode  where 
 multiple  SNPs  in  a  gene  are  counted  multiple  times  (this  relies  on  the  assumption  that  SNPs  are 
 in  linkage  equilibrium).  Running  in  ‘gene’  mode  is  advisable  as  it  partially  accounts  for  linkage 
 disequilibrium.  In  ‘gene’  mode,  SNPs  are  randomly  sampled  until  the  same  number  of  genes  are 
 sampled  as  overlap  with  the  candidate  SNPs.  Empirical  p  values  for  each  gene  set  are  calculated 
 as  the  proportion  of  resampling  runs  which  contain  the  same  number  of  genes  or  more  than 
 observed  in  the  candidate  list.  Multiple  testing  is  accounted  for  by  calculating  the  false  discovery 
 rate  (FDR)  for  each  p  by  dividing  the  number  of  gene  sets  expected  to  have  a  p-value  ≤  p  by  the 
 number observed to have a p-value ≤ p. 

 We  tested  for  enrichment  of  hypothesis-free  datasets  and  hypothesis-driven  datasets.  The 
 hypothesis-free  datasets  tested  were  Gene  Ontology  (GO)  categories  (  150  )  ,  KEGG  pathways 
 (  151  )  ,  Reactome  categories  (  152  )  ,  human  GWAS  traits  (  153  )  ,  phenotype  database  traits  (  154  ) 
 and  tissue  expression  data  from  the  Human  Protein  Atlas  (  155  )  where  genes  were  considered 
 associated with a tissue if expression level was ‘high’ and reliability was ‘approved’. 

 Pathogens,  particularly  SIVcpz,  are  major  drivers  of  differential  adaptations  among  the  four 
 subspecies  of  chimpanzees  (  65  ,  66  )  and  there  is  local  variation  in  the  prevalence  of  pathogens 
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 within  subspecies  (  14  ,  92  ,  199  –  201  )  .  To  test  whether  SIV  and  other  pathogens  also  drive  local 
 adaptation  within  subspecies,  we  tested  for  enrichment  of  pathogen-  and  immunity-related  genes 
 among  the  candidate  SNPs.  We  tested  for  enrichment  of  two  lists  of  immunity  genes,  the  first 
 being  a  manually  curated  list  of  356  genes  associated  with  immune  function  from  (  93  )  and  the 
 second  being  a  manually  curated  list  of  1,553  innate  immunity  genes  from  (  94  )  .  Manually 
 curated  lists  of  genes  that  encode  host  proteins  which  physically  interact  with  viral  proteins,  viral 
 DNA or viral RNA, known as viral interacting proteins (VIPs), were also tested  (  156  ,  157  )  . 

 We  also  tested  for  enrichment  of  lists  of  genes  related  to  a  variety  of  pathogens  similar  to  those 
 infecting  wild  chimpanzees,  we  collectively  refer  to  these  as  ‘other  pathogen-related  genes’.  SIV 
 response  genes  are  those  which  are  differentially  expressed  between  experimentally  infected 
 natural  (vervet  monkeys)  and  naïve  (macaques)  host  CD4+  T  lymphocytes  (  158  –  160  )  .  Malaria 
 genes  consist  of  a  manually  curated  list  of  genes  associated  with  malaria  used  to  identify 
 polygenic  adaptation  in  humans  (  96  )  ,  23  red  blood  cell  genes  with  strong  links  to  malaria  in  the 
 literature  collated  in  (  97  )  and  295  conserved  mammalian  genes  (thus  excluding  HBB  ,  HBD  , 
 GYPA  or  GYPB  )  related  to  P.  reichenowi  ,  P.  vivax  or  P.  falciparum  (close  relatives  of  parasites 
 infecting  wild  chimpanzees  (  57  )  )  identified  in  the  literature  by  (  98  )  .  Influenza-related  genes  are 
 those  which  show  significantly  different  expression  between  infected  and  control  trials  with 
 biologically  significant  effect  sizes  in  a  meta-analysis  of  18  studies  (  161  )  .  SARS-Cov-2  GWAS 
 genes  are  those  associated  with  SARS-Cov-2  in  the  COVID-19  Host  Genetics  Initiative  (round  4 
 alpha  September  30,  2020)  (  202  )  ,  SARS-Cov-2  interacting  genes  are  those  which  encode 
 proteins  which  physically  interact  with  SARS-Cov-2  identified  in  (  163  ,  165  )  ,  and  genes  which 
 are  differentially  expressed  upon  infection  with  SARS-Cov-2  are  those  identified  in  (  164  ,  203  ) 
 and  genes  with  p<0.05  in  the  differential  expression  analysis  done  by  (  162  )  .  Anthrax-related 
 genes  are  the  top  25  upregulated  genes  in  human  cells  4  hours  and  24  hours  (49  unique  genes  in 
 total)  after  exposure  to  Bacillus  anthracis  spores  (  168  )  ,  and  17  genes  reported  to  be  associated 
 with  anthrax  using  MalaCards  (  www.malacards.org  )  (  204  )  .  Ebola-related  genes  are  those 
 identified  as  being  related  to  ebola  in  an  extensive  literature  search  (  169  )  .  Herpes  Simplex  Virus 
 1  (HSV-1)  associated  genes  are  those  which  were  significantly  upregulated  in  infected  cells  and 
 showed  viral  gene  expression  compared  to  cells  which  were  not  exposed  to  the  virus  and  cells 
 which were exposed but did not show any viral expression  (  167  )  . 

 We  also  hypothesised  that  dehydration  stress  may  drive  adaptation  in  savannah  habitats  (  30  )  and 
 so  tested  for  enrichment  of  ‘dehydration  response  genes’.  Dehydration  response  genes  are  those 
 which  are  significantly  differentially  expressed  between  dehydrated  and  hydrated  Cactus  mice  (a 
 desert-adapted  species)  (  89  )  and  133  ‘classical  water  conservation  pathway’  genes  collated  in 
 (  90  )  . 
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 7.1. Genetics-only candidates 

 Although  the  genetics-only  test  did  not  find  evidence  of  selection  on  the  genome-scale,  this  does 
 not  exclude  the  possibility  that  some  exonic  SNPs  have  evolved  under  local  adaptation,  and  the 
 most  highly  differentiated  SNPs  in  the  exome  (which  are  not  driven  by  population  substructure, 
 Fig.  S33)  are  the  best  candidates.  To  identify  potential  selection  pressures  driving  selection  at 
 these sites, we tested for enrichment of the gene categories described above. 

 The  hypothesis-free  enrichment  analysis  found  a  significant  enrichment  (FDR<0.05)  of 
 lung-related  GWAS  categories  in  the  All  0.1%  tail  (Airway  Obstruction,  FDR=0.001;  Tobacco 
 Use  Disorder,  FDR=0.018;  Bronchodilator  Agents,  FDR=0.044;  Forced  Expiratory  Volume, 
 FDR=0.044)  driven  by  6  candidate  genes  (Fig.  S48).  No  enrichment  for  these  categories  was 
 observed  in  the  subspecies-specific  databases,  however,  standardised  allele  frequencies  show  that 
 subspecies  differences  do  not  drive  these  candidates  in  All  .  Convergent  evolution  could  instead 
 explain  this  pattern,  however,  there  is  no  clear  consistent  trend  in  population  allele  frequencies  in 
 these  genes  which  would  help  identify  potential  selection  pressures.  Significant  enrichment  of 
 GWAS  genes  related  to  the  aorta  is  also  observed  in  the  Western  0.05%  tail  (FDR=0.046)  driven 
 by  only  two  candidate  genes.  There  is  also  a  significant  enrichment  of  genes  highly  expressed  in 
 the  spleen  in  the  0.1%  and  0.05%  Western  tails  (FDR=0.023  and  FDR=0.048)  driven  by  eight 
 and  six  candidate  genes,  respectively.  Without  clear  prior  hypotheses,  it  is  difficult  to  speculate 
 on  the  selection  pressures  which  might  drive  selection  for  lung  or  aorta-related  traits,  however, 
 the  spleen  plays  an  important  role  in  immune  system  functioning  and  so  it  is  possible  that 
 pathogen-mediated selection may explain this signal. 

 The  hypothesis-driven  enrichment  tests  revealed  some  limited  evidence  for  pathogen-mediated 
 selection.  General  immunity-related  genes  (  93  )  are  significantly  enriched  in  the  0.05% 
 Nigeria-Cameroon  tail  (FDR=0.035)  and  genes  which  change  expression  on  SARS-CoV-2 
 infection  (  162  ,  164  ,  203  )  are  nominally  enriched  (FDR=0.065)  in  the  0.05%  Western  tail  (Fig. 
 S48).  There  is  generally  a  greater  signal  of  enrichment  for  pathogen-related  genes  in  Western  . 
 Nominal  enrichment  of  genes  related  to  SARS-CoV-2  does  not  reflect  adaptation  to  this  virus 
 (which  arose  years  after  sampling)  but  may  represent  similar  viruses.  Wild  chimpanzees  are 
 known  to  suffer  from  ‘flu-like’  diseases  caused  by  respiratory  viruses  such  as  coronaviruses  (  26  , 
 27  ,  205  –  209  )  although  some  of  these  outbreaks  will  be  the  result  of  exposure  to  humans  in  the 
 very  recent  past  (  121  ,  140  )  .  Viruses,  particularly  RNA  viruses  such  as  coronaviruses,  are  known 
 to  be  strong  selection  pressures  driving  local  adaptation  in  humans  (  157  ,  210  –  212  )  .  Overall,  the 
 genetics-only  analysis  provides  some  evidence  for  viruses  driving  adaptation  in  the  recent  past  as 
 they are known to have been over longer time scales in chimpanzee evolution  (  65  ,  66  )  . 
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 7.2. GEA candidates 

 7.2.1. The effect of montane ecosystems on Central-Eastern forest candidates 

 In  the  forest  candidates,  there  is  generally  a  greater  enrichment  for  pathogen-related  genes  in  All 
 and  Western  ,  however,  we  do  not  find  a  similar  pattern  in  Central-Eastern.  Differences  between 
 montane  and  lowland  ecosystems  likely  explain  this  pattern.  Central-Eastern  includes  five 
 eastern  populations,  Budongo,  Bwindi,  Gishwati,  Ngogo  and  Nyungwe,  which  inhabit  Albertine 
 Rift  montane  forests  at  an  elevation  >1,000m,  resulting  in  lower  mean  annual  temperatures  and 
 therefore  lower  levels  of  vector-borne  diseases  such  as  malaria  compared  to  lowland  forests  (  14  )  . 
 Bwindi,  Gishwati  and  Nyungwe  in  particular  are  at  >2,000m  elevation  resulting  in  mean  annual 
 temperatures  lower  than  17°C  which  is  over  3°C  lower  than  any  other  population  and  over  6°C 
 lower  than  any  non-eastern  population  in  this  study.  As  mentioned  above,  Issa  Valley  is  the  only 
 representative  of  a  savannah-like  habitat  in  Central-Eastern  ,  this  population  also  lies  in  the 
 Albertine  Rift  with  an  elevation  of  1494m  resulting  in  a  mean  annual  temperature  of  20.4°C. 
 This  means  that  while  there  is  a  negative  correlation  between  forest-tree-percentage  and  mean 
 annual  temperature  for  All  (Pearson’s  r  =  -0.24,  p  =  0.185)  and  Western  (Pearson’s  r  =  -0.40,  p  = 
 0.159),  there  is  a  positive  correlation  in  Central-Eastern  (Pearson’s  r  =  0.43,  p  =  0.125). 
 Although  mean  annual  temperature  represents  only  one  of  a  myriad  of  possible  selection 
 pressures  driving  adaptation  to  habitat  type,  it  indicates  that  the  range  of  elevations  represented 
 in  Central-Eastern  may  explain  why  candidate  gene  functions  differ  from  the  other 
 subspecies-datasets. 

 7.2.2. Viral-interacting proteins (VIPs) 

 Although  we  find  evidence  of  local  adaptation  to  pathogens,  we  observed  no  significant 
 enrichment  of  viral  interacting  protein  (VIP)  categories.  This  is  initially  surprising  given  that 
 VIPs  are  known  to  be  under  strong  natural  selection  across  mammals  (  156  )  ,  in  humans  (  157  , 
 210  )  ,  and  in  chimpanzees  (  65  ,  66  )  .  It  is  possible  that,  as  proposed  for  SIV  (  65  ,  66  )  selection 
 pressures  on  VIPs  are  strongest  immediately  after  initial  exposure  to  a  novel  virus  while 
 subsequent  adaptation  is  driven  by  changes  in  other  genes  such  as  immunity  genes.  Our  analysis 
 investigates  selection  in  the  very  recent  past  which  may  not  encompass  the  emergence  of  novel 
 geographically restricted pathogenic viruses that also had time to lead to host adaptation. 

 8. Malaria candidates 

 8.1. GYPA structural variants 

 Considering  that  the  glycophorin  gene  cluster  is  a  well-established  hotspot  of  structural  variation 
 in  humans  (  104  ,  213  )  and  other  great  apes  (  112  )  ,  we  searched  for  associations  between  candidate 
 alleles  (A>T  at  hg19:  chr4:145,039,806/hg38:  chr4:144,118,653;  and  C>A  at  hg19: 
 chr4:145,040,845/hg38:  chr4:144,119,692)  and  gene  copy  number  and/or  linkage  with  nearby 
 structural  variants.  We  first  examined  this  locus  in  genome  assemblies,  comparing  the  human 
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 reference  genome  to  the  chimpanzee  reference  genome  panTro6/Clint_PTRv2  (  114  )  ,  a  recently 
 published  chimpanzee  diploid  assembly  AG18354  (  214  )  ,  and  a  new  chimpanzee  assembly  made 
 from  previously  published  ONT  reads  from  AG18359  (  113  )  ,  all  derived  from  western 
 chimpanzees  (Fig.  S53-A).  After  visual  comparison  between  chimpanzee  contigs  and  the  human 
 reference  build  hg38,  we  noticed  that  none  of  the  assemblies  carried  the  derived  allele  at  the 
 candidate  alleles  (Fig.  S53-B),  which  can  be  explained  by  either  true  absence  of  the  SNPs  in  the 
 donor  individuals  or  collapsed/missing  gene  copies  in  the  assembly.  To  better  assess  assembly 
 errors,  we  directly  examined  the  total  number  of  glycophorin  gene  copies  by  lifting  over  human 
 gene  annotations.  Both  the  human  reference  genomes  hg19  and  hg38  contain  three  gene  family 
 members  in  chromosome  4q31.21,  GYPE  ,  GYPB  and  GYPA  (Fig.  S53-A).  Similarly,  panTro6 
 displayed  three  copies  in  synteny.  The  AG18354  diploid  assembly  differed,  with  both  haplotypes 
 showing  an  additional  copy  of  GYPE  ,  and  one  haplotype  also  showing  an  additional  copy  of 
 GYPB  .  The  new  AG18359  assembly  also  contained  an  additional  copy  of  GYPE  .  In  contrast, 
 previously  published  experimental  copy-number  assays  in  a  chimpanzee  individual  using 
 fibre-FISH  supported  the  presence  of  three  GYPE  genes  (  112  )  ,  suggesting  that  this  region  might 
 be  incorrectly  assembled,  likely  due  to  technological  limitations  reconstructing  structurally 
 variant loci. 

 To  overcome  the  limitations  of  the  assemblies,  we  directly  investigated  three  chimpanzee 
 individuals  for  which  long-read  sequencing  data  exists,  including  PacBio  CCS  long-reads  from 
 Clint  (the  main  donor  of  panTro6)  (  114  )  ,  PacBio  high-fidelity  long-reads  from  AG18354  (  214  )  , 
 and  ONT  reads  from  AG18359  (  113  )  .  SNP  genotyping  from  Illumina  high-coverage  data  showed 
 Clint  as  homozygous  reference  (C/C),  while  AG18354  and  AG18359  as  heterozygous  (C/A)  for 
 the  C>A  substitution  at  chr4:145,040,845  in  hg19.  Inspection  of  Clint  long-read  data  mapping  to 
 GYPA  locus  revealed  only  a  small  proportion  of  reads  carrying  the  A  allele  (0.03  allele  ratio)  in 
 line  with  the  expected  sequencing  error  rate  of  PacBio  CCS  reads.  AG18354  and  AG18359  were 
 both  heterozygous  (albeit  with  skewed  allele  ratios)  at  the  candidate  SNPs  sites  (Fig.  S53-C). 
 Further  examination  of  the  reads  mapping  to  GYPA  locus  in  these  two  individuals,  showed  the 
 presence  of  distinct  molecularly  phased  haplotypes  mapping  to  this  locus,  including  one  carrying 
 a  16  kbp  deletion  ablating  the  last  two  exons  of  GYPA  with  a  lower  mapping  quality  score  likely 
 representing  an  alternative  paralog,  as  well  as  one  spanning  full-length  GYPA  exclusively 
 harbouring  the  candidate  SNPs  (Fig.  S53-C).  Clint,  on  the  other  hand,  lacked  reads  carrying  the 
 16  kbp  deletion  altogether  suggesting  this  paralog  does  not  exist,  in  line  with  its  lower  copy 
 number. 

 Considering  that  chimpanzee  population-level  long-read  sequencing  data  remains  limited,  we 
 leveraged  previously  published  short-read  sequencing  chimpanzee  data  (n=60)  (  5  ,  62  )  to  refine 
 long-read  sequencing  findings.  We  estimated  the  copy  number  of  all  members  of  the  glycophorin 
 gene  cluster  using  fastCN  (  172  )  ,  which  calculates  copy  number  across  1  kbp  windows  based  on 
 read-depth  of  multi-mapping  reads,  thus  providing  gene-family  copy-number  estimates  (Fig. 
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 S53-D).  We  observed  that  windows  overlapping  glycophorins  A-B-C  in  Clint  displayed  copy 
 numbers  >8,  corroborating  collapsed/missing  copies  in  panTro6.  To  examine  the  association 
 between  the  candidate  SNPs  and  copy-number  variation,  we  zoomed  in  on  the  GYPA  locus  (Fig. 
 S53-E).  In  the  human  reference  genome,  GYPA  comprises  a  duplicated  portion,  demarcated  by  a 
 segmental  duplication  overlapping  the  first  five  exons,  and  a  unique  region,  containing  exons  six 
 and  seven.  To  reduce  methodological  noise,  we  genotyped  the  copy  numbers  of  the  duplicated 
 and  unique  portions  of  GYPA  as  the  median  copy  number  across  1kbp  windows  (Fig.  S53-F).  We 
 corroborated  the  unique  portion  of  GYPA  as  diploid  copy-number  two,  with  only  nine  individuals 
 showing  larger  deletion/duplication  events  spanning  the  unique  space  downstream  GYPA  .  The 
 duplicated  portion  of  GYPA  showed  copy-number  polymorphism,  with  most  individuals  carrying 
 eight  to  nine  gene  copies  of  the  glycophorin  genes.  To  detect  possible  SNP  association  with 
 copy-number  variation,  we  genotyped  the  candidate  SNPs  in  the  short-read  sequencing  data.  We 
 found  only  two  individuals  carrying  the  A>T  substitution  at  chr4:145,039,806  and  17  carrying 
 the  C>A  substitution  at  chr4:145,040,845  in  hg19  coordinates.  Focusing  on  the  latter,  we  did  not 
 find  significant  associations  between  copy-number  variation  and  the  presence  of  the  derived 
 allele  (Fig.  S53-E),  suggesting  that  this  candidate  SNP  is  tagging  the  ancestral  GYPA  full-length 
 version independently of copy-number variation. 

 Both  SNPs  are  present  in  the  long-read  data,  confirming  them  to  be  true  polymorphisms,  and 
 their  allele  frequencies  in  the  high-coverage  short-read  data  correspond  to  those  in  the  PanAf 
 exomes  (Fig.  S55).  Although  skewed  allele  balance  in  GYPA  may  result  in  an  underestimation  of 
 derived  allele  frequencies,  read  depth  does  not  correlate  with  habitat  type  (Fig.  S54)  or  allele 
 frequencies  in  the  PanAf  exomes  at  this  locus,  suggesting  that  copy  number  variation  does  not 
 explain  the  strong  genotype-environment  association.  We  note  that  copy  number  variation  is 
 virtually  impossible  to  study  in  genetic  data  from  non-invasive  samples,  therefore,  resolving  this 
 interesting locus will require further work. 

 8.2. Overlapping genes 

 One  of  the  Western  forest  candidate  SNPs  lies  within  HBD  less  than  5kb  from  HBB  and  thus  was 
 assigned  to  both  HBB  and  HBD  (both  genes  belong  to  the  ‘Malaria’  gene  set  and  HBB  belongs 
 to  the  ‘Malaria  (erythrocyte  genes)’  gene  set),  and  two  candidate  SNPs  lie  within  the  GYPA  and 
 GYPB  coordinates  (both  genes  are  in  the  ‘Malaria’  and  ‘Malaria  (erythrocyte  genes)’).  Although 
 gowinda  is  designed  to  account  for  overlapping  genes  and  has  been  shown  to  do  this  effectively 
 (  149  )  ,  for  extra  prudence,  we  checked  whether  the  signal  of  enrichment  for  malaria-related 
 categories  in  the  western  forest  candidates  remained  if  one  of  the  two  overlapping  genes  is 
 removed  from  the  enrichment  analysis  i.e.  we  re-ran  the  analysis  assigning  the  HBB/HBD  and 
 GYPA/GYPB  candidate  SNPs  to  only  one  gene  each.  This  was  done  by  simply  removing  one  of 
 the  overlapping  genes  from  the  annotation  file  passed  to  gowinda.  Although  removing  genes 
 removes  significant  enrichment  (FDR<0.05)  for  any  category,  malaria  categories  still 
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 consistently  show  the  strongest  signal  of  enrichment  in  the  pathogen  response  dataset  at  every 
 tail and gene combination (Table S3). 

 We  note  that  GYPA  and  GYPB  appear  as  neighbouring  in  the  Havana,  NCBI  and  Ensembl 
 annotations  of  hg38  (release  110)  but  their  models  overlap  in  the  Ensembl  hg19  annotation  due 
 to  a  single  outlying  GYPB  exon.  This  is  likely  an  annotation  error  in  Ensembl.  Re-running  the 
 analysis  with  this  exon  removed  from  the  annotation  still  results  in  significant  enrichment 
 (FDR<0.05)  of  malaria-related  genes  (  96  )  in  the  0.5%  Western  tail  and  one  of  the  three  malaria 
 categories has the strongest signal of enrichment in all tails (Table S4). 
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 Fig.  S1.  Data  used  to  calculate  forest-tree-percentage.  Top:  The  proportion  of  trees  in  each 
 sample  site  classified  as  being  a  forest  specialist,  generalist,  savannah  specialist  or  unclassified 
 according to  (  87  )  . Bottom: the number of trees belonging  to each category per sample site. 
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 A  B 

 Fig.  S2.  PCA  of  all  samples  (unfiltered  exomes).  A  Density  of  samples  across  PC1.  The 
 threshold  of  -0.01  (dotted  line)  was  chosen  as  the  point  where  the  density  of  samples  rises 
 sharply.  B  PCA  plot  with  PC1  and  PC2  values  for  each  sample  coloured  by  subspecies  and  the 
 threshold  of  -0.01  (dotted  line).  This  plot  reveals  that  the  two  peaks  observed  in  A  correspond  to 
 western and non-western samples. 
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 Fig.  S3.  Distribution  of  human  contamination  estimates  from  HuConTest  (  144  )  which 
 passed  the  PC1  filter  (exome).  The  1%  threshold  is  shown  as  a  dotted  line.  The  distribution  is 
 heavily skewed towards very low levels of human contamination. 
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 Fig.  S4.  Density  distribution  of  coverage  for  samples  which  passed  contamination  filtering 
 (exome).  0.5x  threshold  is  shown  by  the  dotted  line.  All  samples  below  this  threshold  were 
 filtered out. 
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 Fig.  S5.  Graph  showing  samples  (nodes)  linked  to  related  samples  by  edges  for 
 relationships  where  θ>0.1875.  Nodes  are  coloured  according  to  subspecies  (green=central, 
 orange=eastern, red=Nigeria-Cameroon, blue=western). 
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 Fig.  S6.  PCA  plots  generated  from  exomes  for  all  samples  (A),  central  samples  (B)  and 
 western  samples  (C)  with  outlier  samples  labelled.  Polygons  group  samples  labelled  as  the 
 same subspecies (A) or sample site (B and C). Outlier samples are labelled. 
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 Fig.  S7.  Sankey  diagram  showing  the  proportion  of  samples  which  pass  or  fail  each  stage  of 
 exome filtering. 
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 Fig. S8. Number of samples per sample site after filtering (exome). 
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 Fig.  S9.  Distribution  of  human  contamination  estimates  from  HuConTest  (  144  )  for  chr21 
 data  from  samples  which  passed  filtering  (exome).  The  vertical  dotted  line  represents  a  value 
 of 1%, a single sample exceeds this threshold and was therefore removed. 
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 Fig.  S10.  PCA  plots  generated  from  chr21  for  all  samples  (left)  and  eastern  samples  (right) 
 with  outlier  samples  labelled.  Polygons  group  samples  labelled  as  the  same  subspecies  (when 
 all  samples  are  analysed)  or  sample  site  (when  only  the  eastern  subspecies  is  analysed 
 separately).  Left:  the  Nigeria-Cameroon  outlier  can  be  seen  clustering  near  westerns.  Right:  The 
 Issa  Valley  outlier  can  be  seen  clustering  near  Ngogo  and  Budongo.  Both  these  outliers  were 
 filtered out of the chr21 data. All other samples cluster correctly. 
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 Fig.  S11.  Coverage  distribution  of  data  after  filtering  (chr21).  The  vertical  dotted  line 
 represents coverage of 0.5x. Four samples have coverage < 0.5x but were not removed. 
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 Fig.  S12.  PCAs  from  running  PCAngsd  on  the  filtered  exome  data  for  all  samples  together 
 and  each  subspecies  separately.  Each  subspecies  is  plotted  separately  to  increase  the  resolution 
 of  the  analysis.  Points  represent  individuals,  polygons  represent  subspecies  in  the  all  samples 
 plot and sample sites in the subspecies-specific plots. 
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 Fig.  S13.  PCAs  from  PCAngsd  on  the  filtered  exome  data  for  each  subspecies  separately 
 Procrustes  transformed  onto  a  map.  Points  represent  individuals,  polygons  represent  sample 
 sites  and  lines  link  the  centre  of  polygons  to  the  geographical  location  of  that  sample  site  on  the 
 map. 
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 Fig.  S14.  NGSadmix  results  showing  ancestry  compositions  from  K=2  to  K=10  for  all 
 samples  combined  and  each  subspecies  separately  (exome).  Individuals  (i.e.  columns)  are 
 grouped  according  to  subspecies  when  all  samples  are  analysed  together  and  by  sample  site 
 where  each  subspecies  is  analysed  separately.  Individuals  are  ordered  within  groups  according  to 
 the proportion of ancestry components. 
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 Fig.  S15.  PCAs  from  running  PCAngsd  on  the  filtered  chr21  for  all  samples  together  and 
 each  subspecies  separately.  Points  represent  individuals,  polygons  represent  subspecies  in  the 
 all samples plot and sample sites in the subspecies-specific plots. 

 48 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 



 Fig.  S16.  PCAs  from  running  PCAngsd  on  the  filtered  chr21  for  each  subspecies  separately 
 Procrustes  transformed  onto  a  map.  Points  represent  individuals,  polygons  represent  sample 
 sites  and  lines  link  the  centre  of  polygons  to  the  geographical  location  of  that  sample  site  on  the 
 map. 
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 Fig.  S17.  The  number  of  samples  per  population  after  sample  filtering  and  combining 
 sample sites (exome). 
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 Fig.  S18.  SFS  for  each  subspecies-dataset.  Left  shows  the  density  distribution  and  the  right 
 shows  the  log  10  transformed  density.  Datasets  which  contain  multiple  subspecies  (i.e.  All  and 
 Central-Eastern  )  are  plotted  once  using  all  populations  in  the  dataset  and  then  for  each 
 subspecies separately as indicated by the plot subtitle. Fixed sites are not included. 
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 Fig.  S19.  The  number  of  sites  with  allele  count  data  in  each  population.  Figures  plotted  for 
 each  subspecies-dataset  (rows)  and  either  exome  (left)  or  non-genic-chr21  (right)  data. 
 Population  bars  are  coloured  according  to  subspecies  (central:  green,  eastern:  orange, 
 Nigeria-Cameroon: red, western: blue). 
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 Fig.  S20.  Total  sample  sizes  and  number  of  SNPs  with  allele  count  data  in  each  population 
 plotted  on  a  map.  Figures  plotted  for  each  subspecies-dataset  (rows)  and  either  exome  (left)  or 
 non-genic-chr21  (right)  data.  Distributions  of  the  four  subspecies  are  indicated  with  unique 
 colours  (green=central,  orange=eastern,  red=Nigeria-Cameroon,  blue=western)  and  major  rivers 
 and lakes are indicated in light blue. 
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 Fig.  S21.  Population  allele  frequency  covariance  matrices  estimated  under  the  BayPass  core 
 model  visualised  as  correlation  matrices.  Figures  plotted  for  each  subspecies-dataset  (rows) 
 and  either  exome  (left)  or  non-genic-chr21  (right).  Lighter  colours  indicate  larger  correlation 
 coefficients  and  the  density  plot  in  the  top  left  of  each  plot  shows  the  distribution  of  these  values. 
 Rows  and  columns  are  ordered  according  to  a  hierarchical  clustering  tree  generated  from  the 
 correlation  matrix  using  the  average  agglomeration  method.  The  tips  of  the  tree  are  coloured 
 according  to  subspecies  (green=central,  orange=eastern,  red=Nigeria-Cameroon  and 
 blue=western). 
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 Fig.  S22.  PCA  plots  showing  the  first  two  principal  components  generated  from  the 
 population  allele  frequency  covariance  matrices  estimated  under  the  BayPass  core  model. 
 Figures  plotted  for  each  subspecies-dataset  (rows)  and  either  exome  (left)  or  non-genic-chr21 
 (right)  data.  Points  represent  populations  which  are  linked  in  a  polygon  coloured  according  to 
 subspecies (green=central, orange=eastern, red=Nigeria-Cameroon and blue=western). 
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 Fig.  S23.  2D  density  plots  showing  the  coverage  for  exonic  chr21  SNPs  in  the  filtered  exome 
 and  chr21  capture  data.  The  left  side  plots  the  density  distribution  of  the  total  coverage  across 
 all  samples  in  the  dataset  while  the  right  plots  the  density  distribution  of  the  total  coverage  per 
 population  for  the  same  SNPs.  x=y  is  shown  as  a  dashed  line.  The  number  of  SNPs  and  Pearson 
 correlation  coefficient  (r)  is  reported  in  the  top  left.  We  see  a  slight  bias  towards  higher  coverage 
 values in the chr21 capture data compared to the exome capture data for the same SNPs. 
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 Fig.  S24.  2D  density  plots  showing  the  allele  frequencies  estimated  for  exonic  chr21  SNPs  in 
 the  filtered  exome  and  chr21  capture  data.  The  left  side  plots  the  density  distribution  of  the 
 allele  frequencies  across  all  populations  in  the  dataset  while  the  right  plots  the  density 
 distribution  of  the  per-population  allele  frequencies  for  the  same  SNPs.  x=y  is  shown  as  a  dashed 
 line.  The  number  of  SNPs  and  Pearson  correlation  coefficient  (r)  is  reported  in  the  top  left.  We 
 see  a  strong  correlation  between  the  two  and  no  clear  bias  caused  by  the  different  capture 
 methods. 
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 Fig.  S25.  SFS  for  each  subspecies-dataset  for  exonic  chr21  SNPs  present  in  both  the  filtered 
 exome  capture  and  chr21  capture  data.  SFS  for  the  exome  (green)  and  chr21  capture  data 
 (purple)  correspond  very  closely.  Left  shows  the  density  distribution  and  the  right  shows  the  log  10 

 transformed  density.  Datasets  which  contain  multiple  subspecies  (i.e.  All  and  Central-Eastern  ) 
 are  plotted  once  using  all  populations  in  the  dataset  and  then  for  each  subspecies  separately  as 
 indicated by the plot subtitle. Fixed sites are not included. 

 62 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 



 Fig.  S26.  Correlation  matrices  calculated  from  the  standardised  allele  frequencies 
 calculated  under  the  BayPass  core  model  of  5,000  randomly  sampled  exonic  SNPs.  Results 
 for  Nigeria-Cameroon  are  not  shown  as  the  correlation  matrix  formed  from  only  two  populations 
 is  uninformative.  Lighter  colours  indicate  larger  correlation  coefficients  and  the  density  plot  in 
 the  top  left  of  each  plot  shows  the  distribution  of  these  values.  Rows  and  columns  are  ordered 
 according  to  a  hierarchical  clustering  tree  generated  from  the  correlation  matrix  using  the 
 average  agglomeration  method.  The  tips  of  the  tree  are  coloured  according  to  clusters  assigned 
 by  k-medoids  clustering  for  the  estimated  best  k.  Population  names  are  written  in  colours 
 corresponding  to  their  subspecies  (green=central,  orange=eastern,  red=Nigeria-Cameroon  and 
 blue=western).  We  can  see  that  unlike  the  correlation  matrices  and  PCAs  estimated  with  the  raw 
 allele  frequencies  (Fig.  S21  and  Fig.  S22),  there  is  no  population  structure  observed  in  the 
 standardised  allele  frequencies  (unlike  for  raw  allele  frequencies  shown  in  Fig.  S21)  indicating 
 that BayPass does account for population structure. 
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 Fig.  S27.  X  t  X*  distributions  of  exome  and  non-genic-chr21  for  each  of  the 

 subspecies-datasets compared to the  distribution  (  =N populations).  χ 
 𝐽 
 2  𝐽 
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 Fig.  S28.  X  t  X*  thresholds  for  each  coverage  bin  for  each  FPR  tail  (columns)  and 
 subspecies-dataset (rows). 
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 Fig.  S29.  Distribution  of  total  coverage  across  samples  for  the  whole  exome  (green), 
 non-genic-chr21  (purple)  and  the  genetics-only  candidates  (orange).  Results  shown  for  each 
 FPR  tail  and  each  subspecies-dataset.  The  limits  of  the  5  coverage  bins  are  shown  as  vertical 
 dashed lines. 
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 Fig.  S30.  Manhattan  plots  showing  the  X  t  X*  values  for  each  dataset.  Points  coloured  purple, 
 red and orange are in the 0.5%, 0.1% and 0.05% FPR tails respectively. 
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 Fig.  S31.  Number  of  SNPs  per  gene  across  FPR  tails  for  the  four  subspecies-datasets 
 analyses  in  the  genetic-only  test.  Solid  lines  represent  the  real  data  sampled  at  0.01%  intervals 
 and  dotted  lines  represent  null  expectations  generated  by  randomly  sampling  the  same  number  of 
 SNPs  50  times  at  each  0.01%  interval.  Shaded  areas  represent  the  95%  confidence  intervals. 
 Nigeria-Cameroon  contains  the  fewest  SNPs  and  therefore  there  are  very  few  SNPs  at  very 
 stringent  FPR  tails  resulting  in  increased  stochasticity  which  explains  why  the  line  rises  sharply 
 at stringent thresholds. 
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 Fig.  S32.  Overlap  in  SNPs  between  different  subspecies-datasets  in  all  SNPs  (i.e. 
 FPR<100%) and the 0.5%, 0.1% and 0.05% FPR tails from the genetics-only analysis. 
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 Fig.  S33.  Correlation  matrices  calculated  from  the  exome  standardised  allele  frequencies 
 calculated  under  the  BayPass  core  model.  Figures  are  shown  for  All  ,  Central-Eastern  and 
 Western  for  the  0.5%,  0.1%  and  0.05%  FPR  tails.  Results  for  Nigeria-Cameroon  are  not  shown 
 as  correlation  matrix  formed  from  only  two  populations  is  uninformative.  Lighter  colours 
 indicate  larger  correlation  coefficients  and  the  density  plot  in  the  top  left  of  each  plot  shows  the 
 distribution  of  these  values.  Populations  are  ordered  according  to  a  dendrogram  calculated  using 
 the  average  agglomeration  method  and  the  tips  are  coloured  according  to  clusters  assigned  by 
 k-medoids  clustering  for  the  estimated  best  k.  Population  names  are  coloured  according  to 
 subspecies  (central:  green,  eastern:  orange,  Nigeria-Cameroon:  red,  western:  blue).  The  fact  that 
 there  is  no  correspondence  with  the  neutral  population  structure  shown  in  Figs.  S21  and  S22 
 further shows that BayPass is correcting for neutral population structure effectively. 
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 Fig.  S34.  Distribution  of  absolute  pairwise  population  unstandardised  allele  frequency 
 differences  at  candidate  SNPs.  Results  shown  for  the  0.5%,  0.1%  and  0.05%  FPR  tails 
 compared to a random sample of 1,000 SNPs (All). The y-axis is log-transformed. 
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 Fig.  S35.  Distribution  of  the  maximum  absolute  pairwise  unstandardised  population  allele 
 frequency  differences.  Results  shown  for  candidate  SNPs  in  the  0.5%,  0.1%  and  0.05%  FPR 
 tails compared to a random sample of 1,000 SNPs (All). 
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 Fig.  S36.  Volcano  plots  showing  the  BF  and  correlation  coefficients  estimated  using  the 
 BayPass  AUX  model  for  each  SNP  in  the  exome  (green)  and  non-genic-chr21  (purple) 
 datasets.  The  log  density  distributions  of  each  axis  are  also  plotted.  As  the  significance  of  an 
 association  between  a  SNP  and  the  covariable  increases  (higher  BFs),  the  absolute  value  of  the 
 correlation  coefficient  is  expected  to  increase  resulting  in  a  V-shape.  The  BF  (y-axis)  density 
 plots  show  an  excess  of  SNPs  with  very  high  BFs  in  the  exome  compared  to  non-genic-chr21  for 
 All  and  Central-Eastern  but not  Western  . 
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 Fig.  S37.  Volcano  plots  showing  the  BF  and  correlation  coefficients  at  each  FPR  tail  for 
 each  subspecies-dataset  estimated  using  the  BayPass  AUX  model.  The  density  distributions 
 of  each  axis  are  also  plotted.  Note  that  these  categories  are  nested  (e.g.  a  SNP  in  the  0.1%  tail  is 
 necessarily  in  the  0.5%  tail  but  may  not  be  in  the  0.05%  tail).  In  the  volcano  plot,  more  stringent 
 tails  are  plotted  on  top  of  less  stringent  ones  so  points  are  coloured  according  to  the  most 
 stringent tail for that SNP. 
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 Fig. S38. BF thresholds for each coverage bin, FPR tail and subspecies-dataset. 
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 Fig.  S39.  Distribution  of  total  coverage  across  samples  for  the  whole  exome  (green), 
 non-genic-chr21  (purple)  and  the  GEA  candidates  (orange).  Results  shown  for  each  FPR  tail 
 and each subspecies-dataset. The limits of the 5 coverage bins are shown as vertical dashed lines. 
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 Fig.  S40.  Manhattan  plots  showing  the  BF  values  from  the  GEA  analysis  for  each  dataset. 
 Points  coloured  purple,  red  and  orange  are  in  the  0.5%,  0.1%  and  0.05%  coverage  corrected  FPR 
 tails respectively. 
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 Fig.  S41.  Number  of  SNPs  per  gene  across  FPR  tails  for  the  three  subspecies-datasets 
 analyses  in  the  GEA.  Solid  lines  represent  the  real  data  sampled  at  0.01%  intervals  and  dotted 
 lines  represent  null  expectations  generated  by  randomly  sampling  the  same  number  of  SNPs  50 
 times at each 0.01% interval. Shaded areas represent the 95% confidence intervals. 
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 Fig.  S42.  The  number  of  candidate  SNPs  from  the  GEA  (bars)  compared  to  the  null 
 expectation  (white  lines)  for  savannah  (left)  and  forest  candidates  (right).  Results  shown  for 
 BF  thresholds  corresponding  to  estimated  FPRs  of  0.5%,  0.1%  and  0.05%,  for  each 
 subspecies-dataset  tested  Note  that  y-axis  scales  are  not  consistent  across  panels.  This  figure  is 
 the  same  as  Fig.  4  only  here  savannah  and  forest  candidates  were  selected  separately;  to  select 
 the  savannah  candidates,  only  exome  and  non-genic-chr21  SNPs  with  a  negative  correlation 
 coefficient  are  considered  and  for  forest  only  SNPs  with  positive  correlation  coefficients  are 
 used.  The  difference  between  the  null  expectations  for  forest  and  savannah  candidate  SNPs  is 
 explained  by  the  skewed  correlation  coefficient  distributions  (Fig.  S36).  The  fact  that  we  find  an 
 excess  for  both  forest  and  savannah  candidates  over  null  expectations  in  All  and  Central-Eastern 
 using  this  method  indicates  that  adaptation  in  either  direction  contributes  to  the  overall  excess  of 
 SNPs  with  high  BF  values  in  the  exome.  Note  that  the  excess  is  much  greater  for  the  All  forest 
 candidates  than  for  the  savannah  candidates  indicating  that  adaptation  to  forests 
 disproportionately  contributes  to  the  overall  excess  of  SNPs  highly  correlated  to  habitat  type  in 
 this  subspecies-dataset.  We  note  that  using  this  method  to  select  candidate  SNPs  results  in  a 
 near-identical  list  of  candidate  SNPs  as  the  main  analysis.  The  only  differences  are  due  to  the 
 lower  resolution  of  the  FPR  estimation  resulting  from  fewer  non-genic-chr21  SNPs  use  to 
 generate  each  null  distribution.  This  means  that  the  candidates  identified  with  this  method  are  a 
 subset of those identified in the main analysis. 
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 Fig.  S43.  Overlap  in  genes  between  different  datasets  in  all  genes  (i.e.  FPR<100%)  and  the 
 0.5%, 0.1% and 0.05% FPR tails from the GEA analysis. 
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 Fig.  S44.  Correlation  matrices  calculated  from  the  exome  GEA  candidate  SNP 
 standardised  allele  frequencies  calculated  under  the  BayPass  core  model.  Figures  are  shown 
 for  All  ,  Central-Eastern  and  Western  for  the  0.5%,  0.1%  and  0.05%  GEA  tails.  Populations  are 
 ordered  according  to  a  dendrogram  calculated  using  the  average  agglomeration  method  and  the 
 tips  are  coloured  according  to  clusters  assigned  with  k-medoids  clustering.  Population  names  are 
 coloured  according  to  forest-tree-percentage  with  greener  colours  representing  higher  values 
 (more  forest-like)  and  yellower  colours  representing  lower  values  (more  savannah-like).  We  can 
 see structure driven by the habitat covariable. 
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 Fig.  S45.  Candidate  SNP  unstandardised  (A)  and  standardised  (B)  population  allele 
 frequencies  (calculated  under  the  core  model)  plotted  against  forest-tree-percentage.  Thin 
 lines  represent  the  estimated  population  allele  frequencies  for  each  candidate  SNP,  thick  lines 
 show  the  smoothed  pattern  of  all  candidate  SNPs  which  are  positively  (i.e.  forest  candidates  in 
 blue)  or  negatively  (i.e.  savannah  candidates  in  red)  correlated  with  forest-tree-percentage.  The 
 position  of  each  population  is  indicated  on  the  x-axis  and  colour  corresponds  to  the  subspecies 
 (green=central,  orange=eastern,  red=Nigeria-Cameroon,  blue=western).  Pearson  correlation 
 coefficients  and  p-values  are  given  above  the  plot  for  savannah  and  forest  candidates 
 respectively. 
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 Fig.  S46.  Pearson  correlation  coefficients  (left)  and  p-values  (right)  for  unstandardised 
 (top)  and  standardised  (bottom)  allele  frequencies  (calculated  under  the  core  model)  at 
 each  GEA  candidate  SNP  with  forest-tree-percentage.  Results  are  shown  for  the  three 
 subspecies-databases  and  three  candidate  tails.  SNPs  are  separated  into  those  where  the  derived 
 allele  is  positively  (i.e.  forest  candidates  in  blue)  or  negatively  (i.e.  savannah  candidates  in  red) 
 correlated  with  forest-tree-percentage  in  the  BayPass  GEA.  More  stringent  tails  generally  result 
 in higher absolute correlation coefficient values and lower p-values. 
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 Fig.  S47.  The  distribution  of  FPRs  (left)  and  BFs  (right)  from  running  BayPass  on 
 Central-Eastern  with  Issa  Valley  removed.  The  distribution  for  all  SNPs  (black)  and  for  SNPs 
 identified  as  candidates  (coloured  by  FPR  threshold)  in  the  full  Central-Eastern  analysis  (i.e. 
 with  Issa  Valley  included)  are  shown.  Top:  all  candidates.  Middle:  savannah  candidates.  Bottom: 
 forest  candidates.  SNPs  identified  as  candidates  in  the  full  analysis  tend  to  have  lower  FPRs  and 
 higher BFs than the background. 
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 Fig.  S48.  Gene  set  enrichment  results  for  SNPs  in  the  0.5%,  0  .1%  and  0.05%  FPR  tails  of 
 the  genetics-only  test  (‘.’  FDR<0.1,  ‘*’  FDR<0.05,  ‘**’  FDR<0.01,  ‘***’  FDR<0.001). 
 Vertical  panels  indicate  results  from  All  ,  Central-Eastern  ,  Nigeria-Cameroon  and  Western  (from 
 left  to  right).  Horizontal  panels  show  the  categories  that  the  gene  sets  belong  to.  Only  gene  sets 
 with  FDR<0.1  in  any  tail  in  any  dataset  are  shown.  Multiple  testing  correction  was  done  within 
 each gowinda run (i.e. each tail and gene set database such as KEGG, Phenotype etc.). 
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 Fig. S49. Enrichment of dehydration response genes in the genetics-only candidates. 
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 Fig.  S50.  The  number  of  gene  sets  with  FDR  <  0.5  from  gene  set  enrichment  results  for 
 GEA  candidate  SNPs.  Results  are  shown  for  0.5%,  0.1%  and  0.05%  FPR  tails  for  savannah  and 
 forest  candidate  SNPs.  Vertical  panels  indicate  results  from  each  subspecies-dataset.  Horizontal 
 panels  show  the  broad  categories  that  the  gene  sets  belong  to.  Multiple  testing  correction  was 
 done  within  each  gene  set  enrichment  analysis  run  (i.e.,  each  tail  and  gene  set  database  such  as 
 ‘Pathogen-related’,  ‘GWAS’,  ‘Phenotype’  etc.).  Cells  are  coloured  in  a  gradient  from  white  (0)  to 
 red  (the  largest  value  per  row).  This  is  the  same  as  Fig.  5A  only  with  numbers  indicated  in  the 
 cells. 
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 Fig. S51. Enrichment of dehydration response genes in the GEA candidates. 
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 Fig.  S52.  Manhattan  plots  showing  the  X  t  X*  and  BF  values  from  the  genetics-only  and 
 GEA  analyses  respectively  for  All  (top)  and  Western  (bottom)  datasets  focusing  on  the 
 GYPA  /  GYPB  (left)  and  HBB  /  HBD  (right)  loci.  The  position  of  exons  are  indicated  as 
 rectangles  and  arrows  indicate  total  gene  length  and  transcription  direction  (Ensembl/Havana 
 merged)  from  the  hg19  gtf  annotation  file  downloaded  from  Ensembl  (Methods).  Annotations  are 
 coloured  according  to  the  gene  within  each  panel.  Points  are  coloured  according  to  whether  they 
 are in the 0.5% (purple), 0.1% (red) or 0.05% (orange) FPR tails with all other SNPs in green. 
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 Fig.  S53.  Glycophorin  genes  A-B-E  copy-number  analysis.  (  A  )  Predicted  gene  annotations 
 based  on  lift  over  of  human  genes  to  chimpanzee  genome  assemblies  and  previously  published 
 fibre-FISH  data.  (  B  )  Mapping  of  chimpanzee  genome  assembly  contigs  at  GYPA  locus.  (  C  ) 
 Direct  mapping  of  long  reads  to  GYPA  locus  displaying  a  representative  set  of  reads  carrying 
 distinct  molecular  haplotypes  annotated  as  triangle  (non-delete  haplotype  not  carrying  the 
 candidate  SNPs),  circle  (deleted  haplotype  1),  hexagon  (deleted  haplotype  2),  and  star 
 (non-deleted  haplotype  carrying  the  candidate  SNPs  [yellow  asterisk:  A>T  at  chr4:145,039,806; 
 red  asterisk:  C>A  at  chr4:145,040,845  in  hg19]).  Grey  shapes  represent  depth  of  coverage.  Right 
 insert  shows  allele  ratios  of  A  (green),  C  (blue),  T  (red)  and  G  (ochre)  nucleotides  at  candidate 
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 SNP  sites.  (D)  Gene-family  copy  number  estimates  in  hg38  coordinates  across  chimpanzee 
 subspecies  for  glycophorin  genes  A-B-E  based  on  short-read  depth,  with  copy  numbers 
 explained  in  legend  (right).  Symbol  ‡  demarks  Clint’s  assembly  (panTro6)  and  short-read 
 copy-number  estimates.  (E)  Close  up  to  GYPA  copy  number  estimates  highlighting  unique  and 
 duplicated  portions  according  to  the  segmental  duplication  track  across  chimpanzee  subspecies. 
 (F)  Copy-number  genotyping  across  unique  and  duplicated  portions  of  GYPA  obtained  as  the 
 median  copy-number  across  each  region.  Individuals  carrying  the  C>A  candidate  SNP  are 
 highlighted  in  red.  Significant  differences  were  tested  using  Mann-Whitney  U  test.  P.t.v.:  Pan 
 troglodytes  verus  (western).  P.t.t:  Pan  troglodytes  troglodytes  (central).  P.t.e.:  Pan  troglodytes 
 ellioti  (Nigeria-Cameroon). P.t.s.:  Pan troglodytes  schweinfurthii  (eastern). 
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 Fig.  S54.  Mean  read  depth  per  sample  for  SNPs  in  the  duplicated  portion  of  GYPA 
 corrected  for  the  mean  across  the  whole  of  chr4  per  population  in  the  exome  data.  Thin 
 lines  represent  individual  SNPs,  the  green  line  represents  the  candidate  SNP  at  chr4:145039806 
 (hg19)  and  the  red  line  represents  the  candidate  SNP  at  chr4:145040845  (hg19).  The  thick  blue 
 line  represents  the  smoothed  pattern  using  LOESS.  Some  of  the  per  SNP  lines  are  fragmented 
 because  they  did  not  pass  quality  filters  in  all  populations.  We  see  no  evidence  of  particularly 
 high  read  depth  or  correlation  between  forest-tree-percentage  and  read  depth  at  this  locus  in  the 
 exome  data,  suggesting  observed  SNP  associations  are  not  due  to  artefacts  due  to  structural 
 variation at this locus. 
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 Fig.  S55.  The  allele  frequency  of  the  two  GYPA  candidate  SNPs  in  the  PanAf  exome  data 
 (left) and the high-coverage short-read data  (  62  )  (right). 
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 Fig.  S56.  The  allele  balance  (top),  mean  sequencing  depth  per  sample  (middle)  and  density 
 of  heterozygous  sites  (bottom)  in  the  high-coverage  short-read  data  from  the  western 
 high-coverage  short-read  samples  (  62  )  at  the  GYPA  /  GYPB  region  ±500kb  (left)  or  ±5kb 
 (right).  Vertical  black  lines  indicate  the  location  of  the  GYPA  candidate  SNPs.  ‘Carriers’  are 
 samples  which  have  at  least  one  copy  of  the  derived  allele  at  the  candidate  SNP  chr4:145040845. 
 The  skewed  allelic  balance,  high  coverage  and  high  density  of  heterozygous  sites  across  the 
 region  appear  to  indicate  the  presence  of  duplications.  The  yellow  region  highlights  a  15kb  long 
 region  which  roughly  coincides  with  an  allelic  balance  of  50%,  lower  coverage  and  lower 
 density  of  heterozygous  sites  than  the  GYPA  /  GYPB  region  as  a  whole  suggesting  that  this  region 
 may not be duplicated. 
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 Table  S1.  Number  of  populations  in  each  subspecies-dataset  and  number  of  SNPs  which 
 have  allele  count  data  for  all  populations  in  the  dataset  or  at  least  70%  of  populations.  Note 
 that  the  number  of  SNPs  in  each  subspecies-dataset  is  strongly  influenced  by  factors  such  as 
 coverage  or  number  of  populations  (e.g.,  a  relatively  large  number  of  SNPs  pass  the  filter  of  no 
 missing data in  Nigeria-Cameroon  because it has only  two populations). 

 All  Central-Easter 
 n 

 Nigeria-Camer 
 oon 

 Western 

 Populations  30  14  2  14 

 Populations with 
 data 

 100%  ≥70%  100%  ≥70%  100%  ≥70%  100%  ≥70% 

 Exome SNPs  61,967  521,01 
 5 

 47,202  314,93 
 4 

 108,38 
 2 

 108,38 
 2 

 88,630  175,26 
 6 

 Non-geneic-chr21 
 SNPs 

 72,254  172,87 
 5 

 59,410  124,40 
 7 

 45,339  45,339  34,391  48,829 
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 Table  S2.  Gene  set  enrichment  results  for  GEA  candidate  SNPs  showing  the  number  of 
 candidate  genes  and  FDR  for  all  results  with  FDR  <  0.1.  These  numbers  correspond  to  the 
 results reported in Fig. 5. 
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 Table  S3.  Gene  set  enrichment  results  (FDR)  for  GEA  forest  candidate  SNPs  in  Western  for 
 pathogen  response  gene  sets  from  running  with  every  combination  of  removing  HBB  or 
 HBD  and  GYPA  or  GYPB  .  Within  each  gene  combination  category,  gene  sets  are  in  descending 
 order  according  to  their  FDR  in  the  0.5%  tail  and  ties  are  resolved  according  to  the  FDRs  for 
 increasingly stringent tails. Categories containing no  Western  candidates are not displayed. 
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 Table  S4.  Gene  set  enrichment  results  (FDR)  for  GEA  forest  candidate  SNPs  in  the  western 
 subspecies  for  pathogen  response  gene  sets  after  editing  the  annotation  file  so  GYPB  does 
 not  overlap  with  GYPA  .  Within  each  gene  combination  category,  gene  sets  are  in  descending 
 order  according  to  their  FDR  in  the  0.5%  tail  and  ties  are  resolved  according  to  the  FDRs  for 
 increasingly stringent tails. Categories containing no  Western  candidates are not displayed. 
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